Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
1.
Biomed Mater ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917837

ABSTRACT

Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg/mL) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2 surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.

2.
Am J Biol Anthropol ; : e24985, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864098

ABSTRACT

OBJECTIVES: Age at death estimation is a key element to many research questions in biological anthropology, archeology, and forensic science. Dental cementum is a tissue of choice for the estimation of age at death in adult individuals as it continues deposition for the entirety of an individual's life. Previous works have devised regression formulas correlating cementum thickness to age at death. However, interpopulation variances are unknown, and it is therefore not clear whether regressions based on a single population are applicable to individuals with different ancestries. MATERIALS AND METHODS: Here, we use a sample (n = 52) of teeth from individuals with known age at tooth extraction/death of European, African, and East Asian ancestry to assess whether there are interpopulations differences in cementum growth rate. We measured growth rate in four different areas (2nd and 5th decile of both the lingual and buccal aspect of the root) of each tooth and used nonparametric tests to evaluate population differences in growth rate between homologous regions of the teeth. RESULTS: The results of the analyses show that, even after controlling for tooth size, individuals of European ancestry have significantly lower growth rates than those of both African and East Asian ancestry across all four tooth areas. DISCUSSION: These results call into question the applicability of the regression formulas derived from European ancestry individuals to individuals of other ancestries.

3.
Cell Biochem Funct ; 42(4): e4058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783647

ABSTRACT

We aimed to evaluate the materials based on 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane (Super-bond [SB]) and nano hydroxyapatite (naHAp) for the repair of perforation at pulp chamber floor (PPF) in vitro and in vivo models. SB and naHAp were mixed in the mass ratio of 10% or 30% to produce naHAp/SB. Human periodontal ligament stem cells (HPDLSCs) were cultured on resin discs of SB or naHAp/SB to analyze the effects of naHAp/SB on cell adhesion, proliferation, and cementoblastic differentiation. A rat PPF model was treated with SB or naHAp/SB to examine the effects of naHAp/SB on the healing of defected cementum and periodontal ligament (PDL) at the site of PPF. HPDLSCs were spindle-shaped and adhered to all resin discs. Changing the resin from SB to naHAp/SB did not significantly alter cell proliferation. Both 10% and 30% naHAp/SB were more effective than SB in promoting cementoblastic differentiation of HPDLSCs. In the rat PPF model, 30% naHAp/SB was more effective than SB in promoting the formation Sharpey's fiber-like structures with expression of the PDL-related marker and cementum-like structures with expression of cementum-related markers. In conclusion, 30% naHAp/SB can be the new restorative material for PPF because it exhibited the abilities of adhering to dentin and healing of defected periodontal tissue.


Subject(s)
Boron Compounds , Durapatite , Methacrylates , Periodontal Ligament , Animals , Rats , Humans , Durapatite/chemistry , Durapatite/pharmacology , Periodontal Ligament/drug effects , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Boron Compounds/pharmacology , Boron Compounds/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Cell Differentiation/drug effects , Wound Healing/drug effects , Male , Cell Proliferation/drug effects , Dental Pulp Cavity/metabolism , Dental Pulp Cavity/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Cells, Cultured , Rats, Sprague-Dawley , Methylmethacrylates/chemistry , Methylmethacrylates/pharmacology , Cell Adhesion/drug effects
4.
Article in English | MEDLINE | ID: mdl-38725427

ABSTRACT

PURPOSE: A combination of activin and bone morphogenetic protein-2 (BMP-2), termed AB204, has been shown to improve osteogenic potential with fewer side effects than BMP-2 alone. This study was performed to evaluate the effect of AB204 on periodontal tissue regeneration in a dog buccal dehiscence model. METHODS: Buccal dehiscence defects were created on the maxillary premolars (P1, P2, and P3) of 6 mongrel dogs. After 5 weeks, the dogs were randomly assigned to 1 of 3 groups: the control, collagen matrix (CM), and CM/AB204 groups. Grafting procedures were then performed. The dogs were sacrificed 8 weeks after the grafting procedure, and volumetric and histological analyses were conducted. RESULTS: The thickness of the buccal gingiva in the CM/AB204 group was greater than those in the other groups at 2 weeks (P<0.05). The ridge width in the AB204/CM group exceeded the width in the other groups at 4 and 8 weeks; however, the difference was not statistically significant. Histological analysis revealed that the CM/AB204 group demonstrated the formation of new bone surrounded by newly formed periodontal ligament and cementum (P=0.035). CONCLUSIONS: The combined application of CM and AB204 shows promise in facilitating the regeneration of periodontal attachment, including the formation of new bone, cementum, and periodontal ligament.

