ABSTRACT
A few Bacillus thuringiensis Cry proteins, known as parasporins, have demonstrated cell proliferation inhibition of human cancer cells in vitro after protease activation. In this work, eight peptides derived from the Cry11Bb protoxin produced by B. thuringiensis subsp. medellin were selected and evaluated to investigate their membrane permeabilization and cytolytic activities, using red blood cells and cancer cell lines A549, MCF-7 and Caco-2, respectively. The most active peptides permeabilized red blood cells in a membrane potential-dependent manner. Half maximal inhibitory concentration in cancer cells was in the range 0.78-7.63 µM. At the same time, at peptides concentration of 25 µM, the hemolysis percentage varied in the range of 4.6-32.4%. The peptides BTM-P1 and BTM-P4 in D form had the lowest IC50 values on the MCF-7 cell line and they are considered as the most promising peptides among the evaluated. Fluorescence microscopy using AnnexinV-FLUOS staining indicates that the possible cause of MCF-7 cell death by peptide BTM-P1, is apoptosis. Real time PCR analysis showed an increased transcription of p53 in MCF-7 cells, thus confirming the probable pro-apoptotic effect of the peptide BTM-P1. In general, this study suggests that the cytolytic activity of the polycationic peptides derived from the Cry11Bb protoxin could be mediated by a pro-apoptotic mechanism that might include potential-dependent membrane permeabilization. Further studies might be accomplished to establish whether the peptides are cytolytic to other cancer cell lines and to solid tumors.
Subject(s)
Bacillus thuringiensis/chemistry , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Cytotoxins , Erythrocyte Membrane/metabolism , Hemolysis/drug effects , Peptides , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/biosynthesis , A549 Cells , Caco-2 Cells , Cytotoxins/chemistry , Cytotoxins/pharmacology , Humans , MCF-7 Cells , Peptides/chemistry , Peptides/pharmacologyABSTRACT
Ion Transport across the cell membrane is required to maintain cell volume homeostasis. In response to changes in extracellular osmolarity, most cells activate specific metabolic or membrane-transport pathways to respond to cell swelling or shrinkage and return their volume to its normal resting state. This process involves the rapid adjustment of the activities of channels and transporters that mediate flux of K+, Na+, Cl-, and small organic osmolytes. Cation chloride cotransporters (CCCs) NKCCs and KCCs are a family of membrane proteins modulated by changes in cell volume and/or in the intracellular chloride concentration ([Cl-]i). Cell swelling triggers regulatory volume decrease (RVD), promoting solute and water efflux to restore normal cell volume. Swelling-activated KCCs mediate RVD in most cell types. In contrast, cell shrinkage triggers regulatory volume increase (RVI), which involves the activation of the NKCC1 cotransporter of the CCC family. Regulation of the CCCs during RVI and RVD by protein phosphorylation is a well-characterized mechanism, where WNK kinases and their downstream kinase substrates, SPAK and OSR1 constitute the essential phospho-regulators. WNKs-SPAK/OSR1-CCCs complex is required to regulate cell shrinkage-induced RVI or cell swelling-induced RVD via activating or inhibitory phosphorylation of NKCCs or KCCs, respectively. WNK1 and WNK4 kinases have been established as [Cl-]i sensors/regulators, while a role for WNK3 kinase as a cell volume-sensing kinase has emerged and is proposed in this chapter.
Subject(s)
Cell Size , Animals , Chlorides/metabolism , Humans , Ion Transport/physiology , Phosphorylation , Sodium/metabolism , Sodium-Potassium-Chloride Symporters/metabolismABSTRACT
Osmotic swelling of neurons and glial cells contributes to the development of retinal edema and neurodegeneration. We show that nerve growth factor (NGF) inhibits the swelling of glial (Müller) and bipolar cells in rat retinal slices induced by barium-containing hypoosmotic solution. NGF also reduced Müller and bipolar cell swelling in the post-ischemic retina. On the other hand, NGF prevented the swelling of freshly isolated Müller cells, but not of isolated bipolar cells, suggesting that NGF induces a release of factors from Müller cells that inhibit bipolar cell swelling in retinal slices. The inhibitory effect of NGF on Müller cell swelling was mediated by activation of TrkA (the receptor tyrosine kinase A), but not p75(NTR) , and was prevented by blockers of metabotropic glutamate, P2Y1 , adenosine A1 , and fibroblast growth factor receptors. Basic fibroblast growth factor fully inhibited the swelling of freshly isolated Müller cells, but only partially the swelling of isolated bipolar cells. In addition, glial cell line-derived neurotrophic factor and transforming growth factor-ß1, but not epidermal growth factor and platelet-derived growth factor, reduced the swelling of bipolar cells. Both Müller and bipolar cells displayed TrkA immunoreactivity, while Müller cells were also immunostained for p75(NTR) and NGF. The data suggest that the neuroprotective effect of NGF in the retina is in part mediated by prevention of the cytotoxic glial and bipolar cell swelling. Cytotoxic cell swelling contributes to retinal neurodegeneration. Nerve growth factor (NGF) inhibits the osmotic swelling of glial cells by acting at TrkA, release of bFGF, and opening of K(+) and Cl(-) channels. The NGF-induced glial release of cytokines like bFGF inhibits the osmotic swelling of bipolar cells, suggesting that the neuroprotective effect of NGF is in part mediated by prevention of cytotoxic cell swelling.