Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
2.
DNA Cell Biol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046915

ABSTRACT

SYT13 is one of the atypical members of the synaptotagmin (SYT) family whose function has attracted considerable attention in recent years. Although SYT13 has been studied in several types of human cancers, such as lung cancer, its role in esophageal squamous cell carcinoma (ESCC) is still unclear. It was demonstrated that SYT13 is significantly upregulated in ESCC tissues compared with normal ones and correlated with higher degree of malignancy. Knockdown of SYT13 could inhibit ESCC cell proliferation and migration, while promoting cell apoptosis. Meanwhile, ESCC cells with relatively lower SYT13 expression grew slower in vivo and finally formed smaller xenografts. Furthermore, acrosomal vesicular protein 1 was identified as a potential downstream target of SYT13, which regulates cell phenotypes of ESCC cells in cooperation with SYT13. All the in vitro and in vivo results in this study identified that SYT13 silencing could be an effective strategy to inhibit the development of ESCC, which could be considered as a promising therapeutic target in the treatment of ESCC.

3.
Immun Ageing ; 21(1): 37, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867269

ABSTRACT

BACKGROUND: Global life expectancy is rising, with the 60 + age group projected to hit 2 billion by 2050. Aging impacts the immune system. A notable marker of immune system aging is the presence of Aging-Related Immune Cell Phenotypes (ARIPs). Despite their importance, links between immune cell phenotypes including ARIPs and mortality are underexplored. We prospectively investigated 16 different immune cell phenotypes using flow cytometry and IL-6 in relation to survival outcome among dementia-free Framingham Heart Study (FHS) offspring cohort participants who attended the seventh exam (1998-2001). RESULTS: Among 996 participants (mean age 62 years, range 40 to 88 years, 52% female), the 19-year survival rate was 65%. Adjusting for age, sex, and cytomegalovirus (CMV) serostatus, higher CD4/CD8 and Tc17/CD8 + Treg ratios were significantly associated with lower all-cause mortality (HR: 0.86 [0.76-0.96], 0.84 [0.74-0.94], respectively), while higher CD8 regulatory cell levels (CD8 + CD25 + FoxP3 +) were associated with increased all-cause mortality risk (HR = 1.17, [1.03-1.32]). Elevated IL-6 levels correlated with higher all-cause, cardiovascular, and non-cardiovascular mortality (HR = 1.43 [1.26-1.62], 1.70 [1.31-2.21], and 1.36 [1.18-1.57], respectively). However, after adjusting for cardiovascular risk factors and prevalent cancer alongside age, sex, and CMV, immune cell phenotypes were no longer associated with mortality in our cohort. Nonetheless, IL-6 remained significantly associated with all-cause and cardiovascular mortality (HRs: 1.3 [1.13-1.49], 1.5 [1.12-1.99], respectively). CONCLUSIONS: In 19-year follow-up, higher Tc17/CD8 + Treg and CD4/CD8 ratios were associated with lower all-cause mortality, while the CD8 + CD25 + FoxP3 + (CD8 + Treg) phenotype showed increased risk. Elevated IL-6 levels consistently correlated with amplified mortality risks. These findings highlight the links between immune phenotypes and mortality, suggesting implications for future research and clinical considerations.

4.
Front Aging Neurosci ; 16: 1403077, 2024.
Article in English | MEDLINE | ID: mdl-38903900

ABSTRACT

Introduction: Alzheimer's disease (AD) is the most widespread neurodegenerative disease in the world. Previous studies have shown that peripheral immune dysregulation plays a paramount role in AD, but whether there is a protective causal relationship between peripheral immunophenotypes and AD risk remains ambiguous. Methods: Two-sample Mendelian randomization (MR) was performed using large genome-wide association study (GWAS) genetic data to assess causal effects between peripheral immunophenotypes and AD risk. Utilizing the genetic associations of 731 immune cell traits as exposures. We adopted the inverse variance weighted method as the primary approach. The Weighted median and MR-Egger regression methods were employed as supplements. Various sensitivity analyses were performed to assess the robustness of the outcomes. Results: Based on the IVW method, we identified 14 immune cell traits that significantly reduced the risk of AD, of which six demonstrated statistical significance in both IVW and Weighted median methods. Among the seven immune traits, four were related to regulatory T (Treg) cells : (1) CD25++ CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E-02), (2) CD25++ CD45RA- CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E-02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03), (4) Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E-03). In addition, HLA DR++ monocyte % monocyte (OR [95% CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E-02) was associated with monocytes, and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted P = 1.17E-02) was related to dendritic cells (DCs). Conclusion: These findings enhance the comprehension of the protective role of peripheral immunity in AD and provide further support for Treg and monocyte as potential targets for immunotherapy in AD.

