Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.126
Filter
1.
Nutrients ; 16(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999902

ABSTRACT

Cereals are the basis of much of the world's daily diet. Recently, there has been considerable interest in the beneficial properties of wholegrains due to their content of phytochemicals, particularly polyphenols. Despite this, the existing data on polyphenolic composition of cereal-based foods reported in the most comprehensive databases are still not updated. Many cereal-based foods and phenolic compounds are missing, including pigmented ones. Observational epidemiological studies reporting the intake of polyphenols from cereals are limited and inconsistent, although experimental studies suggest a protective role for dietary polyphenols against cardiovascular disease, diabetes, and cancer. Estimating polyphenol intake is complex because of the large number of compounds present in foods and the many factors that affect their levels, such as plant variety, harvest season, food processing and cooking, making it difficult matching consumption data with data on food composition. Further, it should be taken into account that food composition tables and consumed foods are categorized in different ways. The present work provides an overview of the available data on polyphenols content reported in several existing databases, in terms of presence, missing and no data, and discusses the strengths and weaknesses of methods for assessing cereal polyphenol consumption. Furthermore, this review suggests a greater need for the inclusion of most up-to-date cereal food composition data and for the harmonization of standardized procedures in collecting cereal-based food data and adequate assessment tools for dietary intake.


Subject(s)
Edible Grain , Polyphenols , Polyphenols/analysis , Humans , Edible Grain/chemistry , Epidemiologic Studies , Diet
2.
Plant Dis ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017583

ABSTRACT

Wheat (Triticum aestivum L.) is the predominant grain crop and plays a pivotal role in grain production in Xinjiang Uygur Autonomous Region (XUAR), China. Its cultivated area constitutes approximately half of the total sown area of grain crops in XUAR, with 1.14 million hectares in 2021. Fusarium crown rot (FCR) of wheat, caused by Fusarium culmorum (W.G. Smith) Sacc., is one of the most devastating soil-borne diseases known to seriously reduce grain yield (Ma et al. 2024; Saad et al. 2023). In 2016, FCR of wheat, caused by F. culmorum, was firstly identified in Henan Province, China (Li et al. 2016). In June 2023, during the investigation of FCR of wheat in Aksu Prefecture, XUAR, FCR on winter wheat (cv. Xindong 20) was found (82.761349°E, 41.612202°N). The grain-filling period for winter wheat in early June coincided with a period of high temperatures and water demand in Aksu Prefecture. Approximately 8% of the Xindong 20 wheat plants exhibited symptoms of white heads and browning at the stem base, with the disease present in 82% of the wheat fields surveyed. To identify the pathogens, 20 samples of diseased stem basal tissue, each 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, followed by three rinses with sterile water. These samples were then plated onto potato dextrose agar (PDA) medium at 25°C for 5 days. A total of 17 isolates with consistent morphological characteristics were obtained using single-spore technique, with an isolation rate of 85%. The isolated strains exhibited rapid growth on PDA, producing fluffy, pale-yellow hyphae, and accumulating a pale-yellow to dark red pigment on the bottom of the medium. On carnation leaf agar (CLA), these strains formed orange colonies due to the aggregation of a large number of macroconidia. The macroconidia were short and thick, with three to four septa and rounded apical cell, averaging 31.94 to 40.96 × 5.62 to 6.71 µm (Magnification of ×400). Microconidia were not observed. These morphological characters were consistent with those of F. culmorum (Leslie and Summerell. 2006). Two isolates (D-9 and D-11) were selected for molecular identification. The EF-1α gene fragment was amplified using primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') as previously described by O'Donnell et al. (1998). The two 665 bp PCR products were sequenced and submitted to GenBank (GenBank Accession No: PP763247 and PP763248) with 99. 7% identity to the published F. culmorum sequences (e.g., OP985478, OP985477, MG195126, KX702638). The molecular identification was further confirmed by F. culmorum species-specific PCR primers FcOIF/FcOIR (Nicholson et al. 1998). The expected PCR products of 553 bp were produced only in F. culmorum. Strains D-9 and D-11 were used to conduct the pathogenicity experiment on 7-day-old winter wheat (cv. Xindong 20) using drip in the lower stem inoculation method with a 10-µl of 106 macroconidia ml-1 suspension, and the control 7-day-old winter wheat were treated with sterile water (Xu et al. 2017). The experiments were replicated five times in a greenhouse at temperatures ranging from 20℃ to 25℃. After 4 weeks, all inoculated wheat seedlings showed stem base browning or even death. No symptoms were observed on the control plants. The fungus was reisolated from all inoculated wheat plants by the method described above and identified by morphological and PCR amplification using F. culmorum species-specific primers FcOIF/FcOIR. No F. culmorum was isolated from the control wheat plants, fulfilling Koch's postulates. To the best of our knowledge, this is the first report of F.culmorum causing FCR on winter wheat in XUAR, China. Considering wheat is the predominant grain crop and plays a pivotal role in grain production in China, necessary measures should be taken to prevent the spread of F. culmorum to other regions.