5.
Cureus ; 16(3): e56998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38681342

ABSTRACT

Short tandem repeat (STR) typing is widely used not only for blood relationship identification but also for the personal identification of unidentified bodies. However, DNA is susceptible to the effects of environmental factors, consequently leading to reduced DNA yields. Therefore, to maximize the DNA yield required for identification, teeth are generally completely pulverized during DNA extraction. However, this renders subsequent testing after DNA profiling impossible. In this study, we investigated the utility of DNA profiling using only the cementum from teeth that had been left outdoors for long postmortem intervals. We analyzed 90 molars (fresh teeth) that were extracted within six months at a dental clinic and 90 molars (stale teeth) exposed outdoors for over 70 years, and following cementum extraction, the accuracy of STR profiling, optimal site for cementum collection, and minimum amount of cementum required for STR profiling were determined. The results demonstrated that the profiling accuracy of DNA extracted from cementum was comparable to that of DNA from dental pulp and dentin. Furthermore, the collection of cementum from either near the cervical line or from the root apex areas did not show significant differences in DNA profiling accuracy, indicating that securing at least 5 mg of cementum was sufficient to ensure precise DNA profiling. These findings suggest that DNA profiling using only cementum is viable even in teeth that have been subjected to a long postmortem interval.

6.
J Struct Biol ; 216(2): 108084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479547

ABSTRACT

In humans, the growth pattern of the acellular extrinsic fibre cementum (AEFC) has been useful to estimate the age-at-death. However, the structural organization behind such a pattern remains poorly understood. In this study tooth cementum from seven individuals from a Mexican modern skeletal series were analyzed with the aim of unveiling the AEFC collagenous and mineral structure using multimodal imaging approaches. The organization of collagen fibres was first determined using: light microscopy, transmission electron microscopy (TEM), electron tomography, and plasma FIB scanning electron microscopy (PFIB-SEM) tomography. The mineral properties were then investigated using: synchrotron small-angle X-ray scattering (SAXS) for T-parameter (correlation length between mineral particles); synchrotron X-ray diffraction (XRD) for L-parameter (mineral crystalline domain size estimation), alignment parameter (crystals preferred orientation) and lattice parameters a and c; as well as synchrotron X-ray fluorescence for spatial distribution of calcium, phosphorus and zinc. Results show that Sharpey's fibres branched out fibres that cover and uncover other collagen bundles forming aligned arched structures that are joined by these same fibres but in a parallel fashion. The parallel fibres are not set as a continuum on the same plane and when they are superimposed project the AEFC incremental lines due to the collagen birefringence. The orientation of the apatite crystallites is subject to the arrangement of the collagen fibres, and the obtained parameter values along with the elemental distribution maps, revealed this mineral tissue as relatively homogeneous. Therefore, no intrinsic characteristics of the mineral phase could be associated with the alternating AEFC incremental pattern.


Subject(s)
Dental Cementum , Minerals , X-Ray Diffraction , Humans , Dental Cementum/ultrastructure , Dental Cementum/chemistry , Dental Cementum/metabolism , X-Ray Diffraction/methods , Minerals/metabolism , Minerals/chemistry , Collagen/chemistry , Collagen/metabolism , Microscopy, Electron, Transmission/methods , Scattering, Small Angle , Microscopy, Electron, Scanning/methods , Electron Microscope Tomography/methods , Female , Adult , Male , Middle Aged
7.
Cureus ; 16(2): e55063, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38550404

ABSTRACT

Benign osseous tumors of mesodermal origin that are included within the group of fibro-osseous lesions include cemento-ossifying fibromas (COFs). The fibrocellular component of these diseases originates from the periodontal ligament, which deposits bone and cementum encased in fibrous tissue. It typically appears in the mandible and presents as a solitary, nonaggressive, slowly developing, asymptomatic, expansile lesion, rarely occurring in the maxilla. The only intervention that proved to be successful in producing excellent outcomes and that may be regarded as a final therapeutic option is the complete surgical removal of COFs. Presenting herein is a case report describing a painless and expansile mass in the left mandibular region, histopathologically diagnosed as COF.

