Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
BMC Pregnancy Childbirth ; 24(1): 490, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033276

ABSTRACT

BACKGROUND: Biologic strain such as oxidative stress has been associated with short leukocyte telomere length (LTL), as well as with preeclampsia and spontaneous preterm birth, yet little is known about their relationships with each other. We investigated associations of postpartum maternal LTL with preeclampsia and spontaneous preterm birth. METHODS: This pilot nested case control study included independent cohorts of pregnant people with singleton gestations from two academic institutions: Cohort 1 (hereafter referred to as Suburban) were enrolled prior to 20 weeks' gestation between 2012 and 2018; and Cohort 2 (hereafter referred to as Urban) were enrolled at delivery between 2000 and 2012. Spontaneous preterm birth or preeclampsia were the selected pregnancy complications and served as cases. Cases were compared with controls from each study cohort of uncomplicated term births. Blood was collected between postpartum day 1 and up to 6 months postpartum and samples were frozen, then simultaneously thawed for analysis. Postpartum LTL was the primary outcome, measured using quantitative polymerase chain reaction (PCR) and compared using linear multivariable regression models adjusting for maternal age. Secondary analyses were done stratified by mode of delivery and self-reported level of stress during pregnancy. RESULTS: 156 people were included; 66 from the Suburban Cohort and 90 from the Urban Cohort. The Suburban Cohort was predominantly White, Hispanic, higher income and the Urban Cohort was predominantly Black, Haitian, and lower income. We found a trend towards shorter LTLs among people with preeclampsia in the Urban Cohort (6517 versus 6913 bp, p = 0.07), but not in the Suburban Cohort. There were no significant differences in LTLs among people with spontaneous preterm birth compared to term controls in the Suburban Cohort (6044 versus 6144 bp, p = 0.64) or in the Urban Cohort (6717 versus 6913, p = 0.37). No differences were noted by mode of delivery. When stratifying by stress levels in the Urban Cohort, preeclampsia was associated with shorter postpartum LTLs in people with moderate stress levels (p = 0.02). CONCLUSION: Our exploratory results compare postpartum maternal LTLs between cases with preeclampsia or spontaneous preterm birth and controls in two distinct cohorts. These pilot data contribute to emerging literature on LTLs in pregnancy.


Subject(s)
Leukocytes , Postpartum Period , Pre-Eclampsia , Premature Birth , Humans , Female , Pregnancy , Case-Control Studies , Adult , Pre-Eclampsia/blood , Premature Birth/epidemiology , Pilot Projects , Pregnancy Complications/blood , Telomere , Cohort Studies , Urban Population/statistics & numerical data , Telomere Shortening , Young Adult
2.
Horm Behav ; 164: 105596, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38944998

ABSTRACT

In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for age, in this preregistered study we investigated the associations between menopause-related factors (i.e., menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging (leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females from the UK Biobank (age range 39-82). We then determined how these proxies of aging were associated with each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL were not significantly associated with each other. The greatest variance in each proxy of biological aging was most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 genotype. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies incorporating heterogeneous samples are an essential step towards advancing female health.

3.
Aging Cell ; : e14185, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725150

ABSTRACT

The voltage-gated Kv3.1/KCNC1 channel is abundantly expressed in fast-spiking principal neurons and GABAergic inhibitory interneurons throughout the ascending auditory pathway and in various brain regions. Inactivating mutations in the KCNC1 gene lead to forms of epilepsy and a decline in the expression of the Kv3.1 channel is involved in age-related hearing loss. As oxidative stress plays a fundamental role in the pathogenesis of epilepsy and age-related hearing loss, we hypothesized that an oxidative insult might affect the function of this channel. To verify this hypothesis, the activity and expression of endogenous and ectopic Kv3.1 were measured in models of oxidative stress-related aging represented by cell lines exposed to 100 mM d-galactose. In these models, intracellular reactive oxygen species, thiobarbituric acid reactive substances, sulfhydryl groups of cellular proteins, and the activity of catalase and superoxide dismutase were dysregulated, while the current density of Kv3.1 was significantly reduced. Importantly, the antioxidant melatonin reverted all these effects. The reduction of function of Kv3.1 was not determined by direct oxidation of amino acid side chains of the protein channel or reduction of transcript or total protein levels but was linked to reduced trafficking to the cell surface associated with Src phosphorylation as well as metabolic and endoplasmic reticulum stress. The data presented here specify Kv3.1 as a novel target of oxidative stress and suggest that Kv3.1 dysfunction might contribute to age-related hearing loss and increased prevalence of epilepsy during aging. The pharmacological use of the antioxidant melatonin can be protective in this setting.