4.
Nutrients ; 16(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999740

ABSTRACT

Cereals are an important source of nutrients, especially used in complementary feeding. The objective of this study is to review the nutritional composition of cereal-based foods for infants from 4 months and toddlers that are offered in Spain and Ecuador, countries selected because of the opportunity to work in them, and due to their socio-economic differences (industrialized and developing countries, respectively). The number of these products was 105 cereals in Spain and 22 in Ecuador. The products were classified as gluten-free cereals, five cereals, eight cereals, multigrain cereals, and cookies. A 25 g serving was used to determine the percentage in which the samples analyzed can cover the Reference Nutrient Intake (RNI) for micronutrients in infants from 7 months and toddlers according to the European Food Safety Authority (EFSA). Nutritional information per 100 g of dry product was collected according to medium, minimum, and maximum units, and nutrient density was calculated. The age range in which these products are recommended is different in both countries. The nutritional composition presents some differences; Spanish cereals show a lower content of sodium, added sugars, hydrolyzed cereals, and maltodextrin than Ecuadorian cereals. Commercialized cereals could contribute to satisfying the nutritional needs of infants and toddlers; however, they can also be a source of non-recommended components.


Subject(s)
Edible Grain , Infant Food , Nutritive Value , Ecuador , Infant , Humans , Spain , Infant Food/analysis , Infant Nutritional Physiological Phenomena , Recommended Dietary Allowances , Micronutrients/analysis
5.
Plant Dis ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956954

ABSTRACT

Epicoccum sorghinum is a notorious fungal pathogen that causes leaf spot symptoms on a wide range of plants, leading to devastating losses in crop production and quality. Here, all reports regarding the occurrence and management of E. sorghinum are covered for the first time. E. sorghinum has been detected in tropical and subtropical climate areas during the rainy season, mainly from March to August, since 2016. Although E. sorghinum shows broad host spectrum, the disease incidence is especially notorious in cereal crops and ornamental plants, suggesting that these plants are especially susceptible. Control methods based on synthetic fungicides, plant extracts, and microbial biocontrol agents have been reported. However, most agents were applied using only in vitro conditions, restricting the information about their actual applicability in field conditions. Additionally, E. sorghinum can colonize cereal grains and synthesize the carcinogenic mycotoxin tenuazonic acid, posing an enormous hazard for human health. Furthermore, although E. sorghinum is an emerging pathogen that is currently causing yield penalties in important crops, there is lack of information about its pathogenic mechanisms and virulence factors, and there is currently no commercial antifungal agent to manage E. sorghinum. Collectively, it is imperative to conduct in vivo studies to determine the efficacy of antifungal agents and the most effective methods of application in order to develop suitable management strategies against E. sorghinum.