9.
J Histochem Cytochem ; 72(2): 109-120, 2024 02.
Article in English | MEDLINE | ID: mdl-38288702

ABSTRACT

The cementum is a highly mineralized tissue that covers the tooth root. The regional differences among the types of cementum, especially in the extrinsic fibers that contribute to tooth support, remain controversial. Therefore, this study used second harmonic generation imaging in conjunction with automated collagen extraction and image analysis algorithms to facilitate the quantitative examination of the fiber characteristics and the changes occurring in these fibers over time. Acellular extrinsic fiber cementum (AEFC) was invariably observed in the superficial layer of the apical cementum in mouse molars, indicating that this region of the cementum plays a crucial role in supporting the tooth. The apical AEFC exhibited continuity and fiber characteristics comparable with the cervical AEFC, suggesting a common cellular origin for their formation. The cellular intrinsic fiber cementum present in the inner layer of the apical cementum showed consistent growth in the apical direction without layering. This study highlights the dynamic nature of the cementum in mouse molars and underscores the requirement for re-examining its structure and roles. The findings of the present study elucidate the morphophysiological features of cementum and have broader implications for the maintenance of periodontal tissue health.


Subject(s)
Collagen , Dental Cementum , Mice , Animals , Dental Cementum/chemistry , Collagen/analysis , Tooth Root/chemistry , Molar , Image Processing, Computer-Assisted , Periodontal Ligament/chemistry
10.
Regen Ther ; 25: 186-193, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38230307

ABSTRACT

Introduction: The periodontium is a connective tissue which consists of periodontal ligament, alveolar bone, cementum and gingiva. Periodontal ligament (PDL) is a specialized connective tissue that connects the cementum - coating the surface of the tooth - to the alveolar bone. Mohawk homeobox (Mkx) is a transcription factor that is expressed in PDL, that is known to play a vital role in the development and homeostasis of PDL. A detailed functional analysis of Mkx in the periodontal ligament for alveolar bone and cementum metabolism has not yet been conducted. Materials and methods: Alveolar bone height, bone mineral density (BMD) and bone volume fractions (Bone volume/Total volume: BV/TV) were measured and analyzed using micro-computed tomography (Micro-CT) and 3DBon on 7-week-old male wild-type (WT) (Mkx+/+) (n = 10) and Mkx-knockout (Mkx-/-) (n = 6) rats. Hematoxylin and Eosin (H&E), tartrate-resistant acid phosphatase (TRAP), alkaline phosphatase (ALP) and Masson Trichrome staining were performed on 5, 6, and 7-week-old Mkx+/+ and Mkx-/- rats. Cementum surface area and the number of TRAP-positive osteoclasts/mm were quantified, measured, and compared for 5,6 and 7-week-old Mkx+/+ and Mkx-/- rats (n = 3 each). Results: The level of alveolar bone height was significantly higher in Mkx-/- rats than in Mkx+/+ rats. On the other hand, there was significantly less BMD in Mkx-/- alveolar bone. A significant increase in cellular cementum could be observed as early as 5 weeks in Mkx-/- rats when compared with Mkx+/+ rats of the same age. More TRAP-positive osteoclasts were observed in Mkx-/- rats. Conclusion: Our findings further reveal the essential roles of Mkx in the homeostasis of the periodontal tissue. Mkx was found to contribute to bone and cementum metabolism and may be essential to the prevention of diseases such as periodontitis, and could show potential in regenerative treatments.