4.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713053

ABSTRACT

Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.


Subject(s)
Cellular Senescence , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Gene Deletion , Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mitochondria/metabolism , Mitochondria/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sirolimus/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics
5.
Aging Cell ; : e14211, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804500

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disorder affecting the central nervous system. Evidence suggests that age-related neurodegeneration contributes to disability progression during the chronic stages of MS. Aging is characterized by decreased regeneration potential and impaired myelin repair in the brain. It is hypothesized that accelerated cellular aging contributes to the functional decline associated with neurodegenerative diseases. We assessed the impact of aging on myelin content in the corpus callosum (CC) and compared aging with the long-term demyelination (LTD) consequents induced by 12 weeks of feeding with a cuprizone (CPZ) diet. Initially, evaluating myelin content in 2-, 6-, and 18-month-old mice revealed a reduction in myelin content, particularly at 18 months. Myelin thickness was decreased and the g-ratio increased in aged mice. Although a lower myelin content and higher g-ratio were observed in LTD model mice, compared to the normally aged mice, both aging and LTD exhibited relatively similar myelin ultrastructure. Our findings provide evidence that LTD exhibits the hallmarks of aging such as elevated expression of senescence-associated genes, mitochondrial dysfunction, and high level of oxidative stress as observed following normal aging. We also investigated the senescence-associated ß-galactosidase activity in O4+ late oligodendrocyte progenitor cells (OPCs). The senescent O4+/ß-galactosidase+ cells were elevated in the CPZ diet. Our data showed that the myelin degeneration in CC occurs throughout the lifespan, and LTD induced by CPZ accelerates the aging process which may explain the impairment of myelin repair in patients with progressive MS.

6.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464259

ABSTRACT

Understanding the mechanisms of cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short lifespan and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. In this study, by analyzing experimental data it was shown that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional chemical-mechanical model was developed and used to suggest and test hypothesized mechanisms of bud morphogenesis during aging. Experimentally calibrated simulations showed that tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip guided by the polarized Cdc42 signal during the early stage of budding. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage, as observed in experiments, through a reduction on the new cell surface material insertion or an expansion of the polarization site. Thus model simulations suggest the maintenance of new cell surface material insertion or chemical signal polarization could be weakened due to cellular aging in yeast and other cell types.

7.
Int J Nanomedicine ; 19: 1629-1644, 2024.
Article in English | MEDLINE | ID: mdl-38406605

ABSTRACT

Background: Dendrobium, with profound botanical importance, reveals a rich composition of bioactive compounds, including polysaccharides, flavonoids, alkaloids, and diverse amino acids, holding promise for skin regeneration. However, the precise mechanism remains elusive. Seeking a potent natural remedy for wound healing, exocyst vesicles were successfully isolated from Dendrobium. Aims of the Study: This investigation aimed to employ bioinformatics and in vivo experiments to elucidate target genes of Dendrobium-derived nanovesicles in skin wound healing, focusing on immune infiltration and senescence characteristics. Materials and Methods: C57 mice experienced facilitated wound healing through Dendrobium-derived nanovesicles (DDNVs). Bioinformatics analysis and GEO database mining identified crucial genes by intersecting immune-related, senescence-related, and PANoptosis-associated genes. The identified genes underwent in vivo validation. Results: DDNVs remarkably accelerated skin wound healing in C57 mice. Bioinformatics analysis revealed abnormal expression patterns of immune-related, senescence-related, and pan-apoptosis-related genes, highlighting an overexpressed IL-1ß and downregulated IL-18 in the model group, Exploration of signaling pathways included IL-17, NF-kappa B, NOD-like receptor, and Toll-like receptor pathways. In vivo experiments confirmed DDNVs' efficacy in suppressing IL-1ß expression, enhancing wound healing. Conclusion: Plant-derived nanovesicles (PDNV) emerged as a natural, reliable, and productive approach to wound healing. DDNVs uptake by mouse skin tissues, labeled with a fluorescent dye, led to enhanced wound healing in C57 mice. Notably, IL-1ß overexpression in immune cells and genes played a key role. DDNVs intervention effectively suppressed IL-1ß expression, accelerating skin wound tissue repair.


