Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
1.
Front Plant Sci ; 15: 1411341, 2024.
Article in English | MEDLINE | ID: mdl-38863555

ABSTRACT

Fruit development can be viewed as the succession of three main steps consisting of the fruit initiation, growth and ripening. These processes are orchestrated by different factors, notably the successful fertilization of flowers, the environmental conditions and the hormones whose action is coordinated by a large variety of transcription factors. Among the different transcription factor families, TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR (TCP) family has received little attention in the frame of fruit biology despite its large effects on several developmental processes and its action as modulator of different hormonal pathways. In this respect, the comprehension of TCP functions in fruit development remains an incomplete puzzle that needs to be assembled. Building on the abundance of genomic and transcriptomic data, this review aims at collecting available TCP expression data to allow their integration in the light of the different functional genetic studies reported so far. This reveals that several Class I TCP genes, already known for their involvement in the cell proliferation and growth, display significant expression levels in developing fruit, although clear evidence supporting their functional significance in this process remains scarce. The extensive expression data compiled in our study provide convincing elements that shed light on the specific involvement of Class I TCP genes in fruit ripening, once these reproductive organs acquire their mature size. They also emphasize their putative role in the control of specific biological processes such as fruit metabolism and hormonal dialogue.

2.
J Extracell Biol ; 3(1): e139, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938682

ABSTRACT

The receptor tyrosine kinase (RTK) KIT and its ligand stem cell factor (SCF) are essential for human mast cell (huMC) survival and proliferation. HuMCs expressing oncogenic KIT variants secrete large numbers of extracellular vesicles (EVs). The role KIT plays in regulating EV secretion has not been examined. Here, we investigated the effects of stimulation or inhibition of KIT activity on the secretion of small EVs (sEVs). In huMCs expressing constitutively active KIT, the quantity and quality of secreted sEVs positively correlated with the activity status of KIT. SCF-mediated stimulation of KIT in huMCs or murine MCs, or of transiently expressed KIT in HeLa cells, enhanced the release of sEVs expressing exosome markers. In contrast, ligand-mediated stimulation of the RTK EGFR in HeLa cells did not affect sEV secretion. The release of sEVs induced by either constitutively active or ligand-activated KIT was remarkably decreased when cells were treated with KIT inhibitors, concomitant with reduced exosome markers in sEVs. Similarly, inhibition of oncogenic KIT signalling kinases like PI3K, and MAPK significantly reduced the secretion of sEVs. Thus, activation of KIT and its early signalling cascades stimulate the secretion of exosome-like sEVs in a regulated fashion, which may have implications for KIT-driven functions.

3.
New Phytol ; 243(3): 1050-1064, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38872462

ABSTRACT

Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.


Subject(s)
Brassinosteroids , Gene Expression Regulation, Plant , MicroRNAs , Plant Proteins , Prunus persica , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Prunus persica/genetics , Prunus persica/growth & development , Prunus persica/metabolism , Brassinosteroids/metabolism , Brassinosteroids/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Base Sequence , Polymorphism, Single Nucleotide/genetics , Genes, Plant
4.
Mol Med ; 30(1): 66, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773377

ABSTRACT

BACKGROUND: The current treatment of osteogenesis imperfecta (OI) is imperfect. Our study thus delves into the potential of using Dickkopf-1 antisense (DKK1-AS) to treat OI. METHODS: We analysed serum DKK1 levels and their correlation with lumbar spine and hip T-scores in OI patients. Comparative analyses were conducted involving bone marrow stromal cells (BMSCs) and bone tissues from wild-type mice, untreated OI mice, and OI mice treated with DKK1-ASor DKK1-sense (DKK1-S). RESULTS: Significant inverse correlations were noted between serum DKK1 levels and lumbar spine (correlation coefficient = - 0.679, p = 0.043) as well as hip T-scores (correlation coefficient = - 0.689, p = 0.042) in OI patients. DKK1-AS improved bone mineral density (p = 0.002), trabecular bone volume/total volume fraction (p < 0.001), trabecular separation (p = 0.010), trabecular thickness (p = 0.001), trabecular number (p < 0.001), and cortical thickness (p < 0.001) in OI mice. DKK1-AS enhanced the transcription of collagen 1α1, osteocalcin, runx2, and osterix in BMSC from OI mice (all p < 0.001), resulting in a higher von Kossa-stained matrix area (p < 0.001) in ex vivo osteogenesis assays. DKK1-AS also reduced osteoclast numbers (p < 0.001), increased ß-catenin and T-cell factor 4 immunostaining reactivity (both p < 0.001), enhanced mineral apposition rate and bone formation rate per bone surface (both p < 0.001), and decreased osteoclast area (p < 0.001) in OI mice. DKK1-AS upregulated osteoprotegerin and downregulated nuclear factor-kappa B ligand transcription (both p < 0.001). Bone tissues from OI mice treated with DKK1-AS exhibited significantly higher breaking force compared to untreated OI mice (p < 0.001). CONCLUSIONS: Our study elucidates that DKK1-AS has the capability to enhance bone mechanical properties, restore the transcription of osteogenic genes, promote osteogenesis, and inhibit osteoclastogenesis in OI mice.