6.
Foods ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998619

ABSTRACT

Globally, type 2 diabetes (T2D) and Cancer are the major causes of morbidity and mortality worldwide and are considered to be two of the most significant public health concerns of the 21st century. Over the next two decades, the global burden is expected to increase by approximately 60%. Several observational studies as well as clinical trials have demonstrated the health benefits of consuming whole grains to lower the risk of several chronic non-communicable diseases including T2D and cancer. Cereals grains are the primary source of energy in the human diet. The most widely consumed pseudo cereals include (quinoa, amaranth, and buckwheat) and cereals (wheat, rice, and corn). From a nutritional perspective, both pseudo cereals and cereals are recognized for their complete protein, essential amino acids, dietary fibers, and phenolic acids. The bran layer of the seed contains the majority of these components. Greater intake of whole grains rather than refined grains has been consistently linked to a lower risk of T2D and cancer. Due to their superior nutritional compositions, whole grains make them a preferred choice over refined grains. The modulatory effects of whole grains on T2D and cancer are also likely to be influenced by several mechanisms; some of these effects may be direct while others involve altering the composition of gut microbiota, increasing the abundance of beneficial bacteria, and lowering harmful bacteria, increasing insulin sensitivity, lowering solubility of free bile acids, breaking protein down into peptides and amino acids, producing short-chain fatty acids (SCFAs), and other beneficial metabolites that promote the proliferation in the colon which modulate the antidiabetic and anticancer pathway. Thus, the present review had two aims. First, it summarized the recent knowledge about the nutritional composition and bioactive acids in pseudo cereals (quinoa, amaranth, and buckwheat) and cereals (wheat, rice, and corn); the second section summarized and discussed the progress in recent human studies, such as observational (cross-sectional studies, case-control studies, and cohort studies) and intervention studies to understand their role in T2D and cancer including the potential mechanism. Overall, according to the scientific data, whole grain consumption may reduce the incidence of T2D and cancer. Future studies should carry out randomized controlled trials to validate observational results and establish causality. In addition, the current manuscript encourages researchers to investigate the specific mechanisms by which whole grains exert their beneficial effects on health by examining the effects of different types of specific protein, dietary fibers, and phenolic acids that might help to prevent or treat T2D and cancer.

7.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928864

ABSTRACT

Many staple foods originate from durum wheat and its milling products; because of this, it is very important to know their characteristics. This study investigates elemental contents in these products and if differences exist because of organic farming. The concentrations of 28 elements in the whole seed and in milling products, that is, bran, semolina and flour, of durum wheat, were determined through ICP-OES. The wheats were grown under conventional or organic agronomic practices to verify the possibility of discriminating, using the elemental content, between products coming from one or the other practice. The elements were more abundant in the outer layer of the seed, the bran, but most of them were also present in the others. Traces of Sb were present only in 3% of the samples, while traces of Tl were detected in approximately half of the seed and bran samples but not in other samples. The absence of an element was more characteristic of specific products, e.g., most semolina and flour lacked Co, while other elements showed small differences between products from organic and conventional cultivation or between different milling products, which was the case, for example, for traces of Ag, B, and V. The concentrations of these elements were coupled with multivariate discriminant analysis, specifically PLS-DA, to identify the cultivation provenance of the milled products. A few elements, although different for each product, are sufficient to attain precision and accuracy of classification close to 1; small differences exist for different products. The worst is flour, where the predicted precision and accuracy are 0.92, although using only three elements: B, K, and Se. Semolina attains perfect prediction when also adding to the three previous elements, Ag, Cd, and Cu. Further elements are necessary for bran, while Fe and Mg replace K and Ag to classify seeds. In conclusion, five elements, B, Cd, Cu, K, and Se, are the most important in distinguishing between organic and conventional agriculture; these elements also permit some differentiation among products. The method could help in fraud prevention.