Subject(s)
Dendrobium , Animals , Mice , Dendrobium/metabolism , Wound Healing/genetics , Skin/metabolism , NF-kappa B/metabolism , Signal Transduction
8.
Arch Esp Urol ; 77(1): 57-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38374014

ABSTRACT

OBJECTIVE: This study aimed to investigate the potential of combining cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors with curcumin (Cur), a natural compound known for its anti-aging properties, to enhance the anti-cancer efficacy in prostate cancer (PCa). METHODS: The cell viability was determined by cell counting kit-8 assay, colony forming assay and cell invasion. The cell cycle and mRNA levels of p16 (cyclin dependent kinase inhibitor 2A, CDKN2A), p21 (cyclin dependent kinase inhibitor 1A, CDKN1A) and Rb (RB transcriptional corepressor) were detected by flow cytometry and quantitative real-time polymerase chain reaction, respectively. SA-ß-gal staining and interleukin 6 (IL6) mRNA levels were used to evaluate cell aging. Western blot was used to detect mechanistic targets of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3) pathways. Moreover, Sphere formation assay and mRNA levels of aldehyde dehydrogenase (ALDH) 1A1, CD44 and Nanog were used to determine cell stemness. RESULTS: The combination of LY2835219 (LY, CDK4/6 inhibitor) and Cur exhibited a synergistic inhibitory effect on PCa cell proliferation (p < 0.01) and invasion (p < 0.01) and Rb gene expression (p < 0.05), as well as a synergistic promotive effect on p61 expression (p < 0.01), p21 expression (p < 0.01) and cell cycle G1 arrest in PCa cells (p < 0.05) compared with LY or Cur alone. LY and LY + Cur increased the SA-ß-gal-stained cells (p < 0.01). mTOR (p < 0.01) and STAT3 pathway (p < 0.01) were decreased by LY + Cur (p < 0.01). Furthermore, LY + Cur conditioned medium (CM) inhibited cell stemness by decreasing cell spheres (p < 0.05), ALDH1A1 (p < 0.01), CD44 (p < 0.01) and Nanog (p < 0.01) compared with LY CM. CONCLUSIONS: The findings of this study suggested that the combination of CDK4/6 inhibitor and curcumin may have clinical implications for the treatment of PCa.


Subject(s)
Curcumin , Prostatic Neoplasms , Male , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , TOR Serine-Threonine Kinases/pharmacology , Cell Proliferation , Prostatic Neoplasms/drug therapy , RNA, Messenger/genetics , RNA, Messenger/pharmacology , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism
9.
Arch. esp. urol. (Ed. impr.) ; 77(1): 57-66, 28 jan. 2024. tab, graf
Article in English | IBECS | ID: ibc-230499

ABSTRACT

Objective: This study aimed to investigate the potential of combining cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors with curcumin (Cur), a natural compound known for its anti-aging properties, to enhance the anti-cancer efficacy in prostate cancer (PCa). Methods: The cell viability was determined by cell counting kit-8 assay, colony forming assay and cell invasion. The cell cycle and mRNA levels of p16 (cyclin dependent kinase inhibitor 2A, CDKN2A), p21 (cyclin dependent kinase inhibitor 1A, CDKN1A) and Rb (RB transcriptional corepressor) were detected by flow cytometry and quantitative real-time polymerase chain reaction, respectively. SA-β-gal staining and interleukin 6 (IL6) mRNA levels were used to evaluate cell aging. Western blot was used to detect mechanistic targets of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3) pathways. Moreover, Sphere formation assay and mRNA levels of aldehyde dehydrogenase (ALDH) 1A1, CD44 and Nanog were used to determine cell stemness. Results: The combination of LY2835219 (LY, CDK4/6 inhibitor) and Cur exhibited a synergistic inhibitory effect on PCa cell proliferation (p < 0.01) and invasion (p < 0.01) and Rb gene expression (p < 0.05), as well as a synergistic promotive effect on p61 expression (p < 0.01), p21 expression (p < 0.01) and cell cycle G1 arrest in PCa cells (p < 0.05) compared with LY or Cur alone. LY and LY + Cur increased the SA-β-gal-stained cells (p < 0.01). mTOR (p < 0.01) and STAT3 pathway (p < 0.01) were decreased by LY + Cur (p < 0.01). Furthermore, LY + Cur conditioned medium (CM) inhibited cell stemness by decreasing cell spheres (p < 0.05), ALDH1A1 (p < 0.01), CD44 (p < 0.01) and Nanog (p < 0.01) compared with LY CM. Conclusions: The findings of this study suggested that the combination of CDK4/6 inhibitor and curcumin may have clinical implications for the treatment of PCa (AU)