5.
Colloids Surf B Biointerfaces ; 240: 113988, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810467

ABSTRACT

Confronted with the profound threat of cardiovascular diseases to health, vascular tissue engineering presents potential beyond the limitations of autologous and allogeneic grafts, offering a promising solution. This study undertakes an initial exploration into the impact of a natural active protein, elastin, on vascular cell behavior, by incorporating with polycaprolactone to prepare fibrous tissue engineering scaffold. The results reveal that elastin serves to foster endothelial cell adhesion and proliferation, suppress smooth muscle cell proliferation, and induce macrophage polarization. Furthermore, the incorporation of elastin contributes to heightened scaffold strength, compliance, and elongation, concomitantly lowering the elastic modulus. Subsequently, a bilayer oriented polycaprolactone (PCL) scaffold infused with elastin is proposed. This design draws inspiration from the cellular arrangement of native blood vessels, leveraging oriented fibers to guide cell orientation. The resulting fiber scaffold exhibits commendable mechanical properties and cell infiltration capacity, imparting valuable insights for the rapid endothelialization of vascular scaffolds.


Subject(s)
Cell Adhesion , Cell Proliferation , Nanofibers , Polyesters , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Cell Proliferation/drug effects , Humans , Cell Adhesion/drug effects , Animals , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Elastin/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Mice , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/cytology
6.
Adv Healthc Mater ; : e2400864, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771618

ABSTRACT

Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.

7.
Front Genet ; 15: 1362432, 2024.
Article in English | MEDLINE | ID: mdl-38650858

ABSTRACT

Background: Osteomyelitis is a severe bone marrow infection, whose pathogenesis is not yet fully understood. This study aims to explore the causal relationship between immune cell characteristics and osteomyelitis, hoping to provide new insights for the prevention and treatment of osteomyelitis. Methods: Based on two independent samples, this study employed a two-sample Mendelian randomization (MR) analysis to assess the causal relationship between 731 immune cell characteristics (divided into seven groups) and osteomyelitis. Genetic variants were used as proxies for risk factors to ensure that the selected instrumental variables meet the three key assumptions of MR analysis. Genome-Wide Association Studies (GWAS) data for immune characteristics were obtained from the public GWAS catalog, while data for osteomyelitis was sourced from the FinnGen. Results: At a significance level of 0.05, 21 immune phenotypes were identified as having a causal relationship with osteomyelitis development. In the B cell group, phenotypes such as Memory B cell % B cell (percentage of memory B cells within the total B cell population, % finger cell ratio), CD20- %B cell (percentage of B cells that do not express the CD20 marker on their surface), and Memory B cell % lymphocyte showed a positive causal relationship with osteomyelitis, while Naive-mature B cell %B cell and IgD-CD38-absolute cell counts (AC) phenotypes showed a negative causal relationship. In addition, specific immune phenotypes in the conventional dendritic cells (cDCs) group, Myeloid cell group, TBNK (T cells, B cells, natural killer cells) cell group, T cell maturation stage, and Treg cell group also showed significant associations with osteomyelitis. Through reverse MR analysis, it was found that osteomyelitis had no significant causal impact on these immune phenotypes, suggesting that the occurrence of osteomyelitis may not affect these immune cell phenotypes. Conclusion: To our knowledge, this is the first study to shed light on the causal relationship between specific immune cell characteristics and the development of osteomyelitis, thereby providing a new perspective to understand the immune mechanism of osteomyelitis. These findings are significant for formulating targeted prevention and treatment strategies, and hold promise to improve the treatment outcomes for patients with osteomyelitis.

