ABSTRACT
RNA-binding proteins (RBPs) are essential for regulating RNA metabolism, stability, and translation within cells. Recent studies have shown that RBPs are not restricted to intracellular functions and can be found in extracellular vesicles (EVs) in different mammalian cells. EVs released by fungi contain a variety of proteins involved in RNA metabolism. These include RNA helicases, which play essential roles in RNA synthesis, folding, and degradation. Aminoacyl-tRNA synthetases, responsible for acetylating tRNA molecules, are also enriched in EVs, suggesting a possible link between these enzymes and tRNA fragments detected in EVs. Proteins with canonical RNA-binding domains interact with proteins and RNA, such as the RNA Recognition Motif (RRM), Zinc finger, and hnRNP K-homology (KH) domains. Polyadenylate-binding protein (PABP) plays a critical role in the regulation of gene expression by binding the poly(A) tail of messenger RNA (mRNA) and facilitating its translation, stability, and localization, making it a key factor in post-transcriptional control of gene expression. The presence of proteins related to the RNA life cycle in EVs from different fungal species suggests a conserved mechanism of EV cargo packing. Various models have been proposed for selecting RNA molecules for release into EVs. Still, the actual loading processes are unknown, and further molecular characterization of these proteins may provide insight into the mechanism of RNA sorting into EVs. This work reviews the current knowledge of RBPs and proteins related to RNA metabolism in EVs derived from distinct fungi species, and presents an analysis of proteomic datasets through GO term and orthology analysis, Our investigation identified orthologous proteins in fungal EVs on different fungal species.
Subject(s)
Extracellular Vesicles , RNA , Animals , RNA/analysis , Proteomics , RNA, Messenger/metabolism , Extracellular Vesicles/metabolism , RNA-Binding Proteins/metabolism , Mammals/geneticsABSTRACT
Alpaca is a South American camelid, particularly present in Peruvian highlands, where oxygen concentration and atmospheric pressure are very low. Due to this fact, gestational physiology has adapted to preserve the conceptus' and mother's health. In this context, several cellular and molecular features play an essential role during and at the end of gestation. Structural carbohydrates act on maternal-fetal communication, recognize exogenous molecules, and contribute to placental barrier selectivity. Therefore, this study aimed to characterize the structural carbohydrate profiles that are present in the term alpaca placenta, kept in their natural habitat of around 4,000 m height. For this propose, 12 term alpaca placentas were collected, and the material was obtained at the time of birth from camelids raised naturally in the Peruvian highlands, in the Cusco region. All placenta samples were processed for histological analysis. A lectin histochemical investigation was performed using 13 biotinylated lectins, allowing us to determine the location of carbohydrates and their intensity on a semi-quantitative scale. Our results demonstrated that during term gestation, the epitheliochorial alpaca placenta shows a high presence of carbohydrates, particularly glucose, α-linked mannose, N-acetylglucosamine ß (GlcNAc), galactose (αGal), and N-acetylgalactosamine α (GalNAc), present in the trophoblast, amnion epithelium, and mesenchyme, as well as the presence of sialic acid residues and low affinity for fucose. In fetal blood capillaries, the presence of bi- and tri-antennary complex structures and α-linked mannose was predominated. In conclusion, we characterized the glycosylation profile in the term alpaca placenta. Based on our data, compared to those reported in the bibliography, we suggest that these carbohydrates could participate in the labor of these animals that survive in Peruvian extreme environments.