Subject(s)
Humans , Male , Curcumin/administration & dosage , Antineoplastic Agents/administration & dosage , Prostatic Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/administration & dosage , Cyclin-Dependent Kinase 6/administration & dosage , Drug Therapy, Combination , Treatment Outcome
10.
Aging Cell ; 23(3): e14056, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38062919

ABSTRACT

Human life expectancy is constantly increasing and aging has become a major risk factor for many diseases, although the underlying gene regulatory mechanisms are still unclear. Using transcriptomic and chromosomal conformation capture (Hi-C) data from human skin fibroblasts from individuals across different age groups, we identified a tight coupling between the changes in co-regulation and co-localization of genes. We obtained transcription factors, cofactors, and chromatin regulators that could drive the cellular aging process by developing a time-course prize-collecting Steiner tree algorithm. In particular, by combining RNA-Seq data from different age groups and protein-protein interaction data we determined the key transcription regulators and gene regulatory changes at different life stage transitions. We then mapped these transcription regulators to the 3D reorganization of chromatin in young and old skin fibroblasts. Collectively, we identified key transcription regulators whose target genes are spatially rearranged and correlate with changes in their expression, thereby providing potential targets for reverting cellular aging.


Subject(s)
Chromatin , Transcription Factors , Humans , Chromatin/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Cellular Senescence/genetics , Gene Expression Profiling
11.
Sleep Med ; 113: 19-24, 2024 01.
Article in English | MEDLINE | ID: mdl-37979503

ABSTRACT

OBJECTIVES: Mitochondria contribute to various compromised health, yet the association between sleep and mitochondria remains unclear. This study investigated the association between sleep quality and mitochondrial function in healthy middle-aged adults in the Republic of Korea. METHOD: This cross-sectional study recruited 238 middle-aged adults using convenience sampling. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). Mitochondrial function, represented by mitochondrial DNA copy number (mtDNAcn), was measured using real-time quantitative polymerase chain reaction on peripheral blood leukocytes. Multivariate linear regression analyses were performed to determine the association between sleep quality and mtDNAcn. RESULTS: Sleep quality was negatively associated with mtDNAcn (r = -.15, p = .025); the poor sleep quality group had a notably lower mtDNAcn compared to the good sleep quality group (t = 2.40, p = .017). Among the PSQI components, sleep latency was significantly associated with reduced mtDNAcn (r = -.18, p = .005). Univariate regression analysis revealed that mtDNAcn was significantly associated with education level (ß = 0.15, p = .017), shift work (ß = -0.17, p = .010), global PSQI score (ß = -0.15, p = .025), and sleep latency (ß = -0.18, p = .005). After adjusting for educational level and shift work in the final model, longer sleep latency was independently associated with reduced mtDNAcn (ß = -.16, p = .011). CONCLUSIONS: Poor sleep quality is associated with reduced mtDNAcn, suggesting a potential biological mechanism whereby poor sleep quality, specifically long sleep latency, accelerates cellular aging and impairs health through mitochondrial dysfunction. These findings enhance our understanding of the health effects of sleep quality and highlight the importance of screening and intervention strategies for mitochondrial dysfunction.


Subject(s)
DNA, Mitochondrial , Mitochondrial Diseases , Adult , Middle Aged , Humans , DNA, Mitochondrial/genetics , DNA Copy Number Variations/genetics , Cross-Sectional Studies , Sleep Quality , Mitochondria/genetics
12.
Aging Cell ; 22(11): e13966, 2023 11.
Article in English | MEDLINE | ID: mdl-37803909