8.
Appl Radiat Isot ; 211: 111401, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38925037

ABSTRACT

Metallic elemental analyses are needed to complete food composition databases, in which humans consume food to obtain energy and be able to do everyday work. The study aimed to investigate the concentrations of some metals (K, Al, Fe, Cu, Cd, and Pb) in teff and barley samples using flame atomic absorption spectroscopy (FAAS) techniques. The samples, weighing 0.5 grams each, were subjected to wet digestions using a mixture ratio of 7:3(vol/vol) of HNO3 to H2O2 reagents at 90°c for 3:00 h under optimal conditions. The reagents were used to digest food samples for the presence of specific metallic elements. Flame Atomic Absorption Spectroscopy (FAAS) was used to analyze the mineral contents of the digested samples. The results demonstrated that the relative concentrations obtained in these cereal crops are different from one another. The concentration of metallic elements in mg/kg of K (2709.6±3.3), Al (952.3±4.2), Fe (320.9±4.8), Cu (25.3±3.2), Pb (ND) and Cd (ND) for red teff, K (3053.7±1.6), Al (1095.2±4.2), Fe (271.6±4.8), Cu (60.1±3.2), Pb (ND) and Cd (ND) for white teff while K (4333.3±3.2), Al (2595.2±4.2), Fe (74.0±0.00), Cu (10.5±1.8), Pb (ND) and Cd (ND) for barley. The high content of potassium and aluminum metallic elements was found in barley cereals. The results of this study will be useful in enriching the database of Ethiopian cereals as foods, advancing the knowledge of cereals and deepening the scientific understanding of the cereals.

9.
Front Plant Sci ; 15: 1380429, 2024.
Article in English | MEDLINE | ID: mdl-38919825

ABSTRACT

Enhancing grain yield is a primary goal in the cultivation of major staple crops, including wheat. Recent research has focused on identifying the physiological and molecular factors that influence grain weight, a critical determinant of crop yield. However, a bottleneck has arisen due to the trade-off between grain weight and grain number, whose underlying causes remain elusive. In a novel approach, a wheat expansin gene, TaExpA6, known for its expression in root tissues, was engineered to express in the grains of the spring wheat cultivar Fielder. This modification led to increases in both grain weight and yield without adversely affecting grain number. Conversely, a triple mutant line targeting the gene TaGW2, a known negative regulator of grain weight, resulted in increased grain weight but decreased grain number, potentially offsetting yield gains. This study aimed to evaluate the two aforementioned modified wheat genotypes (TaExpA6 and TaGW2) alongside their respective wild-type counterparts. Conducted in southern Chile, the study employed a Complete Randomized Block Design with four replications, under well-managed field conditions. The primary metrics assessed were grain yield, grain number, and average grain weight per spike, along with detailed measurements of grain weight and dimensions across the spike, ovary weight at pollination (Waddington's scale 10), and post-anthesis expression levels of TaExpA6 and TaGW2. Results indicated that both the TaExpA6 and the triple mutant lines achieved significantly higher average grain weights compared to their respective wild types. Notably, the TaExpA6 line did not exhibit a reduction in grain number, thereby enhancing grain yield per spike. By contrast, the triple mutant line showed a reduced grain number per spike, with no significant change in overall yield. TaExpA6 expression peaked at 10 days after anthesis (DAA), and its effect on grain weight over the WT became apparent after 15 DAA. In contrast, TaGW2 gene disruption in the triple mutant line increased ovary size at anthesis, leading to improved grain weight above the WT from the onset of grain filling. These findings suggest that the trade-off between grain weight and number could be attributed to the overlapping of the critical periods for the determination of these traits.

10.
Meat Sci ; 216: 109549, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38878409

ABSTRACT

This study compared carcasses as well as the quality and mineral concentration of meat from lambs extensively grazing perennial wheat with clover (PW + C), serradella (PW + S), lucerne (PW + L), or a mineral salt supplement (PW + Min). A split-plot design was used, wherein 3 crossbred ewe lambs (n = 72 in total) (sub-plots) grazed each of 4 forage types (plots), that were replicated across 6 locations (blocks). The feeding study concluded after 96 d, when all the lambs were slaughtered. The left longissimus lumborum muscles (LL) were collected and wet aged for either 5 or 56 d post-mortem. Lambs grazing PW + Min were found to produce carcasses with lower dressing percentage values to those grazing the other forage types (P = 0.037). The LL of lambs grazing PW + L had the lowest crude protein values (P = 0.015). Forage type by ageing period interactions did not affect meat quality. The 56 d ageing period resulted in higher purge loss (P < 0.001) and TVB-N values (P < 0.001) and a decline in shear force (P < 0.001) compared to the 5 d ageing period. The other carcass and meat quality parameters were not affected by forage type; including hot carcass weight, pH decline parameters, eye muscle area, cooking loss, intramuscular fat, sarcomere length, colour stability, and concentrations of calcium, iron, magnesium, sodium, and zinc in the LL. These findings confirm that perennial cereal production systems, that include legume forages with contrasting protein, energy, and micronutrient profiles, can deliver comparable lamb carcasses and meat quality.