Subject(s)
Disease Models, Animal , Intercellular Signaling Peptides and Proteins , Osteogenesis Imperfecta , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Osteogenesis Imperfecta/metabolism , Mice , Humans , Female , Male , Bone Density , Osteogenesis , Mesenchymal Stem Cells/metabolism
5.
Sci Rep ; 14(1): 11689, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778076

ABSTRACT

We evaluated whether serum stem cell factor (s-SCF) levels just prior to ovulation induction could indicate the ability to develop a top-quality (TQ) blastocyst by day 5. We investigated patients with normal ovarian reserve (NOR), polycystic ovary syndrome (PCOS), diminished ovarian reserve (DOR), or mild endometriosis. Our pilot research suggests a correlation between s-SCF levels and the ability to form TQ blastocysts in patients with mild endometriosis. This significant statistical difference (p < 0.05) was noted between mild endometriosis patients for whom a TQ blastocyst was obtained and those for whom it was not possible, as measured on the 8th day of stimulation and the day of oocyte retrieval. The mean SCF levels in the serum of these women on the 8th day were at 28.07 (± 2.67) pg/ml for the TQ subgroup and 53.32 (± 16.02) pg/ml for the non-TQ subgroup (p < 0.05). On oocyte retrieval day it was 33.47 (± 3.93) pg/ml and 52.23 (± 9.72) pg/ml (p < 0.05), respectively.


Subject(s)
Blastocyst , Ovarian Reserve , Stem Cell Factor , Humans , Female , Stem Cell Factor/blood , Adult , Blastocyst/cytology , Ovarian Reserve/physiology , Polycystic Ovary Syndrome/blood , Endometriosis/blood , Oocyte Retrieval , Ovulation Induction/methods , Pilot Projects , Fertilization in Vitro/methods
6.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38666914

ABSTRACT

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

7.
Mol Biotechnol ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520499

ABSTRACT

Acute pancreatitis (AP) and chronic pancreatitis (CP) are considered to be two separate pancreatic diseases in most studies, but some clinical retrospective analyses in recent years have found some degree of correlation between the two in actual treatment, however, the exact association is not clear. In this study, bioinformatics analysis was utilized to examine microarray sequencing data in mice, with the aim of elucidating the critical signaling pathways and genes involved in the progression from AP to CP. Differential gene expression analyses on murine transcriptomes were conducted using the R programming language and the R/Bioconductor package. Additionally, gene network analysis was performed using the STRING database to predict correlations among genes in the context of pancreatic diseases. Functional enrichment and gene ontology pathways common to both diseases were identified using Metascape. The hub genes were screened in the cytoscape algorithm, and the mRNA levels of the hub genes were verified in mice pancreatic tissues of AP and CP. Then the drugs corresponding to the hub genes were obtained in the drug-gene relationship. A set of hub genes, including Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9, were identified through analysis, demonstrating their pivotal roles in the progression from AP to CP. Notably, these genes were found to be enriched in the Helper T-cell factor (Th17) signaling pathway. Up-regulation of these genes in both AP and CP mouse models was validated through quantitative real-time polymerase chain reaction (qRT-PCR) results. The significance of the Th17 signaling pathway in the transition from AP to CP was underscored by our findings. Specifically, the essential genes driving this progression were identified as Jun, Cd44, Epcam, Spp1, Anxa2, Hsp90aa1, and Cd9. Crucial insights into the molecular mechanisms underlying pancreatitis progression were provided by this research, offering promising avenues for the development of targeted therapeutic interventions.