11.
J Biomed Mater Res A ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38284510

ABSTRACT

Functionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment protein (CAP-p15) adsorbed onto aTiO2 surfaces to promote the deposition of calcium phosphate (CaP) minerals and its impact on the adhesion and viability of human periodontal ligament cells (hPDLCs). aTiO2 surfaces were synthesized by magnetron sputtering technique. The CAP-p15 peptide was physically attached to aTiO2 surfaces and characterized by atomic force microscopy, fluorescence microscopy, and water contact angle measurement. We performed in vitro calcium phosphate nucleation assays using an artificial saliva solution (pH 7.4) to simulate the oral environment. morphological and chemical characterization of the deposits were evaluated by scanning electronic microscopy (SEM) and spectroscopy molecular techniques (Raman Spectroscopy, ATR-FTIR). The aTiO2 surfaces biofunctionalized with CAP-p15 were also analyzed for hPDLCs attachment, proliferation, and in vitro scratch-healing assay. The results let us see that the homogeneous amorphous titanium oxide coating was 70 nanometers thick. The CAP-p15 (1 µg/mL) displayed the ability to adsorb onto the aTiO2 surface, increasing the roughness and maintaining the hydrophilicity of the aTiO2 surfaces. The physical adsorption of CAP-p15 onto the aTiO2 surfaces promoted the precipitation of a uniform layer of crystals with a flake-like morphology and a Ca/P ratio of 1.79. According to spectroscopy molecular analysis, these crystalline deposits correspond to carbonated hydroxyapatite. Regarding cell behavior, the biofunctionalized aTiO2 surfaces improved the adhesion of hPDLCs after 24 h of cell culture, achieving 3.4-fold when compared to pristine surfaces. Moreover, there was an increase in cell proliferation and cell migration processes. Physical adsorption of CAP-p15 onto aTiO2 surfaces enhanced the formation of carbonate hydroxyapatite crystals and promoted the proliferation and migration of human periodontal ligament-derived cells in in vitro studies. This experimental model using the novel bioactive peptide CAP-p15 could be used as an alternative to increasing the osseointegration process of implants.

12.
Arch Oral Biol ; 158: 105870, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091768

ABSTRACT

OBJECTIVES: This study aimed to shed new light on the potential detrimental effects on cementum and adjacent alveolar bone after chronic exposure to amoxicillin. METHODS: Six pregnant adult Albino rats were equally divided into two groups. Saline solution and amoxicillin (100 mg/Kg) were given to rats of control and amoxicillin group, respectively from the 13th to the 21st day of pregnancy. The same treatment was given to the pups till the 42nd day. The cementum of the first molar teeth and the surrounding alveolar bone were examined qualitatively by histopathological and scanning electron microscope, and quantitatively by energy dispersive X-ray spectroscopy and cone beam computed tomography. RESULTS: Amoxicillin group depicted cemental and alveolar bone defects along with resorption lacunae. Statistically significant decreases in calcium and calcium/phosphorus ratio in cementum and in calcium only in alveolar bone were evident (p ≤ 0.05). Overall cementum and alveolar bone densities also showed statistically significant decreases (p ≤ 0.05). CONCLUSION: Chronic amoxicillin administration displayed destructive effects on cementum and the surrounding alveolar bone which may disturb tooth attachment integrity. Therefore, it is recommended to minimize its haphazard usage during pregnancy and early childhood.


Subject(s)
Dental Cementum , Tooth , Child, Preschool , Humans , Adult , Rats , Animals , Dental Cementum/diagnostic imaging , Alveolar Process , Calcium/pharmacology , Molar/pathology
13.
J Periodontal Res ; 59(1): 151-161, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37882070

ABSTRACT

BACKGROUND AND OBJECTIVE: Haploinsufficiency of Runx2 (Runx2+/- ) causes dental anomalies. However, little is known about the involvement of Runx2 in the maintenance of dentin, cementum, and the periodontal ligament (PDL) during adulthood. This study aimed to observe the effects of Runx2+/- on homeostasis of the periodontal complex. MATERIALS AND METHODS: A total of 14 three-month-old Runx2+/- mice and their wild-type littermates were examined using micro-computed tomography, histology, and immunohistochemistry. Phenotypic alterations in the dentin, cementum, and PDL were characterized and quantified. RESULTS: Haploinsufficiency of Runx2 caused cellular changes in the PDL space including reduction of cell proliferation and apoptosis, and irregular attachment of the collagen fibers in the PDL space into the cementum. Absence of continuous thickness of cementum was also observed in Runx2+/- mice. CONCLUSION: Runx2 is critical for cementum integrity and attachment of periodontal fibers. Because of its importance to cementum homeostasis, Runx2 is essential for homeostasis of periodontal complex.