8.
Cell Syst ; 15(4): 322-338.e5, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38636457

ABSTRACT

Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here, we integrated CODEX multiplexed tissue imaging with multiscale modeling software to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Neoplasms/pathology , T-Lymphocytes , Phenotype
9.
Vox Sang ; 119(7): 752-757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587165

ABSTRACT

BACKGROUND AND OBJECTIVES: Flow cytometry can be used to phenotype red blood cell antigens, allowing for high-throughput testing while using low reagent volumes. This article utilizes intracellular dyes to pre-label red blood cells to further multiplex flow cytometry-based red blood cell antigen phenotyping. MATERIALS AND METHODS: Red blood cells were pre-labelled using the intracellular dyes V450 and Oregon Green. These dyes are detected fluorescently via flow cytometry. Four combinations of intracellular staining were used to allow four patient or donor red blood cells to be analysed in a single test well. Antigen phenotyping was then performed via flow cytometry using a previously described method. RESULTS: The intracellular dyes showed uniform staining when measured in mean fluorescence intensity and allowed the red blood cells to be clearly distinguished from one another. The presence or absence of red blood cell antigens was determined with 100% accuracy. CONCLUSION: The use of intracellular dyes allowed a fourfold increase in the throughput of our previously described flow cytometry-based red blood cell antigen phenotyping method. The described method allows up to 48 patients to be simultaneously phenotyped using a single 96-well microplate. Furthermore, additional fluorescent dyes could potentially increase the throughput exponentially.


Subject(s)
Erythrocytes , Flow Cytometry , Humans , Flow Cytometry/methods , Erythrocytes/immunology , Erythrocytes/metabolism , Fluorescent Dyes , Blood Group Antigens , Female , Male , Phenotype
10.
Dig Liver Dis ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38556409

ABSTRACT

BACKGROUND: Long-intergenic non-protein coding gene 01140 (LINC01140) a long non-coding RNA is highly expressed in various cancers. However, its biological functions in gastric cancer progression is still unknown. METHOD: To elucidate LINC01140 function, 70 GC tumor samples and 30 normal gastric tissues were collected. LINC01140 expression level were determined by qRT-PCR analysis and correlated with different clinico-pathological parameters. Then we tried to see the impact of LINC01140 on gastric cell line aggressiveness by knocking down the target gene and performing cell viability assay, migration assay and invasive capacity of the cell lines along with immunoblotting to check several protein levels. RESULT: LINC01140 RNA is found to be positively correlated with FGF9 and significantly up regulated in GC tissues. LINC01140 knockdown inhibited the viability, migratory capacity and invasive capacity of AGS cells. LINC01140 targets miR-140-5p, while miR-140-5p targeted FGF9 to form lncRNA-miRNA-mRNA axis. The affect of miR-140-5p inhibition on gastric cancer cell aggressiveness were opposite to those of LINC01140 or FGF9 knockdown. Additionally, inhibition partially reversed the effects of LINC01140 knockdown on FGF9 protein levels, gastric cancer cell phenotypes. CONCLUSION: LINC01140, miR-140-5p and FGF9 form a lncRNA-miRNA-mRNA axis that modulates the gastric cancer phenotypes and in turn affects gastric cancer cell aggressiveness.

11.
Cancers (Basel) ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38539461

ABSTRACT

Classical Hodgkin lymphoma (cHL) is a hematological malignancy of B-cell origin. The tumor cells in cHL are referred to as Hodgkin and Reed-Sternberg (HRS) cells. This review provides an overview of the currently known miRNA-target gene interactions. In addition, we pinpointed other potential regulatory roles of microRNAs (miRNAs) by focusing on genes related to processes relevant for cHL pathogenesis, i.e., loss of B-cell phenotypes, immune evasion, and growth support. A cHL-specific miRNA signature was generated based on the available profiling studies. The interactions relevant for cHL were extracted by comprehensively reviewing the existing studies on validated miRNA-target gene interactions. The miRNAs with potential critical roles included miR-155-5p, miR-148a-3p, miR-181a-5p, miR-200, miR-23a-3p, miR-125a/b, miR-130a-3p, miR-138, and miR-143-3p, which target, amongst others, PU.1, ETS1, HLA-I, PD-L1, and NF-κB component genes. Overall, we provide a comprehensive perspective on the relevant miRNA-target gene interactions which can also serve as a foundation for future functional studies into the specific roles of the selected miRNAs in cHL pathogenesis.