8.
Cardiovasc Res ; 120(7): 745-755, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38507654

ABSTRACT

AIMS: In hypoxia, endothelial cells (ECs) proliferate, migrate, and form new vasculature in a process called angiogenesis. Recent studies have suggested that ECs rely on glycolysis to meet metabolic needs for angiogenesis in ischaemic tissues, and several studies have investigated the molecular mechanisms integrating angiogenesis and endothelial metabolism. Here, we investigated the role of stem cell factor (SCF) and its receptor, cKIT, in regulating endothelial glycolysis during hypoxia-driven angiogenesis. METHODS AND RESULTS: SCF and cKIT signalling increased the glucose uptake, lactate production, and glycolysis in human ECs under hypoxia. Mechanistically, SCF and cKIT signalling enhanced the expression of genes encoding glucose transporter 1 (GLUT1) and glycolytic enzymes via Akt- and ERK1/2-dependent increased translation of hypoxia inducible factor 1A (HIF1A). In hypoxic conditions, reduction of glycolysis and HIF-1α expression using chemical inhibitors significantly reduced the SCF-induced in vitro angiogenesis in human ECs. Compared with normal mice, mice with oxygen-induced retinopathy (OIR), characterized by ischaemia-driven pathological retinal neovascularization, displayed increased levels of SCF, cKIT, HIF-1α, GLUT1, and glycolytic enzymes in the retina. Moreover, cKIT-positive neovessels in the retina of mice with OIR showed elevated expression of GLUT1 and glycolytic enzymes. Further, blocking SCF and cKIT signalling using anti-SCF neutralizing IgG and cKIT mutant mice significantly reduced the expression of HIF-1α, GLUT1, and glycolytic enzymes and decreased the pathological neovascularization in the retina of mice with OIR. CONCLUSION: We demonstrated that SCF and cKIT signalling regulate angiogenesis by controlling endothelial glycolysis in hypoxia and elucidated the SCF/cKIT/HIF-1α axis as a novel metabolic regulation pathway during hypoxia-driven pathological angiogenesis.


Subject(s)
Cell Hypoxia , Glucose Transporter Type 1 , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Proto-Oncogene Proteins c-kit , Signal Transduction , Stem Cell Factor , Animals , Humans , Stem Cell Factor/metabolism , Stem Cell Factor/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Proto-Oncogene Proteins c-kit/metabolism , Proto-Oncogene Proteins c-kit/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Endothelial Cells/metabolism , Endothelial Cells/pathology , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Retinal Neovascularization/genetics , Mice , Neovascularization, Physiologic , Cells, Cultured , Disease Models, Animal , Glucose/metabolism
9.
Biomed Pharmacother ; 173: 116318, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401522

ABSTRACT

Retinal ischemia is a significant factor in various vision-threatening diseases, but effective treatments are currently lacking. This study explores the potential of stem cell factor (SCF) in regulating the neurovascular unit as a therapeutic intervention for retinal ischemic diseases. A chronic retinal ischemia model was established in Brown Norway rats using bilateral common carotid artery occlusion (BCCAO). Subsequent SCF treatment resulted in a remarkable recovery of retinal function, as indicated by electroretinogram, light/dark transition test, and optokinetic head tracking test results. Histological examination demonstrated a significant increase in the number of retinal neurons and an overall thickening of the retina. Immunofluorescence confirmed these findings and further demonstrated that SCF treatment regulated retinal remodeling. Notably, SCF treatment ameliorated the disrupted expression of synaptic markers in the control group's BCCAO rats and suppressed the activation of Müller cells and microglia. Retinal whole-mount analysis revealed a significant improvement in the abnormalities in retinal vasculature following SCF treatment. Transcriptome sequencing analysis revealed that SCF-induced transcriptome changes were closely linked to the Wnt7 pathway. Key members of the Wnt7 pathway, exhibited significant upregulation following SCF treatment. These results underscore the protective role of SCF in the neurovascular unit of retinal ischemia rats by modulating the Wnt7 pathway. SCF administration emerges as a promising therapeutic strategy for retinal ischemia-related diseases, offering potential avenues for future clinical interventions.