11.
Front Plant Sci ; 15: 1298791, 2024.
Article in English | MEDLINE | ID: mdl-38911980

ABSTRACT

Capitalizing on the widespread adoption of smartphones among farmers and the application of artificial intelligence in computer vision, a variety of mobile applications have recently emerged in the agricultural domain. This paper introduces GranoScan, a freely available mobile app accessible on major online platforms, specifically designed for the real-time detection and identification of over 80 threats affecting wheat in the Mediterranean region. Developed through a co-design methodology involving direct collaboration with Italian farmers, this participatory approach resulted in an app featuring: (i) a graphical interface optimized for diverse in-field lighting conditions, (ii) a user-friendly interface allowing swift selection from a predefined menu, (iii) operability even in low or no connectivity, (iv) a straightforward operational guide, and (v) the ability to specify an area of interest in the photo for targeted threat identification. Underpinning GranoScan is a deep learning architecture named efficient minimal adaptive ensembling that was used to obtain accurate and robust artificial intelligence models. The method is based on an ensembling strategy that uses as core models two instances of the EfficientNet-b0 architecture, selected through the weighted F1-score. In this phase a very good precision is reached with peaks of 100% for pests, as well as in leaf damage and root disease tasks, and in some classes of spike and stem disease tasks. For weeds in the post-germination phase, the precision values range between 80% and 100%, while 100% is reached in all the classes for pre-flowering weeds, except one. Regarding recognition accuracy towards end-users in-field photos, GranoScan achieved good performances, with a mean accuracy of 77% and 95% for leaf diseases and for spike, stem and root diseases, respectively. Pests gained an accuracy of up to 94%, while for weeds the app shows a great ability (100% accuracy) in recognizing whether the target weed is a dicot or monocot and 60% accuracy for distinguishing species in both the post-germination and pre-flowering stage. Our precision and accuracy results conform to or outperform those of other studies deploying artificial intelligence models on mobile devices, confirming that GranoScan is a valuable tool also in challenging outdoor conditions.

12.
Mol Ecol Resour ; : e13983, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38840549

ABSTRACT

In the face of evolving agricultural practices and climate change, tools towards an integrated biovigilance platform to combat crop diseases, spore sampling, DNA diagnostics and predictive trajectory modelling were optimized. These tools revealed microbial dynamics and were validated by monitoring cereal rust fungal pathogens affecting wheat, oats, barley and rye across four growing seasons (2015-2018) in British Columbia and during the 2018 season in southern Alberta. ITS2 metabarcoding revealed disparity in aeromycobiota diversity and compositional structure across the Canadian Rocky Mountains, suggesting a barrier effect on air flow and pathogen dispersal. A novel bioinformatics classifier and curated cereal rust fungal ITS2 database, corroborated by real-time PCR, enhanced the precision of cereal rust fungal species identification. Random Forest modelling identified crop and land-use diversification as well as atmospheric pressure and moisture as key factors in rust distribution. As a valuable addition to explain observed differences and patterns in rust fungus distribution, trajectory HYSPLIT modelling tracked rust fungal urediniospores' northeastward dispersal from the Pacific Northwest towards southern British Columbia and Alberta, indicating multiple potential origins. Our Canadian case study exemplifies the power of an advanced biovigilance toolbox towards developing an early-warning system for farmers to detect and mitigate impending disease outbreaks.

13.
BMC Plant Biol ; 24(1): 487, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824521

ABSTRACT

Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.


