Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 24321-24340, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700914

ABSTRACT

In current clinical practices related to orthopedics, dental, and cardiovascular surgeries, a number of biomaterial coatings, such as hydroxyapatite (HAp), diamond-like carbon (DLC), have been used in combination with metallic substrates (stainless steel, Ti6Al4V alloy, etc.). Although SiBCN coatings are widely explored in material science for diverse applications, their potential remains largely unexplored for biomedical applications. With this motivation, the present work reports the development of SiBxCyNzOm coatings on a Ti6Al4V substrate, employing a reactive radiofrequency (RF) magnetron sputtering technique. Three different coating compositions (Si0.27B0.10C0.31N0.07O0.24, Si0.23B0.06C0.21N0.22O0.27, and Si0.20B0.05C0.19N0.20O0.35) were obtained using a Si2BC2N target and varying nitrogen flow rates. The hydrophilic properties of the as-synthesized coatings were rationalized in terms of an increase in the number of oxygen-containing functional groups (OH and NO) on the surface, as probed using XPS and FTIR analyses. Furthermore, the cellular monoculture of SVEC4-10 endothelial cells and L929 fibroblasts established good cytocompatibility. More importantly, the coculture system of SVEC4-10 and L929, in the absence of growth factors, demonstrated clear cellular phenotypical changes, with extensive sprouting leading to tube-like morphologies on the coating surfaces, when stimulated using a customized cell stimulator (StimuCell) with 1.15 V/cm direct current (DC) electric field strength for 1 h. In addition, the hemocompatibility assessment using human blood samples revealed clinically acceptable hemolysis, less erythrocyte adhesion, shorter plasma recalcification, and reduced risk for thrombosis on the SiBxCyNzOm coatings, when compared to uncoated Ti6Al4V. Taken together, the present study unambiguously establishes excellent cytocompatibility, hemocompatibility, and defines the preangiogenic properties of SiBxCyNzOm bioceramic coatings for potential biomedical applications.


Subject(s)
Alloys , Coated Materials, Biocompatible , Materials Testing , Titanium , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Alloys/chemistry , Alloys/pharmacology , Titanium/chemistry , Titanium/pharmacology , Humans , Animals , Mice , Endothelial Cells/drug effects , Endothelial Cells/cytology , Cell Line , Surface Properties , Fibroblasts/drug effects , Fibroblasts/cytology , Neovascularization, Physiologic/drug effects
2.
J Appl Biomater Funct Mater ; 19: 22808000211037487, 2021.
Article in English | MEDLINE | ID: mdl-34428976

ABSTRACT

In this study, we aimed to improve the properties of conventional glass ionomer cement (GIC), including mechanical properties, wear resistance, antibacterial properties and biological activity, by adding fluorinated graphene (FG). Composites of synthesised FG and GIC were examined after being combined at different mass proportions (0, 0.5, 1.0 and 2.0 wt%). The microstructure and morphology of FG prepared via the hydrothermal method was characterised using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The FG/GIC composite was obtained through the blending method and characterised using SEM. Then, the Vickers microhardness and the wear property of the FG/GIC composite-imitated brushing was measured. The plate count and dilution methods (10-fold) were adopted to investigate the antibacterial properties of FG/GIC by incubating Escherichia coli and Staphylococcus aureus. The biocompatibility of FG/GIC containing the adhesion and cytotoxicity of mouse fibroblast cells (L929) was estimated by the MTT and acridine orange (AO) fluorescent staining. Our results demonstrated that the hardness and abrasive wear resistance of the composites increased, and the microhardness parameter changes exhibited a gradual increase as the concentration continued to increase. A 2.0 wt% FG concentration could effectively improve the bacterial inhibition performance of GIC and was directly proportional to the concentration of FG. The composite materials showed no apparent cytotoxicity on normal L929 cells compared to the control group, and the materials exhibited no cytotoxic effect compared to traditional GIC. Thus, FG/GIC has potential therapeutic value in the field of dental treatment.


Subject(s)
Glass Ionomer Cements , Graphite , Animals , Anti-Bacterial Agents/pharmacology , Cell Proliferation , Glass Ionomer Cements/pharmacology , Materials Testing , Mice
3.
Materials (Basel) ; 10(8)2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28820472

ABSTRACT

We report a novel self-rolling, conductive, and biocompatible multiwall carbon nanotube (MWCNT)-dopamine-polyethylene glycol (PEG) hydrogel film. The gel can self-fold into a thin tube when it is transferred from a glass slide to an aqueous environment, regardless of the concentrations of the MWCNT. The film presents a highly organized pattern, which results from the self-assembly of hydrophilic dopamine and hydrophobic carbon nanotubes. By exploring the biomedical potential, we found that MWCNT-included rolled film is nontoxic and can promote cell growth. For further functional verification by qPCR (quantitative polymerase chain reaction), bone marrow derived mesenchymal cells present higher levels of osteogenic differentiations in response to a higher concentration of CNTs. The results suggest that the self-rolling, conductive CNT-dopamine-PEG hydrogel could have multiple potentials, including biomedical usage and as a conductive biosensor.

4.
Artif Cells Nanomed Biotechnol ; 44(5): 1298-302, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26375872

ABSTRACT

OBJECTIVE: To study the cellular compatibility of the magnetic nanocomposite (n-HA/PLLA/Fe2O3) and to discuss the biological behaviors of cells including surface adhesion, proliferation, and expression. The present work provides an experimental basis for medical application. METHOD: Rat osteoblasts (OB) were co-cultured with the magnetic nanocomposite. Cell proliferation, cell adhesion, and the expression of type I collagen (Col-I) and osteocalcin (OCN) gene were characterized by the cell counting kit-8 (CCK-8) method, scanning electronic microscopy (SEM), and reverse transcription polymerase chain reaction (RT-PCR), respectively. RESULTS: CCK-8 detection showed that there was no difference in cell proliferation on the magnetic nanocomposite between the experimental group and control group (P > 0.05). SEM indicated that a large amount of cells adhered to the surface and in the pores of the magnetic nanocomposite. As the co-culture time increased, the cells adhering to the magnetic nanocomposite showed an obvious increase. RT-PCR detection showed that as the co-culture time increased, the expression of the Col-I gene was enhanced (P 0.05). There was no obvious difference in the expression of the OCN gene (P > 0.05). CONCLUSION: The magnetic nanocomposite is suitable for cell adhesion, growth, and differentiation with a high cellular compatibility.


Subject(s)
Cell Proliferation/drug effects , Magnetite Nanoparticles/chemistry , Materials Testing , Nanocomposites/chemistry , Osteoblasts/metabolism , Animals , Cell Adhesion/drug effects , Cells, Cultured , Magnetite Nanoparticles/ultrastructure , Nanocomposites/ultrastructure , Osteoblasts/ultrastructure , Rats
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-560241

ABSTRACT

Silk fibroin has been widely used in biomedical application due to its good biocompatibility and minimal immunogenicity. This article discusses the resent progresses in the research on immunology and cellular compatibility of silk fibroin used in tissue engineering.

6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-670880

ABSTRACT

0.05). ALP activity of the cells on deproteinized bone was higher than that on decalcified bone(P

SELECTION OF CITATIONS
SEARCH DETAIL
...