12.
Res Sq ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38464213

ABSTRACT

Curvature is a critical factor in cornea mechanobiology, but its impact on phenotypic alterations and extracellular matrix remodeling of cornea stroma remains unclear. In this work, we investigated how curvature influences the corneal stroma using a hydraulically controlled curvature array chip. The responses of stromal cells to low, medium, and high curvatures were observed by preparing three phenotypes of corneal stromal cells: corneal keratocytes, fibroblasts, and myofibroblasts. Keratocytes exhibited phenotypic alterations in response to curvature changes, notably including a decrease in ALDH3 expression and an increase in α-SMA expression. For focal adhesion, corneal fibroblast and myofibroblasts showed enhanced vinculin localization in response to curvature, while corneal keratocytes presented reduced vinculin expression. For cell alignment and ECM expression, most stromal cells under all curvatures showed a radially organized f-actin and collagen fibrils. Interestingly, for corneal fibroblast under medium curvature, we observed orthogonal cell alignment, which is linked to the unique hoop and meridional stress profiles of the curved surface. Furthermore, lumican expression was upregulated in corneal keratocytes, and keratocan expression was increased in corneal fibroblasts and myofibroblasts due to curvature. These results demonstrate that curvature influences both the phenotype of corneal stromal cells and the structural organization of corneal stroma tissue without any external stimuli. This curvature-dependent behavior of corneal stromal cells presents potential opportunities for creating therapeutic strategies for corneal shape dysfunctions.

13.
Gastroenterology ; 167(2): 250-263, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552723

ABSTRACT

BACKGROUND & AIMS: The treatment of celiac disease (CeD) with gluten-free diet (GFD) normalizes gut inflammation and disease-specific antibodies. CeD patients have HLA-restricted, gluten-specific T cells persisting in the blood and gut even after decades of GFD, which are reactivated and disease driving upon gluten exposure. Our aim was to examine the transition of activated gluten-specific T cells into a pool of persisting memory T cells concurrent with normalization of clinically relevant biomarkers during the first year of treatment. METHODS: We followed 17 CeD patients during their initial GFD year, leading to disease remission. We assessed activation and frequency of gluten-specific CD4+ blood and gut T cells with HLA-DQ2.5:gluten tetramers and flow cytometry, disease-specific serology, histology, and symptom scores. We assessed gluten-specific blood T cells within the first 3 weeks of GFD in 6 patients and serology in an additional 9 patients. RESULTS: Gluten-specific CD4+ T cells peaked in blood at day 14 while up-regulating Bcl-2 and down-regulating Ki-67 and then decreased in frequency within 10 weeks of GFD. CD38, ICOS, HLA-DR, and Ki-67 decreased in gluten-specific cells within 3 days. PD-1, CD39, and OX40 expression persisted even after 12 months. IgA-transglutaminase 2 decreased significantly within 4 weeks. CONCLUSIONS: GFD induces rapid changes in the phenotype and number of gluten-specific CD4+ blood T cells, including a peak of nonproliferating, nonapoptotic cells at day 14. Subsequent alterations in T-cell phenotype associate with the quiescent but chronic nature of treated CeD. The rapid changes affecting gluten-specific T cells and disease-specific antibodies offer opportunities for clinical trials aiming at developing nondietary treatments for patients with newly diagnosed CeD.


