ABSTRACT
Liquid smoke is a food additive and cresols are among its chemical constituents, potentially toxic to human health. Thus, the objective of this study was to develop a method to quantify cresols in liquid smoke. First, the liquid-liquid extraction with low temperature purification (LLE-LTP) was validated for cresols in water, as there are no cresol-free liquid smoke samples. Analyzes were performed by gas chromatography coupled to mass spectrometry in full scan mode. LLE-LTP was subsequently applied in five commercial samples of liquid smoke. Validation results showed that the proposed extraction method was selective for cresols, linear in the range of 0.5 to 35 mg L-1, limit of quantification of 0.5 mg L-1, recovery rate between 90% and 104% and relative standard deviation lower than 10%. The quantification of cresols in liquid smoke samples ranged from 3.0 to 38.3 mg L-1 and the concentration of these chemical contaminants in liquid smoke remained constant for at least 21 days at 25 °C.
Subject(s)
Gas Chromatography-Mass Spectrometry , Liquid-Liquid Extraction , Smoke , Liquid-Liquid Extraction/methods , Gas Chromatography-Mass Spectrometry/methods , Smoke/analysis , Cold TemperatureABSTRACT
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Subject(s)
Milk , Pasteurization , Allergens , Animals , Cattle , FemaleABSTRACT
O fósforo naturalmente presente ou adicionado ao solo, dependendo da conjunção de fatores, pode desencadear uma situação de alto risco ambiental para os recursos hídricos de bacias hidrográficas. O objetivo deste trabalho foi quantificar a transferência na superfície do solo de algumas formas de fósforo reativo, originário da adubação fosfatada em solo sem cultivo e descoberto, transportado pelo escoamento superficial da água de chuvas. O experimento foi executado em Lages, SC, com duas repetições de campo, sob regime de chuvas intensas simuladas (64 mm h−1 durante 50 minutos). Os resultados apontam que o fósforo pode representar sério risco ambiental aos recursos hídricos das bacias, em diferentes escalas no tempo e no espaço, através das formas reativas de fósforo e suas diferentes maneiras de transporte.
Phosphorus is naturally present or added to the soil and, depending on the mix of factors, may trigger a high environmental risk to water resources in river basins. The aim of this study was to quantify the transfer for soil surface of some forms of reactive phosphorus originating from phosphorus fertilization on bare soil, carried by the runoff. The experiment was carried out in Lages, SC, Brazil, with two replications in the field under intense simulated rainfall (64 mm h−1 for 50 minutes). The results indicate that phosphorus may represent a serious environmental risk to water resources of basins at different scales in time and space, through the reactive forms of phosphorus and their different ways of transportation.