Subject(s)
Arterial Occlusive Diseases , Carotid Artery Diseases , Retinal Diseases , Rats , Animals , Stem Cell Factor , Ischemia/metabolism , Retinal Diseases/prevention & control , Retinal Diseases/pathology , Retina , Retinal Vessels/metabolism , Arterial Occlusive Diseases/pathology
10.
J Neurosci ; 44(7)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38176908

ABSTRACT

Early B-cell factor 1 (EBF1) is a basic helix-loop-helix transcription factor essential for the differentiation of various tissues. Our single-cell RNA sequencing data suggest that Ebf1 is expressed in the sensory epithelium of the mouse inner ear. Here, we found that the murine Ebf1 gene and its protein are expressed in the prosensory domain of the inner ear, medial region of the cochlear duct floor, otic mesenchyme, and cochleovestibular ganglion. Ebf1 deletion in mice results in incomplete formation of the spiral limbus and scala tympani, increased number of cells in the organ of Corti and Kölliker's organ, and aberrant course of the spiral ganglion axons. Ebf1 deletion in the mouse cochlear epithelia caused the proliferation of SOX2-positive cochlear cells at E13.5, indicating that EBF1 suppresses the proliferation of the prosensory domain and cells of Kölliker's organ to facilitate the development of appropriate numbers of hair and supporting cells. Furthermore, mice with deletion of cochlear epithelium-specific Ebf1 showed poor postnatal hearing function. Our results suggest that Ebf1 is essential for normal auditory function in mammals.


Subject(s)
Ear, Inner , Scala Tympani , Animals , Mice , Cochlea/metabolism , Cochlear Duct , Mammals , Spiral Ganglion , Transcription Factors/metabolism
11.
China Pharmacy ; (12): 160-165, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006172

ABSTRACT

OBJECTIVE To investigate the improvement effects of Runchang granules on the constipation in mice and its potential mechanism. METHODS The mice were randomly divided into normal control group, model group, Runchang granules low-dose and high-dose groups (5, 10 g/kg), mosapride group (0.003 g/kg, positive control), with 6 mice in each group. The latter 4 groups were given loperamide intragastrically (0.004 g/kg), twice a day, for 3 consecutive days. Normal control group and model group were given purified water intragastrically, and administration groups were given relevant medicine intragastrically for 7 consecutive days. After the last medication, fecal moisture content and intestinal motility of mice were determined, while the structures of colon and ileum, and the secretion of colonic mucus were observed. Protein expressions of tyrosine kinase receptor (c-kit), mucin 2 (MUC2) and stem cell factor (SCF) were determined in colon; meanwhile, the mRNA expression levels of inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)] as well as factors related to promoting intestinal motility [neuronal nitric oxide synthase (nNOS), smooth muscle myosin light chain kinase (smMLCK), 5-hydroxytryptamine 4 receptor (5-HT4R), MUC2, SCF, c-kit] were determined. RESULTS Compared with model group, the fecal water content, intestinal propulsion rate, protein expression of c-kit in colon, relative expressions of MUC2 and SCF protein, and mRNA expressions of factors related to promoting intestinal motility (except for nNOS and SCF in Runchang granules low-dose group) were all increased significantly in Runchang granules low-dose and high-dose groups, and mosapride group (P<0.05 or P<0.01). mRNA expression levels of inflammatory factors were decreased significantly(P<0.05 or P<0.01). Both colon and ileum injuries improved, and the secretion of colon mucus was increased significantly in Runchang granules high-dose group (P<0.01). CONCLUSIONS Runchang granules have laxative effect and can improve constipation in mice, and its mechanism may be related to the promotion of the secretion of colon mucus and MUC2 expression, and the activation of SCF/c-kit signaling pathway.