ABSTRACT
Fungal infections are associated with high mortality rates in humans. The risk of fungal diseases creates the urgent need to broaden the knowledge base regarding their pathophysiology. In this sense, the role of extracellular vesicles (EVs) has been described to convey biological information and participate in the fungus-host interaction process. We hypothesized that fungal EVs work as an additional element in the communication routes regulating fungal responses in intraspecies interaction systems. In this respect, the aim of this study was to address the gene regulation profiles prompted by fungal EVs in intraspecies recipient cells. Our data demonstrated the intraspecies uptake of EVs in pathogenic fungi, such as Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis, and the effects triggered by EVs in fungal cells. In C. albicans, we evaluated the involvement of EVs in the yeast-to-hypha transition, while in P. brasiliensis and A. fumigatus the function of EVs as stress transducers was investigated. P. brasiliensis and A. fumigatus were exposed to an inhibitor of glycosylation or UV light, respectively. The results demonstrated the role of EVs in regulating the expression of target genes and triggering phenotypic changes. The EVs treatment induced cellular proliferation and boosted the yeast to hyphal transition in C. albicans, while they enhanced stress responsiveness in A. fumigatus and P. brasiliensis, establishing a role for EVs in fungal intraspecies communication. Thus, EVs regulate fungal behavior, acting as potent message effectors, and understanding their effects and mechanism(s) of action could be exploited in antifungal therapies. IMPORTANCE Here, we report a study about extracellular vesicles (EVs) as communication mediators in fungi. Our results demonstrated the role of EVs from Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis regulating the expression of target genes and phenotypic features. We asked whether fungal EVs play a role as message effectors. We show that fungal EVs are involved in fungal interaction systems as potent message effectors, and understanding their effects and mechanisms of action could be exploited in antifungal therapies.
Subject(s)
Extracellular Vesicles , Mycoses , Humans , Antifungal Agents/pharmacology , Aspergillus fumigatus/genetics , Candida albicans , Cell CommunicationABSTRACT
The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.
Subject(s)
Connective Tissue Growth Factor/metabolism , Muscle, Skeletal/physiology , Peptides/metabolism , Animals , Gene Expression Regulation, Developmental , Humans , Kinins/metabolism , Multigene Family , Muscle Proteins/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Regeneration , Renin-Angiotensin SystemABSTRACT
The biotechnology for in vitro embryo production is becoming increasingly popular, being applied to humans and domestic animals. Embryo development can be achieved with either 20% or 5% oxygen tension. The extracellular vesicles (EVs) are secreted by different cell types and carry bioactive materials. Our objective was to determine the secretion pattern and micro RNA (miRNA) contents of EVs released in the bovine embryo culture environment-embryo and cumulus cell monolayer-on Days 3 and 7 of in vitro culture under two different oxygen tensions: High (20%) and low (5%). The EVs were isolated from the medium and analyzed to determine size, concentration, and miRNA levels. EVs concentration in low oxygen tension increased on Day 3 and decreased on Day 7. Additionally, altered EV miRNAs derived from the embryo-cumulus culture medium were predicted to regulate survival and proliferation-related pathways on Days 3 and 7. Moreover, miR-210 levels decreased in EVs isolated from the culture medium under high oxygen tension suggesting that this miRNA can be used as a marker for normoxia since it is associated with low oxygen tension. In summary, this study provides knowledge of the oxygen tension effects on EVs release and content, and potentially, on cell-to-cell communication during in vitro bovine embryo production.
Subject(s)
Culture Media , Embryo Culture Techniques , Embryo, Mammalian/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Animals , Cattle , Embryo, Mammalian/cytology , FemaleABSTRACT
Extracellular vesicles (EVs) are heterogeneous membrane-surrounded structures that participate in cellular communications, which comprise exosomes and microvesicles. These vesicles have different biogenesis, and their physiological and pathological roles in chronic and infectious diseases are under constant investigation. In Chagas disease, Trypanosoma cruzi EVs have been described using different approaches. The isolation of T. cruzi-derived EVs has been done mainly using the differential centrifugation technique, and different strategies have been employed for characterization of them. Here, we describe the method to isolate EVs by differential centrifugation and a detection protocol for EVs in T. cruzi-host cell interaction to allow further investigations about this parasite.