Subject(s)
Charcoal , Chlorophyll , Germination , Potassium , Salt Stress , Sodium , Triticum , Triticum/growth & development , Triticum/metabolism , Triticum/drug effects , Triticum/physiology , Germination/drug effects , Charcoal/pharmacology , Chlorophyll/metabolism , Potassium/metabolism , Sodium/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Soil/chemistry , Edible Grain/growth & development , Edible Grain/drug effects , Edible Grain/metabolism , Pakistan , Salinity
14.
Article in English | MEDLINE | ID: mdl-38838189

ABSTRACT

In order to assess compliance with maximum residue levels in foods and evaluate the exposure of the Danish population to pesticides, a comprehensive monitoring programme was conducted. The work from 2012-2017 involved testing pesticide residues in fruits, vegetables, cereals, animal product and processed commodities. The sampling strategy, mainly based on exposure calculations and previous findings, involved the collection of 13,492 samples primarily from fresh conventional and organic produces on the Danish market. The origin of the samples varied, with 34% being of Danish origin and 67% originating from EU and non-EU countries. The results revealed that residues in conventionally grown produce were detected in 54% of the fruit and vegetable samples, and 30% of the cereal samples. Additionally, residues above the maximum residue limits were found in 1.8% of these samples, most frequently in fruits. As previous years, more residues were found in samples of foreign origin compared to samples of Danish origin. Compared to earlier findings more than 40 pesticides were detected for the first time and including boscalid, imidacloprid, thiacloprid, etofenprox, and spinosad, all detected more than 100 times. The data shows that detection of PFAS pesticides has increased dramatically, from 24 in 2006 to 412 in 2022.

15.
Brief Funct Genomics ; 23(3): 193-213, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751352

ABSTRACT

Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.


Subject(s)
Crops, Agricultural , Starch Synthase , Amylopectin/metabolism , Amylopectin/genetics , Amylose/metabolism , Amylose/genetics , Crops, Agricultural/genetics , Genotype , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism , Starch/genetics , Starch/biosynthesis , Starch Synthase/genetics , Starch Synthase/metabolism
16.
Methods Protoc ; 7(3)2024 May 02.
Article in English | MEDLINE | ID: mdl-38804332

ABSTRACT

The European Union's recent decision to renew the authorization for the use of glyphosate until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity or otherwise for humans. Glyphosate is a chemical of which millions of tons have been used in the last 50 years worldwide to dry out weeds in cultivated fields and greenhouses and on roadsides. Concern has been raised in many areas about its possible presence in the food chain and its consequent adverse effects on health. Both aspects that argue in favor of toxicity and those that instead may indicate limited toxicity of glyphosate are discussed here. The widespread debate that has been generated requires further investigations and field measurements to understand glyphosate's fate once dispersed in the environment and its concentration in the food chain. Hence, there is a need for validated analytical methods that are available to analysts in the field. In the present review, methods for the analytical determination of glyphosate and its main metabolite, AMPA, are discussed, with a specific focus on chromatographic techniques applied to cereal products. The experimental procedures are explained in detail, including the cleanup, derivatization, and instrumental conditions, to give the laboratories involved enough information to proceed with the implementation of this line of analysis. The prevalent chromatographic methods used are LC-MS/MS, GC-MS/SIM, and GC-MS/MS, but sufficient indications are also given to those laboratories that wish to use the better performing high-resolution MS or the simpler HPLC-FLD, HPLC-UV, GC-NPD, and GC-FPD techniques for screening purposes. The concentrations of glyphosate from the literature measured in wheat, corn, barley, rye, oats, soybean, and cereal-based foods are reported, together with its regulatory status in various parts of the world and its accumulation mechanism. As for its accumulation in cereals, the available data show that glyphosate tends to accumulate more in wholemeal flours than in refined ones, that its concentration in the product strictly depends on the treatment period (the closer it is to the time of harvesting, the higher the concentration), and that in cold climates, the herbicide tends to persist in the soil for a long time.

17.
Food Chem ; 454: 139715, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795619

ABSTRACT

Starches-rich and protein-rich cereal samples commonly need tedious sample preparation steps before instrumental analysis. This study developed a miniaturized centrifugal integrated cold-induced phase separation (CIPS) method for convenient sample preparation. A small-sized centrifuge tube (2 mL) and a low-temperature centrifuge, both of which are easily accessible, make up the basic components of the system. Unlike conventional sample preparation methods that need a step-by-step extraction, enrichment, purification, and centrifugation, this centrifugal integrated CIPS method can be performed by a one-step combination protocol under a low-temperature centrifuge. As a proof-of-concept study, satisfactory recoveries and enrichment factors were demonstrated for the extraction of fumonisins and ochratoxins from cereals. A sensitive and selective quantification method was yielded by combining LC-HRMS using tSIM acquisition mode, with good linearity (R2 > 0.998), accuracy (82.9-106.5%), and precision (<13.4%). This strategy is convenient, low-cost, repeatable, and easy to semi-automate, further expanding the extraction potential for other acidic mycotoxins.