12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011467

ABSTRACT

In recent years, the incidence and mortality rates of cancer have been increasing, posing a serious threat to human health. Western medicine mainly uses treatments such as surgical resection, chemotherapy, immunotherapy and targeted therapy, but they are prone to complications, drug resistance and adverse reactions. A growing number of studies have shown that traditional Chinese medicine has obvious advantages in the treatment of cancer, reducing the recurrence rate of cancer and improving the quality of survival of patients. Cellular senescence refers to a state of irreversible cell cycle growth arrest when cells cease to proliferate after a limited number of divisions, resulting in a decline in cell proliferation and differentiation capacities and physiological functions, accompanied by morphological changes such as flattening and multinuclear morphology. At the molecular level, it shows increased expression of DNA damage-related genes, reduced expression of cell cycle-related factors and significant secretory activity. The malignant development of cancer is closely related to cellular senescence. With the increasing number of cancer cell proliferation, cancer-related genes undergo continuous mutations, freeing them from cellular senescence and thus achieving unlimited proliferation. Through recent studies, it has been found that induction of tumor cell senescence, possibly through modulation of cellular DNA damage, cell cycle arrest and senescence-associated secretory phenotype (SASP), which converts the suppressive immune tumor microenvironment to an activated immune tumor microenvironment and thus reverses the escape of tumor cell senescence, is a promising strategy for cancer therapy. However, the mechanism of cellular senescence in cancer progression is not fully understood, especially the anti-cancer role played by traditional Chinese medicine in regulating cellular senescence. This article summarized and concluded the specific molecular mechanisms of cellular senescence, the role of cellular senescence in cancer progression, and the mechanism of anti-cancer effects of traditional Chinese medicine based on cellular senescence from the perspective of regulating cellular senescence, with a view to providing ideas and methods for the anti-cancer effects of traditional Chinese medicine and the development of new drugs.

13.
Cells ; 12(23)2023 11 24.
Article in English | MEDLINE | ID: mdl-38067124

ABSTRACT

Mast cells (MCs) are sentinel cells which represent an important part of the first line of defense of the immune system. MCs highly express receptors for danger-associated molecular patterns (DAMPs) such as the IL-33R and P2X7, making MCs to potentially effective sensors for IL-33 and adenosine-triphosphate (ATP), two alarmins which are released upon necrosis-induced cell damage in peripheral tissues. Besides receptors for alarmins, MCs also express the stem cell factor (SCF) receptor c-Kit, which typically mediates MC differentiation, proliferation and survival. By using bone marrow-derived MCs (BMMCs), ELISA and flow cytometry experiments, as well as p65/RelA and NFAT reporter MCs, we aimed to investigate the influence of SCF on alarmin-induced signaling pathways and the resulting cytokine production and degranulation. We found that the presence of SCF boosted the cytokine production but not degranulation in MCs which simultaneously sense ATP and IL-33 (ATP/IL-33 co-sensing). Therefore, we conclude that SCF maintains the functionality of MCs in peripheral tissues to ensure appropriate MC reactions upon cell damage, induced by pathogens or allergens.


Subject(s)
Cytokines , Mast Cells , Stem Cell Factor , Adenosine Triphosphate/metabolism , Alarmins/metabolism , Cytokines/metabolism , Interleukin-33/metabolism , Mast Cells/metabolism , Stem Cell Factor/pharmacology , Stem Cell Factor/physiology , Male , Female , Animals , Mice , Mice, Inbred C57BL
14.
Front Vet Sci ; 10: 1285530, 2023.
Article in English | MEDLINE | ID: mdl-38033636

ABSTRACT

Stem cell factor (SCF), a cytokine growth factor, is expressed in various tissues of the male and female reproductive organs, including the testis, ovary, and endometrium. Its primary function involves cell survival, differentiation, and proliferation, achieved through its binding to the c-kit receptor. This study aimed to scrutinize the effects of SCF treatment during in vitro culture (IVC) on both the developmental potential and the efficiency of establishing embryonic stem cells (ESCs) from fertilized and cloned porcine embryos. The rates of cleavage and blastocyst formation exhibited no significant differences between fertilized and cloned embryos, even with the addition of SCF. However, it's worth noting that embryos cloned with Cloud eGFP as donor cells demonstrated notably increased rates of hatched blastocysts when treated with SCF, and this increase was statistically significant (p < 0.05). Furthermore, following the complete dissection of the blastocysts, although there was no significant difference in the SCF-treated group, the area of expansion was significantly reduced (p < 0.01) in the group treated with the antagonistic blocker (ACK2) compared to both the control and SCF-treated groups. These outcomes suggest that the SCF/c-kit signaling pathway might play a pivotal role in embryo implantation. As anticipated, the efficiency of deriving ESCs was significantly higher (p < 0.01) in the group subjected to SCF treatment (12.82 ± 1.02%) compared to the control group (5.41 ± 2.25%). In conclusion, this study highlights the crucial role of SCF in enhancing the quality of porcine embryos, a vital step in obtaining high-quality ESCs.