Subject(s)
Chagas Disease/metabolism , Chagas Disease/parasitology , Extracellular Vesicles/metabolism , Host-Parasite Interactions , Trypanosoma cruzi/physiology , Animals , Cell Line , Extracellular Vesicles/chemistry , Humans , Proteins/analysis , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/metabolism , Ultracentrifugation/methodsABSTRACT
Flooding is one of the most frequent and costly natural disasters affecting mankind. However, implementing Internet of Things (IoT) technology to monitor river behavior may help mitigate or prevent future disasters. This article outlines the hardware development of an IoT system (RiverCore) and defines an application scenario in a specific hydrological region of the state of Colima (Mexico), highlighting the characteristics of data acquisition and data processing used. Both fixed position and moving drifter node systems are described along with web-based data acquisition platform developments integrated with IoT techniques to retrieve data through 3G cellular networks. The developed architecture uses the Message Queuing Telemetry Transport (MQTT) protocol, along with encryption and security mechanisms, to send real-time data packages from fixed nodes to a server that stores retrieved data in a non-relational database. From this, data can be accessed and displayed through different customizable queries and graphical representations, allowing future use in flood analysis and prediction systems. All of these features are presented along with graphical evidence of the deployment of the different devices and of several cellular communication and on-site data acquisition tests.
Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Floods/prevention & control , Hydrology/statistics & numerical data , Internet/instrumentation , Rivers , Telemetry/instrumentation , Cloud Computing , Floods/statistics & numerical data , Information Storage and Retrieval , Mexico , Mobile ApplicationsABSTRACT
Follicles are composed of different interdependent cell types including oocytes, cumulus, granulosa, and theca cells. Follicular cells and oocytes exchange signaling molecules from the beginning of the development of the primordial follicles until the moment of ovulation. The follicular structure transforms during folliculogenesis; barriers form between the germ and the somatic follicular cells, and between the somatic follicular cells. As such, communication systems need to adapt to maintain the exchange of signaling molecules. Two critical barriers are established at different stages of development: the zona pellucida, separating the oocyte and the cumulus cells limiting the communication through specific connections, and the antrum, separating subpopulations of follicular cells. In both situations, communication is maintained either by the development of specialized connections as transzonal projections or by paracrine signaling and trafficking of extracellular vesicles through the follicular fluid. The bidirectional communication between the oocytes and the follicle cells is vital for driving folliculogenesis and oogenesis. These communication systems are associated with essential functions related to follicular development, oocyte competence, and embryonic quality. Here, we discuss the formation of the zona pellucida and antrum during folliculogenesis, and their importance in follicle and oocyte development. Moreover, this review discusses the current knowledge on the cellular mechanisms such as the movement of molecules via transzonal projections, and the exchange of extracellular vesicles by follicular cells to overcome these barriers to support female gamete development. Finally, we highlight the undiscovered aspects related to intrafollicular communication among the germ and somatic cells, and between the somatic follicular cells and give our perspective on manipulating the above-mentioned cellular communication to improve reproductive technologies.
ABSTRACT
Follicles are composed of different interdependent cell types including oocytes, cumulus, granulosa, and theca cells. Follicular cells and oocytes exchange signaling molecules from the beginning of the development of the primordial follicles until the moment of ovulation. The follicular structure transforms during folliculogenesis; barriers form between the germ and the somatic follicular cells, and between the somatic follicular cells. As such, communication systems need to adapt to maintain the exchange of signaling molecules. Two critical barriers are established at different stages of development: the zona pellucida, separating the oocyte and the cumulus cells limiting the communication through specific connections, and the antrum, separating subpopulations of follicular cells. In both situations, communication is maintained either by the development of specialized connections as transzonal projections or by paracrine signaling and trafficking of extracellular vesicles through the follicular fluid. The bidirectional communication between the oocytes and the follicle cells is vital for driving folliculogenesis and oogenesis. These communication systems are associated with essential functions related to follicular development, oocyte competence, and embryonic quality. Here, we discuss the formation of the zona pellucida and antrum during folliculogenesis, and their importance in follicle and oocyte development. Moreover, this review discusses the current knowledge on the cellular mechanisms such as the movement of molecules via transzonal projections, and the exchange of extracellular vesicles by follicular cells to overcome these barriers to support female gamete development. Finally, we highlight the undiscovered aspects related to intrafollicular communication among the germ and somatic cells, and between the somatic follicular cells and give our perspective on manipulating the above-mentioned cellular communication to improve reproductive technologies.