ABSTRACT

Aging is the main risk factor for cardiovascular disease (CVD). As the world's population ages rapidly and CVD rates rise, there is a growing need for physiologically relevant models of aging hearts to better understand cardiac aging. Translational research relies heavily on young animal models; however, these models correspond to early ages in human life, therefore cannot fully capture the pathophysiology of age-related CVD. Here, we first investigated the transcriptomic and proteomic changes that occur with human cardiac aging. We then chronologically aged human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and showed that 14-month-old iCMs exhibited a similar aging profile to the human CMs and recapitulated age-related disease hallmarks. Using aged iCMs, we studied the effect of cell age on the young extracellular matrix (ECM) therapy, an emerging approach for myocardial infarction (MI) treatment and prevention. Young ECM decreased oxidative stress, improved survival, and post-MI beating in aged iCMs. In the absence of stress, young ECM improved beating and reversed aging-associated expressions in 3-month-old iCMs while causing the opposite effect on 14-month-old iCMs. The same young ECM treatment surprisingly increased SASP and impaired beating in advanced aged iCMs. Overall, we showed that young ECM therapy had a positive effect on post-MI recovery; however, cell age was determinant in the treatment outcomes without any stress conditions. Therefore, "one-size-fits-all" approaches to ECM treatments fail, and cardiac tissue engineered models with age-matched human iCMs are valuable in translational basic research for determining the appropriate treatment, particularly for the elderly.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Infarction , Aged , Animals , Humans , Infant , Proteomics , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Extracellular Matrix/metabolism
13.
Article in English | MEDLINE | ID: mdl-37835142

ABSTRACT

Telomere length is a good index of cellular aging. Longer telomeres are predictive of longer life, and healthy lifestyles are associated with longer telomeres. This study explored the relationship between time spent jogging or running each week and leukocyte telomere length (LTL) in 4458 randomly selected U.S. adults. The association was studied using data collected by the National Health and Nutrition Examination Survey (NHANES), and a cross-sectional design. Total weekly jog/run time was calculated from survey responses. From the minute totals, three categories were formed: <10 min/week, 10-74 min/week, and ≥75 min/week. Adults in the third category met the U.S. guidelines. Data were analyzed using one-way ANOVA. Partial correlation was used to adjust for differences in potential mediating factors, including demographic and lifestyle/medical factors. In the total sample, after adjusting for all the potential covariates, mean LTL significantly differed across the three jog/run categories (F = 4.1, p = 0.0272). Specifically, adults who met the guidelines via jogging and/or running had significantly longer telomeres than adults who performed no jogging/running. Adults in the middle category did not differ from the other two categories. A minimum of 75 min of jogging/running weekly is predictive of longer telomeres when compared to adults who do not jog or run regularly.


Subject(s)
Jogging , Running , Cross-Sectional Studies , Leukocytes/physiology , Nutrition Surveys , Humans , Adult
14.
Adv Gerontol ; 36(3): 313-323, 2023.
Article in Russian | MEDLINE | ID: mdl-37782637

ABSTRACT

Osteoarthritis (OA) is a socially significant age-associated disease, for the treatment of which a search for new effective drugs is underway. The development of OA correlates with the development of the aging-associated secretory chondrocyte phenotype (SASP). The purpose of the review is to analyze the pool of signaling molecules that form SASP of chondrocytes in OA and substantiate the possibility of peptide chondroprotection. It has been established that SASP of chondrocytes is characterized by a decrease in the synthesis of sirtuins, impaired remodeling of the extracellular matrix, and activation of cytokine production. Sigumir, a polypeptide complex of cartilage and bone tissues of young animals, and the AED tripeptide (Kartalax) have shown high efficacy in animal models of OA and oral administration in patients with OA of older age groups. These peptide substances regulate the synthesis of proapoptotic and proliferotropic molecules that form the SASP of chondrocytes.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Humans , Aged , Chondrocytes/pathology , Aging , Osteoarthritis/etiology , Phenotype , Peptides/pharmacology
15.
Yakugaku Zasshi ; 143(9): 729-744, 2023.
Article in Japanese | MEDLINE | ID: mdl-37661439

ABSTRACT

Cellular aging is one of the most extraordinary phenomena that mammalian cells undergo in vivo and in vitro. We have been observing their behavior for approximately 4 decades and here would like to summarize some of our salient findings. Normal cells such as human diploid cells exhibit finite growth potential in vitro as well as a set of senescent cell phenotypes. Those changes appear probabilistic and irreversible. In the search of the factor(s) to evoke the features we have observed that cellular glycosaminoglycan molecules plays significant roles in the cell physiology. Besides, CCAAT-box binding transcription factor NF-Y relates to the aging-coupled changes in gene expression, and aging of gastric mucosal cells may relate to a decrease in cytoprotection. As to the intracellular signaling, we have confirmed that the breakdown of phosphatidylinositol bisphosphate is critical for mitogenesis by using micro-injection of its antibody. Subsequently, we have discovered a novel, pivotal adaptor protein Grb2/Ash, a missing link between the receptor tyrosine kinases and their downstream target Ras. The limiting factors for the cellular life span have been considered as telomere shortening and accumulation of cellular and genomic damages. We have observed that telomerase-expressing cells exhibit expanded division potential; yet oxidative stress similarly induces senescent cell phenotypes. Herein we have demonstrated that the treatment of senescent cells with nicotinamide or related reagents elicits unique cellular responses, which might indicate the capability of the cells to recover from the aging.