15.
Front Immunol ; 14: 1294555, 2023.
Article in English | MEDLINE | ID: mdl-38022523

ABSTRACT

The application of immunotherapies such as chimeric antigen receptor (CAR) T therapy or bi-specific T cell engager (BiTE) therapy to manage myeloid malignancies has proven more challenging than for B-cell malignancies. This is attributed to a shortage of leukemia-specific cell-surface antigens that distinguish healthy from malignant myeloid populations, and the inability to manage myeloid depletion unlike B-cell aplasia. Therefore, the development of targeted therapeutics for myeloid malignancies, such as acute myeloid leukemia (AML), requires new approaches. Herein, we developed a ligand-based CAR and secreted bi-specific T cell engager (sBite) to target c-kit using its cognate ligand, stem cell factor (SCF). c-kit is highly expressed on AML blasts and correlates with resistance to chemotherapy and poor prognosis, making it an ideal candidate for which to develop targeted therapeutics. We utilize γδ T cells as a cytotoxic alternative to αß T cells and a transient transfection system as both a safety precaution and switch to remove alloreactive modified cells that may hinder successful transplant. Additionally, the use of γδ T cells permits its use as an allogeneic, off-the-shelf therapeutic. To this end, we show mSCF CAR- and hSCF sBite-modified γδ T cells are proficient in killing c-kit+ AML cell lines and sca-1+ murine bone marrow cells in vitro. In vivo, hSCF sBite-modified γδ T cells moderately extend survival of NSG mice engrafted with disseminated AML, but therapeutic efficacy is limited by lack of γδ T-cell homing to murine bone marrow. Together, these data demonstrate preclinical efficacy and support further investigation of SCF-based γδ T-cell therapeutics for the treatment of myeloid malignancies.


Subject(s)
Leukemia, Myeloid, Acute , Mice , Animals , Ligands , Receptor Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-kit/genetics , Immunotherapy, Adoptive , Stem Cell Factor
16.
Int J Oncol ; 63(5)2023 11.
Article in English | MEDLINE | ID: mdl-37681484

ABSTRACT

Chloroxylenol is the active ingredient of the antibacterial agent Dettol. The anticancer effect and underlying mechanisms of this compound and other common antimicrobial agents have not been clearly elucidated. In the present study, the effects of chloroxylenol, benzalkonium chloride, benzethonium chloride, triclosan and triclocarban on ß­catenin­mediated Wnt signaling in colorectal cancer were evaluated using the SuperTOPFlash reporter assay. It was demonstrated that chloroxylenol, but not the other antimicrobial agents tested, inhibited the Wnt/ß­catenin signaling pathway by decreasing the nuclear translocation of ß­catenin and disrupting ß­catenin/T­cell factor 4 complex, which resulted in the downregulation of the Wnt target genes Axin2, Survivin and Leucine­rich G protein­coupled receptor­5. Chloroxylenol effectively inhibited the viability, proliferation, migration and invasion, and sphere formation, and induced apoptosis in HCT116 and SW480 cells. Notably, chloroxylenol attenuated the growth of colorectal cancer in the MC38 cell xenograft model and inhibited organoid formation by the patient­derived cells. Chloroxylenol also demonstrated inhibitory effects on the stemness of colorectal cancer cells. The results of the present study demonstrated that chloroxylenol could exert anti­tumor activities in colorectal cancer by targeting the Wnt/ß­catenin signaling pathway, which provided an insight into its therapeutic potential as an anticancer agent.