Subject(s)
Edible Grain , Food Contamination , Fumonisins , Edible Grain/chemistry , Food Contamination/analysis , Fumonisins/analysis , Fumonisins/isolation & purification , Centrifugation , Proof of Concept Study , Mycotoxins/isolation & purification , Mycotoxins/analysis , Mycotoxins/chemistry , Chromatography, High Pressure Liquid , Phase Separation
18.
Toxins (Basel) ; 16(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38787057

ABSTRACT

Breakfast cereals play a crucial role in children's diets, providing essential nutrients that are vital for their growth and development. Children are known to be more susceptible than adults to the harmful effects of food contaminants, with mycotoxins being a common concern in cereals. This study specifically investigated aflatoxin B1 (AFB1), enniatin B (ENNB), and sterigmatocystin (STG), three well-characterized mycotoxins found in cereals. The research aimed to address existing knowledge gaps by comprehensively evaluating the bioaccessibility and intestinal absorption of these three mycotoxins, both individually and in combination, when consumed with breakfast cereals and milk. The in vitro gastrointestinal method revealed patterns in the bioaccessibility of AFB1, ENNB, and STG. Overall, bioaccessibility increased as the food progressed from the stomach to the intestinal compartment, with the exception of ENNB, whose behavior differed depending on the type of milk. The ranking of overall bioaccessibility in different matrices was as follows: digested cereal > cereal with semi-skimmed milk > cereal with lactose-free milk > cereal with soy beverage. Bioaccessibility percentages varied considerably, ranging from 3.1% to 86.2% for AFB1, 1.5% to 59.3% for STG, and 0.6% to 98.2% for ENNB. Overall, the inclusion of milk in the ingested mixture had a greater impact on bioaccessibility compared to consuming the mycotoxins as a single compound or in combination. During intestinal transport, ENNB and STG exhibited the highest absorption rates when ingested together. This study highlights the importance of investigating the combined ingestion and transport of these mycotoxins to comprehensively assess their absorption and potential toxicity in humans, considering their frequent co-occurrence and the possibility of simultaneous exposure.


Subject(s)
Breakfast , Digestion , Edible Grain , Food Contamination , Intestinal Absorption , Mycotoxins , Edible Grain/chemistry , Mycotoxins/analysis , Humans , Food Contamination/analysis , Animals , Child , Milk/chemistry , Biological Availability
19.
Plant Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698521