Subject(s)
Ovarian Follicle/growth & development , Extracellular Vesicles/genetics , OocytesABSTRACT
Follicles are composed of different interdependent cell types including oocytes, cumulus, granulosa, and theca cells. Follicular cells and oocytes exchange signaling molecules from the beginning of the development of the primordial follicles until the moment of ovulation. The follicular structure transforms during folliculogenesis; barriers form between the germ and the somatic follicular cells, and between the somatic follicular cells. As such, communication systems need to adapt to maintain the exchange of signaling molecules. Two critical barriers are established at different stages of development: the zona pellucida, separating the oocyte and the cumulus cells limiting the communication through specific connections, and the antrum, separating subpopulations of follicular cells. In both situations, communication is maintained either by the development of specialized connections as transzonal projections or by paracrine signaling and trafficking of extracellular vesicles through the follicular fluid. The bidirectional communication between the oocytes and the follicle cells is vital for driving folliculogenesis and oogenesis. These communication systems are associated with essential functions related to follicular development, oocyte competence, and embryonic quality. Here, we discuss the formation of the zona pellucida and antrum during folliculogenesis, and their importance in follicle and oocyte development. Moreover, this review discusses the current knowledge on the cellular mechanisms such as the movement of molecules via transzonal projections, and the exchange of extracellular vesicles by follicular cells to overcome these barriers to support female gamete development. Finally, we highlight the undiscovered aspects related to intrafollicular communication among the germ and somatic cells, and between the somatic follicular cells and give our perspective on manipulating the above-mentioned cellular communication to improve reproductive technologies.(AU)
Subject(s)
Ovarian Follicle/growth & development , Extracellular Vesicles/genetics , OocytesABSTRACT
Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract, where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Despite the serious consequences associated with trichomoniasis disease, little is known about parasite or host factors involved in attachment of the parasite-to-host epithelial cells. Here, we report the identification of microvesicle-like structures (MVs) released by T. vaginalis. MVs are considered universal transport vehicles for intercellular communication as they can incorporate peptides, proteins, lipids, miRNA, and mRNA, all of which can be transferred to target cells through receptor-ligand interactions, fusion with the cell membrane, and delivery of a functional cargo to the cytoplasm of the target cell. In the present study, we demonstrated that T. vaginalis release MVs from the plasma and the flagellar membranes of the parasite. We performed proteomic profiling of these structures demonstrating that they possess physical characteristics similar to mammalian extracellular vesicles and might be selectively charged with specific protein content. In addition, we demonstrated that viable T. vaginalis parasites release large vesicles (LVs), membrane structures larger than 1 µm that are able to interact with other parasites and with the host cell. Finally, we show that both populations of vesicles present on the surface of T vaginalis are induced in the presence of host cells, consistent with a role in modulating cell interactions.