Subject(s)
Anti-Infective Agents , Colorectal Neoplasms , Humans , beta Catenin , Wnt Signaling Pathway , Colorectal Neoplasms/drug therapy
17.
Curr Issues Mol Biol ; 45(9): 7011-7026, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37754227

ABSTRACT

Targeting the molecular chaperone HSP90 and the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The HSP90 inhibitor PU-H71, MCL1 inhibitor S63845, and BCL2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells. AML cells represented all major morphologic and molecular subtypes including FLT3-ITD and TP53 mutant AML cell lines and a variety of patient-derived AML cells. Results: PU-H71 and combination treatments with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in susceptible AML cell lines and primary AML. The majority of the primary AML samples were responsive to PU-H71 in combination with BH3 mimetics. Elevated susceptibility to PU-H71 and S63845 was associated with FLT3 mutated AML with CD34 < 20%. Elevated susceptibility to PU-H71 and venetoclax was associated with primary AML with CD117 > 80% and CD11b < 45%. The combination of HSP90 inhibitor PU-H71 and MCL1 inhibitor S63845 may be a candidate treatment for FLT3-mutated AML with moderate CD34 positivity while the combination of HSP90 inhibitor PU-H71 and BCL2 inhibitor venetoclax may be more effective in the treatment of primitive AML with high CD117 and low CD11b positivity.

18.
Thorac Cancer ; 14(27): 2745-2753, 2023 09.
Article in English | MEDLINE | ID: mdl-37536668

ABSTRACT

BACKGROUND: T cell factor-1 (TCF-1) + stem-like tumor-infiltrating lymphocytes (stem-like TILs) are important memory cells in the tumor microenvironment. However, their relationship with clinicopathological features, CD8+ TIL densities, immune checkpoint inhibitors (ICs), and prognostic values remain unknown for lung adenocarcinomas (LUADs). In this study, we aimed to characterize TCF-1+ TILs and their prognostic significance in patients with surgically resected LUADs. METHODS: Expression of TCF-1, CD8, and ICs including programmed death-1 (PD-1), lymphocyte activating-3 (LAG-3), and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) in TILs were estimated using immunohistochemistry of resected LUADs. The association between TCF-1 expressions and clinicopathological characteristics of patient prognoses were analyzed. RESULTS: Positive TCF-1 expression significantly correlated with advanced pathological stage, tumor grade, CD8+ TILs density, TIM-3 expression, LAG-3 expression, and PD-1 expression. TCF-1 positivity was significantly associated with a better recurrence-free survival (RFS), and overall survival (OS). Subgroup analysis revealed that the TCF-1+/CD8+ group had the best RFS and OS, while the TCF-1-/CD8- group had the worst RFS and OS. Similarly, patients with TCF-1 + PD-1- had the best prognoses and patients with TCF-1-PD-1+ had the worst prognoses. CONCLUSION: TCF-1 had relatively high positive expression and special clinicopathological features in patients with LUAD. TCF-1+ TILs were related to CD8 density, TIM-3 expression, LAG-3 expression, and PD-1 expression, and were associated with better prognoses in LUAD patients. A combination of TCF-1 and CD8 densities or PD-1 expression further stratified patients into different groups with distinct prognoses.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Hepatitis A Virus Cellular Receptor 2 , Lung Neoplasms/pathology , Prognosis , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment
19.
Res Sq ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37398327

ABSTRACT

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.

20.
Front Immunol ; 14: 1198551, 2023.
Article in English | MEDLINE | ID: mdl-37398674

ABSTRACT

The fundamental principle of immune checkpoint blockade (ICB) is to protect tumor-infiltrating T cells from being exhausted. Despite the remarkable success achieved by ICB treatment, only a small group of patients benefit from it. Characterized by a hypofunctional state with the expression of multiple inhibitory receptors, exhausted T (Tex) cells are a major obstacle in improving ICB. T cell exhaustion is a progressive process which adapts to persistent antigen stimulation in chronic infections and cancers. In this review, we elucidate the heterogeneity of Tex cells and offer new insights into the hierarchical transcriptional regulation of T cell exhaustion. Factors and signaling pathways that induce and promote exhaustion are also summarized. Moreover, we review the epigenetic and metabolic alterations of Tex cells and discuss how PD-1 signaling affects the balance between T cell activation and exhaustion, aiming to provide more therapeutic targets for applications of combinational immunotherapies.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Gene Regulatory Networks , T-Cell Exhaustion , T-Lymphocytes , Gene Expression Regulation , Neoplasms/genetics , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...