Subject(s)
CD4-Positive T-Lymphocytes , Celiac Disease , Diet, Gluten-Free , Glutens , Phenotype , Protein Glutamine gamma Glutamyltransferase 2 , Humans , Celiac Disease/diet therapy , Celiac Disease/immunology , Glutens/immunology , Glutens/administration & dosage , Male , Female , Adult , Middle Aged , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HLA-DQ Antigens/immunology , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , Lymphocyte Activation , Transglutaminases/immunology , Biomarkers/blood , Biomarkers/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Memory T Cells/immunology , Memory T Cells/metabolism , Time Factors , Young Adult , Treatment Outcome , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism
14.
Cancers (Basel) ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38339292

ABSTRACT

Patients with pancreatic cancer often suffer from cachexia and experience gastrointestinal symptoms that may be related to intestinal smooth muscle cell (SMC) dysfunction. We hypothesized that pancreatic tumor organoids from cachectic patients release factors that perturb the SMC's contractile characteristics. Human visceral SMCs were exposed to conditioned medium (CM) from the pancreatic tumor organoid cultures of cachectic (n = 2) and non-cachectic (n = 2) patients. Contractile proteins and markers of inflammation, muscle atrophy, and proliferation were evaluated by qPCR and Western blot. SMC proliferation and migration were monitored by live cell imaging. The Ki-67-positive cell fraction was determined in the intestinal smooth musculature of pancreatic cancer patients. CM from the pancreatic tumor organoids of cachectic patients did not affect IL-1ß, IL-6, IL-8, MCP-1, or Atrogin-1 expression. However, CM reduced the α-SMA, γ-SMA, and SM22-α levels, which was accompanied by a reduced SMC doubling time and increased expression of S100A4, a Ca2+-binding protein associated with the synthetic SMC phenotype. In line with this, Ki-67-positive nuclei were increased in the intestinal smooth musculature of patients with a low versus high L3-SMI. In conclusion, patient-derived pancreatic tumor organoids release factors that compromise the contractile SMC phenotype and increase SMC proliferation. This may contribute to the frequently observed gastrointestinal motility problems in these patients.

15.
Biomolecules ; 14(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38397445

ABSTRACT

Paraoxonase-2 (PON2) is a ubiquitously expressed intracellular protein that is localized in the perinuclear region, the endoplasmic reticulum (ER), and mitochondria, and is also associated with the plasma membrane. PON2 functions as an antioxidant enzyme by reducing the levels of reactive oxygen species (ROS) in the mitochondria and ER through different mechanisms, thus having an anti-apoptotic effect and preventing the formation of atherosclerotic lesions. While the antiatherogenic role played by this enzyme has been extensively explored within endothelial cells in association with vascular disorders, in the last decade, great efforts have been made to clarify its potential involvement in both blood and solid tumors, where PON2 was reported to be overexpressed. This review aims to deeply and carefully examine the contribution of this enzyme to different aspects of tumor cells by promoting the initiation, progression, and spread of neoplasms.


Subject(s)
Endothelial Cells , Neoplasms , Humans , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Endothelial Cells/metabolism , Phenotype , Reactive Oxygen Species/metabolism
16.
Tissue Eng Part A ; 30(7-8): 287-298, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38205652

ABSTRACT

Porous precision-templated scaffolds (PTS) with uniform, interconnected, 40 µm pores have shown favorable healing outcomes and a reduced foreign body reaction (FBR). Macrophage receptor with collagenous structure (MARCO) and toll-like receptors (TLRs) have been identified as key surface receptors in the initial inflammatory phase of wound healing. However, the role of MARCO and TLRs in modulating monocyte and macrophage phenotypes within PTS remains uncharacterized. In this study, we demonstrate a synergetic relationship between MARCO and TLR signaling in cells inhabiting PTS, where induction with TLR3 or TLR4 agonists to 40 µm scaffold-resident cells upregulates the transcription of MARCO. Upon deletion of MARCO, the prohealing phenotype within 40 µm PTS polarizes to a proinflammatory and profibrotic phenotype. Analysis of downstream TLR signaling shows that MARCO is required to attenuate nuclear factor kappa B (NF-κB) inflammation in 40 µm PTS by regulating the transcription of inhibitory NFKB inhibitor alpha (NFKBIA) and interleukin-1 receptor-associated kinase 3 (IRAK-M), primarily through a MyD88-dependent signaling pathway. Investigation of implant outcome in the absence of MARCO demonstrates an increase in collagen deposition within the scaffold and the development of tissue fibrosis. Overall, these results further our understanding of the molecular mechanisms underlying MARCO and TLR signaling within PTS. Impact statement Monocyte and macrophage phenotypes in the foreign body reaction (FBR) are essential for the development of a proinflammatory, prohealing, or profibrotic response to implanted biomaterials. Identification of key surface receptors and signaling mechanisms that give rise to these phenotypes remain to be elucidated. In this study, we report a synergistic relationship between macrophage receptor with collagenous structure (MARCO) and toll-like receptor (TLR) signaling in scaffold-resident cells inhabiting porous precision-templated 40 µm pore scaffolds through a MyD88-dependent pathway that promotes healing. These findings advance our understanding of the FBR and provide further evidence that suggests MARCO, TLRs, and fibrosis may be interconnected.