Subject(s)
Geroscience , Signal Transduction , Humans , Animals , Aging , Longevity , Cells, Cultured , Mammals
16.
Biomedicines ; 11(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37626660

ABSTRACT

Hypoxia activates hypoxia-related signaling pathways controlled by hypoxia-inducible factors (HIFs). HIFs represent a quick and effective detection system involved in the cellular response to insufficient oxygen concentration. Activation of HIF signaling pathways is involved in improving the oxygen supply, promoting cell survival through anaerobic ATP generation, and adapting energy metabolism to meet cell demands. Hypoxia can also contribute to the development of the aging process, leading to aging-related degenerative diseases; among these, the aging of the immune system under hypoxic conditions can play a role in many different immune-mediated diseases. Thus, in this review we aim to discuss the role of HIF signaling pathways following cellular hypoxia and their effects on the mechanisms driving immune system senescence.

17.
Curr Aging Sci ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37424351

ABSTRACT

Our group at Yuvan Research has conducted several experiments in recent years that have demonstrated the reversibility of aging through the use of a young plasma fraction, following a historical line of research that began with heterochronic parabiosis. However, a one-of-a-kind discovery, in the form of anecdotal evidence, has recently clarified many doubts about the nature of aging and rejuvenation, and the conclusions that can be drawn from this discovery allow us to form a relatively clear picture of the mechanics of the aging and rejuvenation processes.

18.
Eur J Cell Biol ; 102(2): 151331, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37311287

ABSTRACT

Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.


Subject(s)
Cellular Senescence , Mesenchymal Stem Cells , Cellular Senescence/physiology , Rejuvenation
19.
Adv Gerontol ; 36(2): 234-238, 2023.
Article in Russian | MEDLINE | ID: mdl-37356100

ABSTRACT

Secretory phenotype associated with the aging (SASP) of chondrocytes forms the conditions for the musculoskeletal system diseases development, in particular, osteoarthritis (OA). The search for effective methods for OA treating is an urgent task of molecular gerontology. The purpose of this work is to characterize the SASP of chondrocytes and to conduct a comparative assessment of the effect of AED peptide and the cartilage polypeptide complex (CPC). It was found that chondrocyte's SASP is characterized by an increase of the synthesis of p16, p21, p53 pro-apoptotic proteins, TNF-α, IL-1α pro-inflammatory cytokines and a decrease of Sirt1synthesis. Peptides AED and CPC normalize the synthesis of molecules that form SASP of chondrocytes. This effect may explain their geroprotective effect and effectiveness in studies of various pathologies of the musculoskeletal system, including OA.


Subject(s)
Chondrocytes , Osteoarthritis , Humans , Chondrocytes/pathology , Cellular Senescence , Osteoarthritis/prevention & control , Phenotype , Cytokines/metabolism
20.
Cureus ; 15(5): e39395, 2023 May.
Article in English | MEDLINE | ID: mdl-37362531

ABSTRACT

Cardiovascular disease (CVD), specifically coronary atherosclerosis, is regulated by an interplay between genetic and lifestyle factors. Most recently, a factor getting much attention is the role epigenetics play in atherosclerosis; particularly the development of coronary artery disease. Furthermore, it is important to understand the intricate interaction between the environment and each individual genetic material and how this interaction affects gene expression and consequently influences the development of atherosclerosis. Our main goal is to discuss epigenetic regulations; particularly, the factors contributing to coronary atherosclerosis and their role in aging and longevity. We reviewed the current literature and provided a simplified yet structured and reasonable appraisal of this topic. This role has also been recently linked to longevity and aging. Epigenetic regulations (modifications) whether through histone modifications or DNA or RNA methylation have been shown to be regulated by environmental factors such as social stress, smoking, chemical contaminants, and diet. These sensitive interactions are further aggravated by racial health disparities that ultimately impact cardiovascular disease outcomes through epigenetic interactions. Certainly, limiting our exposure to such causative events at younger ages seems our "golden opportunity" to tackle the incidence of coronary atherosclerosis and probably the answer to longevity.

SELECTION OF CITATIONS
SEARCH DETAIL
...