ABSTRACT

Fusarium pseudograminearum is an important plant pathogen that invades many crops (Zhang et al. 2018). Since it was first discovered in Australia in 1951, F. pseudograminearum has been reported in many countries and regions and caused huge economic losses (Burgess et al. 2001). In 2012, crown rot of wheat caused by F. pseudograminearum was discovered for the first time in Henan Province, China (Li et al. 2012). Wheat (Triticum aestivum L.) is one of the most important food crops in Xinjiang Uygur Autonomous Region (XUAR), with 1.07 million hectares cultivated in 2020. In June 2023, a survey of crown rot disease was carried out in winter wheat cv. Xindong 20 in Hotan area, XUAR, China (80.148907°E, 37.051474°N). About 5% of wheat plants showed symptoms of crown rot such as browning of the stem base and white head. The disease was observed in 85% of wheat fields. In order to identify the pathogens, 36 pieces of diseased stem basal tissue, 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, then rinsed three times with sterile water and placed on potato dextrose agar (PDA) medium at 25°C. A total of 27 isolates with consistent morphological characteristics were obtained using single-spore technique (Leslie and Summerell. 2006), and the isolation rate was 75%. The isolates grew rapidly on PDA, produced large numbers of fluffy white hyphae, and pink pigment accumulated in the medium. The isolates were grown on 2% mung bean flour medium and identified by morphological and molecular methods. Macroconidia were abundant, relatively slender, curved to almost straight, commonly two to seven septate, and averaged 22 to 72 × 1.8 to 4.9 µm. Microconidia were not observed. The morphological characters are consistent with Fusarium (Aoki and O'Donnell. 1999). Two isolates (LP-1 and LP-3) were selected for molecular identification. Primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') were used to amplify a portion of the EF-1α gene (O'Donnell et al. 1998). The two 696 bp PCR products were sequenced and submitted to GenBank. The EF-1α gene sequences (GenBank Accession No: PP062794 and PP062795) shared 99.9% identity (695/696) with published F.pseudograminearum sequences (e.g., OP105187, OP105184, OP105179, OP105173). The identification was further confirmed by F. pseudograminearum species-specific PCR primers Fp1-1/Fp1-2 (Aoki and O'Donnell. 1999). The expected PCR products of 518 bp were produced only in F. pseudograminearum. Pathogenicity tests of LP-1 and LP-3 isolates were performed on 7-day-old seedlings of winter wheat cv. Xindong 20 using the drip inoculation method with a 10-µl of a 106 macroconidia ml-1 suspension near the stem base (Xu et al. 2017). The experiment was repeated five times in a 20 to 25°C greenhouse. Control seedlings were treated with sterile water. After 4 weeks, wheat seedling death and crown browning occurred in the inoculated plants with over 90% incidence. No symptoms were observed in the control plants. The pathogen was reisolated from the inoculated plants by the method described above and identified by morphological and PCR amplification using F. pseudograminearum species-specific primers Fp1-1/Fp1-2. No F. pseudograminearum was isolated from the control plants, fulfilling Koch's postulates. To our knowledge, this is the first report of F. pseudograminearum causing crown rot of winter wheat in XUAR of China. Since F. pseudograminearum can cause great damage to wheat, one of the most important food crops in China, necessary measures should be taken to prevent the spread of F. pseudograminearum to other regions.

20.
BMC Plant Biol ; 24(1): 463, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802782

ABSTRACT

BACKGROUND: Fusarium graminearum and Fusarium avenaceum are two of the most important causal agents of Fusarium head blight (FHB) of wheat. They can produce mycotoxins that accumulate in infected wheat heads, including deoxynivalenol (DON) and enniatins (ENNs), produced by F. graminearum and F. avenaceum, respectively. While the role of DON as a virulence factor in F. graminearum toward wheat is well known, ENNs in F. avenaceum has been poorly explored. Results obtained to-date indicate that ENNs may confer an advantage to F. avenaceum only on particular hosts. RESULTS: In this study, with the use of ENN-producing and ENN non-producing F. avenaceum strains, the role of ENNs on F. avenaceum virulence was investigated on the root, stem base and head of common wheat, and compared with the role of DON, using DON-producing and DON non-producing F. graminearum strains. The DON-producing F. graminearum strain showed a significantly higher ability to cause symptoms and colonise each of the tested tissues than the non-producing strain. On the other hand, the ability to produce ENNs increased initial symptoms of the disease and fungal biomass accumulation, measured by qPCR, only in wheat heads, and not in roots or stem bases. LC-MS/MS analysis was used to confirm the presence of ENNs and DON in the different strains, and results, both in vitro and in wheat heads, were consistent with the genetics of each strain. CONCLUSION: While the key role of DON on F. graminearum virulence towards three different wheat tissues was noticeable, ENNs seemed to have a role only in influencing F. avenaceum virulence on common wheat heads probably due to an initial delay in the appearance of symptoms.


Subject(s)
Fusarium , Plant Diseases , Trichothecenes , Triticum , Triticum/microbiology , Triticum/metabolism , Fusarium/pathogenicity , Fusarium/genetics , Fusarium/metabolism , Trichothecenes/metabolism , Virulence , Plant Diseases/microbiology , Mycotoxins/metabolism , Depsipeptides
SELECTION OF CITATIONS
SEARCH DETAIL
...