Subject(s)
Myeloid Differentiation Factor 88 , Toll-Like Receptors , Humans , Porosity , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptors/metabolism , Signal Transduction , Macrophages/metabolism , NF-kappa B/metabolism , Foreign-Body Reaction/pathology , Fibrosis , Wound Healing
17.
Anticancer Agents Med Chem ; 24(6): 400-411, 2024.
Article in English | MEDLINE | ID: mdl-38192142

ABSTRACT

BACKGROUND: Efficient targeted molecular therapeutics are needed for the treatment of triple-negative breast cancer (TNBC), a highly invasive and difficult-to-treat form of breast cancer associated with a poor prognosis. OBJECTIVES: This study aims to evaluate the potential of selective CDK4/6 inhibitors as a therapeutic option for TNBC by impairing the cell cycle G1 phase through the inhibition of retinoblastoma protein (Rb) phosphorylation. METHODS: In this study, we synthesized a compound called JHD205, derived from the chemical structure of Abemaciclib, and examined its inhibitory effects on the malignant characteristics of TNBC cells. RESULTS: Our results demonstrated that JHD205 exhibited superior tumor growth inhibition compared to Abemaciclib in breast cancer xenograft chicken embryo models. Western blot analysis revealed that JHD205 could dosedependently degrade CDK4 and CDK6 while also causing abnormal changes in other proteins associated with CDK4/6, such as p-Rb, Rb, and E2F1. Moreover, JHD205 induced apoptosis and DNA damage and inhibited DNA repair by upregulating Caspase3 and p-H2AX protein levels. CONCLUSION: Collectively, our findings suggest that JHD205 holds promise as a potential treatment for breast carcinoma.


Subject(s)
Aminopyridines , Antineoplastic Agents , Apoptosis , Benzimidazoles , Cell Proliferation , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Humans , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Aminopyridines/pharmacology , Aminopyridines/chemistry , Aminopyridines/chemical synthesis , Cell Proliferation/drug effects , Animals , Apoptosis/drug effects , Molecular Structure , Female , Structure-Activity Relationship , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Chick Embryo , Tumor Cells, Cultured
18.
Int J Mol Sci ; 25(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38203757

ABSTRACT

We have developed a chimeric antigen receptor (CAR) against the six-transmembrane epithelial antigen of prostate-1 (STEAP1), which is expressed in prostate cancer, Ewing sarcoma, and other malignancies. In the present study, we investigated the effect of substituting costimulatory domains and spacers in this STEAP1 CAR. We cloned four CAR constructs with either CD28 or 4-1BB costimulatory domains, combined with a CD8a-spacer (sp) or a mutated IgG-spacer. The CAR T-cells were evaluated in short- and long-term in vitro T-cell assays, measuring cytokine production, tumor cell killing, and CAR T-cell expansion and phenotype. A xenograft mouse model of prostate cancer was used for in vivo comparison. All four CAR constructs conferred CD4+ and CD8+ T cells with STEAP1-specific functionality. A CD8sp_41BBz construct and an IgGsp_CD28z construct were selected for a more extensive comparison. The IgGsp_CD28z CAR gave stronger cytokine responses and killing in overnight caspase assays. However, the 41BB-containing CAR mediated more killing (IncuCyte) over one week. Upon six repeated stimulations, the CD8sp_41BBz CAR T cells showed superior expansion and lower expression of exhaustion markers (PD1, LAG3, TIGIT, TIM3, and CD25). In vivo, both the CAR T variants had comparable anti-tumor activity, but persisting CAR T-cells in tumors were only detected for the 41BBz variant. In conclusion, the CD8sp_41BBz STEAP1 CAR T cells had superior expansion and survival in vitro and in vivo, compared to the IgGsp_CD28z counterpart, and a less exhausted phenotype upon repeated antigen exposure. Such persistence may be important for clinical efficacy.