Subject(s)
Dental Cementum , Periodontal Ligament , Mice , Animals , X-Ray Microtomography , Immunohistochemistry , Core Binding Factor Alpha 1 Subunit/genetics
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006382

ABSTRACT

@#A cemental tear is defined as an incomplete or complete detachment of the cementum along the dentino-cemental junction (CDJ) or the incremental line within the body of the cementum, which can also involve part of the root dentine adjacent to the cementum. The pathogenesis of cemental tears is not fully elucidated. From the literature review, possible predisposing factors were identified, including tooth type, sex, age, periodontitis, previous periodontal treatment or root canal treatment, history of dental trauma, and occlusal trauma or excessive occlusal force. The morphology of cemental tears can be either piece-shaped or U-shaped, which usually contributes to periodontal and periapical breakdown. Clinically, cemental tears have a unitary periodontal pocket and present with symptoms mimicking localized periodontitis, apical periodontitis, and vertical root fractures. Imaging examination is of great significance for the clinical diagnosis of cemental tears, which often manifest as thin ‘prickle-like’ radiopaque masses located longitudinally adjacent to the affected root surface. Exploratory surgery is needed in some cases. Although intraoperative cemental fragments and cemental lines on the root surface can assist in the diagnostic process, histopathology examination is the gold standard for the diagnosis of cemental tears. The treatment methods vary depending on the timing of the correct diagnosis and the clinical or radiological manifestations. With the development of regenerative biomaterials and the development of intentional replantation, an increasing number of affected teeth can survive for a long time. The aim of this review is to systematically describe the biological basis and predisposing factors, clinical features, radiographic and histological characteristics, diagnosis and clinical management of cemental tears, and treatment outcomes to help make a clear diagnosis and develop a personalized treatment plan.

15.
J Periodontal Res ; 59(2): 408-419, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38126232

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the thickness of acellular extrinsic fibre cementum (AEFC) at four root positions of anterior and posterior teeth with special focus on functional aspects. Furthermore, the correlations between cementum thickness and chronological age and sex are investigated. BACKGROUND: While numerous studies confirm continuous cementum apposition with age, masticatory forces as well as physiological and orthodontically induced tooth movements also have the potential to affect tooth cementum thickness. MATERIALS AND METHODS: Undecalcified teeth were embedded in resin and transverse-sectioned in the cervical third of the root. Two sections per root were selected, and digital images at four positions were obtained (mesial, distal, oral, and vestibular) using light microscopy. The AEFC thickness of 99 teeth (anterior = 66, posterior = 33, male = 54, female = 45) were measured in both sections. The differences in mean values between root positions and the association of root position variation with tooth type, age, sex, and subject as well as the overall effects of age and sex were analysed using a mixed model. RESULTS: First incisors and canines showed the greatest mean AFEC thickness, in contrast to premolars which had the lowest values. Differences were found across the four root positions, with a pattern varying considerably between anterior and posterior teeth and between maxilla and mandible in the anterior teeth. An interaction between root position and subject pointed to the existence of an individual component in the variation of AEFC thickness across the four root positions. There was an age trend with an almost linear increase in cementum thickness of 1 µm per year. Overall, females tended to exhibit a significantly lesser AEFC thickness compared to males. CONCLUSIONS: Distinct differences in the pattern of thickness values across the four root positions in anterior and posterior teeth support the assumption that the AEFC is strongly affected by functional processes. In addition to sex-specific differences and age-related trends, the root position variation of AEFC thickness varies from individual to individual.