Subject(s)
Extracellular Vesicles/metabolism , Host-Parasite Interactions , Trichomonas Vaginitis/metabolism , Trichomonas Vaginitis/parasitology , Trichomonas vaginalis/physiology , Trichomonas vaginalis/ultrastructure , Cell Communication , Extracellular Vesicles/chemistry , Extracellular Vesicles/ultrastructure , Female , HeLa Cells , Humans , Proteomics , Protozoan Proteins/analysis , Protozoan Proteins/metabolism , Trichomonas vaginalis/chemistry , Trichomonas vaginalis/cytologyABSTRACT
Quorum sensing regulates a variety of phenotypes in bacteria including the production of virulence factors. Salmonella spp. have quorum sensing systems mediated by three autoinducers (AI-1, AI-2, and AI-3). The AI-1-mediated system is incomplete in that the bacterium relies on the synthesis of signaling molecules by other microorganisms. This study aimed to evaluate the influence of the AI-1 N-dodecanoyl-DL-homoserine lactone (C12-HSL) on the growth, motility, adhesion, and biofilm formation of Salmonella enterica serovar Enteritidis PT4 578 on a polystyrene surface. Experiments were conducted at 37 °C in anaerobic tryptone soy broth supplemented with C12-HSL and/or a mixture of four synthetic furanones, at the concentration of 50 nM each. The planktonic growth, adhesion, swarming, and twitching motility were not altered in the presence of C12-HSL and/or furanones under anaerobic conditions. However, C12-HSL induced biofilm formation after 36 h of cultivation as determined by quantification of biofilm formation, by enumeration of adhered cells to polystyrene coupons, and finally by imaging the presence of multilayered cells on an epifluorescence microscope. When furanones were present in the medium, an antagonistic effect against C12-HSL on the biofilm development was observed. The results demonstrate an induction of biofilm formation in Salmonella Enteritidis by AI-1 under anaerobic conditions. Considering that Salmonella does not produce AI-1 but respond to it, C12-HSL synthesized by other bacterial species could trigger biofilm formation by this pathogen in conditions that are relevant for its pathogenesis.
Subject(s)
4-Butyrolactone/analogs & derivatives , Biofilms/drug effects , Homoserine/analogs & derivatives , Quorum Sensing , Salmonella enteritidis/drug effects , Salmonella enteritidis/physiology , 4-Butyrolactone/pharmacology , Anaerobiosis , Homoserine/pharmacologyABSTRACT
Control of cell-cell coordination and communication is regulated by several factors, including paracrine and autocrine release of biomolecules, and direct exchange of soluble factors between cells through gap junction channels. Additionally, hemichannels also participate in cell-cell coordination through the release of signaling molecules, such as ATP and glutamate. A family of transmembrane proteins named connexins forms both gap junction channels and hemichannels. Because of their importance in cell and tissue coordination, connexins are controlled both by post-translational and post-transcriptional modifications. In recent years, non-coding RNAs have garnered research interest due to their ability to exert post-transcriptional regulation of gene expression. One of the most recent, well-documented control mechanisms of protein synthesis is found through the action of small, single-stranded RNA, called micro RNAs (miRNAs or miRs). Put simply, miRNAs are negative regulators of the expression of a myriad proteins involved in many physiological and pathological processes. This mini review will briefly summarize what is currently known about the action of miRNAs over Cxs expression/function in different organs under some relevant physiological and pathological conditions.
ABSTRACT
Cellular and molecular mechanisms of wound healing, tissue repair, and fibrogenesis are established in different organs and are essential for the maintenance of function and tissue integrity after cell injury. These mechanisms are also involved in a plethora of fibroproliferative diseases or organ-specific fibrotic disorders, all of which are associated with the excessive deposition of extracellular matrix components. Fibroblasts, which are key cells in tissue repair and fibrogenesis, rely on communicative cellular networks to ensure efficient control of these processes and to prevent abnormal accumulation of extracellular matrix into the tissue. Despite the significant impact on human health, and thus the epidemiologic relevance, there is still no effective treatment for most fibrosis-related diseases. This paper provides an overview of current concepts and mechanisms involved in the participation of cellular communication via connexin-based pores as well as pannexin-based channels in the processes of tissue repair and fibrogenesis in chronic diseases. Understanding these mechanisms may contribute to the development of new therapeutic strategies to clinically manage fibroproliferative diseases and organ-specific fibrotic disorders.