Subject(s)
Prostatic Neoplasms , Receptors, Chimeric Antigen , Animals , Humans , Male , Mice , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes , Cytokines , Disease Models, Animal , Oxidoreductases , Prostate , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Receptors, Chimeric Antigen/genetics
19.
Heliyon ; 10(1): e23832, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234882

ABSTRACT

Background: Esophageal squamous cell carcinoma (ESCC) is a common pathological esophageal cancer with poor prognosis. Vitamin D deficiency reportedly occurs in ESCC patients, and this is related to single nucleotide polymorphism of vitamin D receptor (VDR). Objective: We investigated the effect of VDR on ESCC proliferation, invasion, and metastasis and its potential mechanism. Methods: ESCC and normal tissues were collected from 20 ESCC patients. The ESCC tissue microarray contained 116 pairs of ESCC and normal tissues and 73 single ESCC tissues. VDR expression and its clinicopathological role were determined by real-time quantitative polymerase chain reaction, Western blot, and immunohistochemistry staining. sh-VDR and VDR overexpression were used to validate the effect of VDR on ESCC cell phenotype, and tandem mass tag-based quantitative proteomics and bioinformatics methods identified differential VDR-related proteins. The downstream pathway and regulatory effect were analyzed using ingenuity pathway analysis (IPA). Differentially expressed proteins were verified through parallel reaction monitoring and Western blot. In vivo imaging visualized subcutaneous tumor growth following tail vein injection of VDR-deficient ESCC cells. Results: High VDR expression was observed in ESCC tissues and cells. Gender, T stage, and TNM stage were related to VDR expression, which was the independent prognostic factor related to ESCC. VDR downregulation repressed ESCC cell proliferation, invasion, and migration in vitro and subcutaneous tumor growth and lung metastases in vivo. The cell phenotype changes were reversed upon VDR upregulation, and differential proteins were mainly enriched in the p53 signaling pathway. TP53 cooperated with ABCG2, APOE, FTH1, GCLM, GPX1, HMOX1, JUN, PRDX5, and SOD2 and may activate apoptosis and inhibit oxidative stress, cell metastasis, and proliferation. TP53 was upregulated after VDR knockdown, and TP53 downregulation reversed VDR knockdown-induced cell phenotype changes. Conclusions: VDR may inhibit p53 signaling pathway activation and induce ESCC proliferation, invasion, and metastasis by activating oxidative stress.

20.
Cell Rep ; 42(12): 113494, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38085642

ABSTRACT

Antigen-specific T cells traffic to, are influenced by, and create unique cellular microenvironments. Here we characterize these microenvironments over time with multiplexed imaging in a melanoma model of adoptive T cell therapy and human patients with melanoma treated with checkpoint inhibitor therapy. Multicellular neighborhood analysis reveals dynamic immune cell infiltration and inflamed tumor cell neighborhoods associated with CD8+ T cells. T cell-focused analysis indicates T cells are found along a continuum of neighborhoods that reflect the progressive steps coordinating the anti-tumor immune response. More effective anti-tumor immune responses are characterized by inflamed tumor-T cell neighborhoods, flanked by dense immune infiltration neighborhoods. Conversely, ineffective T cell therapies express anti-inflammatory cytokines, resulting in regulatory neighborhoods, spatially disrupting productive T cell-immune and -tumor interactions. Our study provides in situ mechanistic insights into temporal tumor microenvironment changes, cell interactions critical for response, and spatial correlates of immunotherapy outcomes, informing cellular therapy evaluation and engineering.


Subject(s)
Melanoma , Humans , Melanoma/pathology , CD8-Positive T-Lymphocytes , Immunotherapy/methods , Cytokines , Immunity , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...