Subject(s)
Dental Cementum , Tooth Root , Humans , Male , Female , Dental Cementum/diagnostic imaging , Dental Cementum/physiology , Tooth Root/diagnostic imaging , Bicuspid , Incisor , Maxilla/diagnostic imaging
16.
Dent J (Basel) ; 11(12)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38132407

ABSTRACT

The management of root caries remains a challenge for clinicians due to its unique anatomical location and structure. There is increasing interest in utilising artificial root caries lesions to develop new strategies for remineralisation. An ideal protocol has not yet been agreed upon. The aim of this review is to provide a structured overview of previously reported in vitro root caries models. The literature was screened and mined for information mainly on substrate selection, model systems utilised, and variables used in the models. Human roots (60%) were the most frequently used substrates, followed by bovine roots (40%). Chemical models (69%) were the most frequently utilised model systems, followed by microbiological models (27%), to form root caries lesions. Acetate buffer solution (80%), pH 5.0 or above (40%), and a demineralisation time of five days (25%) were the common variables used in the chemical systems, while mono-species biofilm was most frequently used (73%) in microbiological models and Streptococcus mutans was the most common bacterial strain utilised in these models (80%). This review highlights the variability amongst the experimental approaches, discusses the advantages and limitations of these approaches, and emphasises that standardisation of experimental conditions along with sustained research will benefit root caries research.

17.
J Funct Biomater ; 14(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37998114

ABSTRACT

Periodontitis is a destructive inflammatory disease characterized by microbial infection that damages the tissues supporting the tooth (alveolar bone, gingiva, periodontal ligament, and cementum), ultimately resulting in the loss of teeth. The ultimate goal of periodontal therapy is to achieve the regeneration of all of the periodontal tissues. Thus, tissue engineering approaches have been evolving from simple membranes or grafts to more complex constructs. Hydrogels are highly hydrophilic polymeric networks with the ability to simulate the natural microenvironment of cells. In particular, hydrogels offer several advantages when compared to other forms of scaffolds, such as tissue mimicry and sustained drug delivery. Moreover, hydrogels can maintain a moist environment similar to the oral cavity. Hydrogels allow for precise placement and retention of regenerative materials at the defect site, minimizing the potential for off-target effects and ensuring that the treatment is focused on the specific defect site. As a mechanism of action, the sustained release of drugs presented by hydrogels allows for control of the disease by reducing the inflammation and attracting host cells to the defect site. Several therapeutic agents, such as antibiotics, anti-inflammatory and osteogenic drugs, have been loaded into hydrogels, presenting effective benefits in periodontal health and allowing for sustained drug release. This review discusses the causes and consequences of periodontal disease, as well as the advantages and limitations of current treatments applied in clinics. The main components of hydrogels for periodontal regeneration are discussed focusing on their different characteristics, outcomes, and strategies for drug delivery. Novel methods for the fabrication of hydrogels are highlighted, and clinical studies regarding the periodontal applications of hydrogels are reviewed. Finally, limitations in current research are discussed, and potential future directions are proposed.

18.
Forensic Sci Int Genet ; 67: 102945, 2023 11.
Article in English | MEDLINE | ID: mdl-37844374

ABSTRACT

Teeth are one of the body tissues remaining after severe decomposition from which a DNA profile can be obtained to aid in human identification. Currently, the standard approach to isolate DNA from teeth requires pulverizing the entire tooth. This destructive approach compromises any further morphological or anthropological study. We report on two methods of DNA isolation that minimizes destruction of the tooth when accessing the DNA within pulp and cementum. Forty-nine teeth, removed as part of normal dental procedures, were buried for up to 92 days, with a further nine teeth acting as unburied controls. Additionally, four teeth samples collected during a forensic examination were included in this study. The two processes were: using a fine drill to access the pulp from the crown and then using endodontic files to collect the biological material; and using a sterile blade to scrape the cementum. It was found that the samples collected from the cementum had greater DNA quality compared to those samples obtained from the pulp. Microbial activity was found to play a role in the degradation of the nuclear material, reducing DNA yields from pulp. DNA profiling data from 24 loci, including 22 STR markers, indicated that multi-rooted teeth provided better DNA quantity and quality than those with a single root. The DNA quantity obtained from pulp samples of teeth which exhibited cavities was adversely affected, although this DNA loss was not from samples collected from the cementum of teeth in similar condition. Obtaining samples from DNA profiling from the cementum was found to be ideal if the morphological preservation of the tooth is required. Obtaining pathogen DNA is of interest when an occlusal approach to retrieve pulp may serve as a good alternative to prepare DNA without destruction of the tooth structure.


Subject(s)
Dental Cementum , Tooth , Humans , Dental Pulp , DNA/genetics , Tooth Crown
19.
FASEB J ; 37(11): e23241, 2023 11.
Article in English | MEDLINE | ID: mdl-37847512

ABSTRACT

Cementum, a constituent part of periodontal tissues, has important adaptive and reparative functions. It serves to attach the tooth to alveolar bone and acts as a barrier delimit epithelial growth and bacteria evasion. A dynamic and highly responsive cementum is essential for maintaining occlusal relationships and the integrity of the root surface. It is a thin layer of mineralized tissue mainly produced by cementoblasts. Cementoblasts are osteoblast-like cells essential for the restoration of periodontal tissues. In recent years, glucose metabolism has been found to be critical in bone remodeling and osteoblast differentiation. However, the glucose metabolism of cementoblasts remains incompletely understood. First, immunohistochemistry staining and in vivo tracing with 18 F-fluorodeoxyglucose (18 F-FDG) revealed significantly higher glucose metabolism in cementum formation. To test the bioenergetic pathways of cementoblast differentiation, we compared the bioenergetic profiles of mineralized and unmineralized cementoblasts. As a result, we observed a significant increase in the consumption of glucose and production of lactate, coupled with the higher expression of glycolysis-related genes. However, the expression of oxidative phosphorylation-related genes was downregulated. The verified results were consistent with the RNA sequencing results. Likewise, targeted energy metabolomics shows that the levels of glycolytic metabolites were significantly higher in the mineralized cementoblasts. Seahorse assays identified an increase in glycolytic flux and reduced oxygen consumption during cementoblast mineralization. Apart from that, we also found that lactate dehydrogenase A (LDHA), a key glycolysis enzyme, positively regulates the mineralization of cementoblasts. In summary, cementoblasts mainly utilized glycolysis rather than oxidative phosphorylation during the mineralization process.


Subject(s)
Dental Cementum , Lactic Acid , Cell Differentiation , Immunohistochemistry , Glucose
20.
J Dent Res ; 102(12): 1376-1386, 2023 11.
Article in English | MEDLINE | ID: mdl-37735908

ABSTRACT

Orthodontically induced inflammatory root resorption (OIIRR) is the major iatrogenic complication of orthodontic treatment, seriously endangering tooth longevity and impairing masticatory function. Osteoclasts are thought to be the primary effector cells that initiate the pathological process of OIIRR; however, the cellular and molecular mechanisms responsible for OIIRR remain unclear. Our previous studies revealed that cementocytes, the major mechanically responsive cells in cementum, respond to compressive stress to activate and influence osteoclasts locally. For this study, we hypothesized that the sphingosine-1-phosphate (S1P) signaling pathway, a key mechanotransduction pathway in cementocytes, may regulate osteoclasts under the different magnitudes of either physiologic compressive stress that causes tooth movement or pathologic stress that causes OIIRR. Here, we show a biphasic effect of higher compression force stimulating the synthesis and secretion of S1P, whereas lower compression force reduced signaling in IDG-CM6 cementocytes. Using conditioned media from force-loaded cementocytes, we verified the cell-to-cell communication between cementocytes and osteoclasts and show that selective knockdown of S1PR1 and Rac1 plays a role in cementocyte-driven osteoclastogenesis via the S1P/S1PR1/Rac1 axis. Most importantly, the use of inhibitors of this axis reduced or prevented the pathological process of OIIRR. The intercellular communication mechanisms between cementocytes and osteoclasts may serve as a promising therapeutic target for OIIRR.


Subject(s)
Mechanotransduction, Cellular , Root Resorption , Humans , Osteogenesis , Dental Cementum/metabolism , Root Resorption/metabolism , Signal Transduction , Tooth Movement Techniques , Sphingosine-1-Phosphate Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...