ABSTRACT
Beet is a nutritious and health-promoting food with important bioactive compounds in its industrial by-products. The encapsulation of antioxidants from beet by-products has been proposed for valorization. For this, an ethanol-water extract was mixed with polyvinylpyrrolidone (PVP) (used as a carrier agent) and then encapsulated. The encapsulation was performed by spray drying, where the effects of temperature (140-160 °C), extract input flow rate (10-30%), and extraction solvent (ethanol-water 50/50 v/v and ethanol) were evaluated for the total phenol content and the spray-drying yield. The yields obtained were between 60 and 89%, and total phenols were between 136 and 1026 mg gallic acid equivalents/g of encapsulated product. Both responses were affected (p < 0.05) by the extraction solvent. The optimal spray-drying conditions were determined by response surface methodology (RSM). The encapsulated product obtained at optimal conditions was characterized by infrared spectrometry, X-ray fluorescence, Ultra-High Performance Liquid Chromatography, and scanning electron microscopy analysis. The results show that the encapsulated product has a high content of total phenols and compounds such as betanin, isobetanin, and neobetanin. Considering the results of physicochemical properties and the bioactive compounds, the optimized encapsulated product could be applied in the food industry as a bioactive ingredient or natural colorant. However, the further investigation of alternative carrier agents needs to be performed to reduce caking.
ABSTRACT
During the preparation of fixed prosthesis (including individual bridges and crowns) it is important to select the materials that have the best features and properties to predict a successful clinical treatment. The objective of this study was to determine if the chemical and structural characteristics could cause to increase the fracture resistance, we used four bis-acryl resins Luxatemp, Protemp, Structur and Telio. Three-points bending by Flexural test were performed in ten bars and they were carried out to compare with Anova test. In addition, the bis-acryl resins were analyzed by scanning electron microscopy, to analyze microstructure and morphology and the molecular structure were performed by Infrared Spectroscopy through Attenuated Total Reflectance. A higher flexural strength was found in Luxatemp and Structur with, no significant differences between this study groups. Regarding Protemp and Telio, these study groups showed a lower flexural strength when were compared with Luxatemp and Structur. These results corroborate SEM and ATR analysis because Luxatemp sample showed a regular size particle on the surface and chemically presents a long cross-linkage polymer chain. The presence of CO3, SiO2 and N-H groups as a fillers particle interacting with OH groups cause a higher flexural strength compared with another groups.
ABSTRACT
In recent years, numerous studies have indicated that the combination of organic and inorganic fertilizers can effectively improve soil fertility and soil productivity. Distillers' grain (DG), the primary by-product of Chinese spirits production, has a high utilization value for producing organic fertilizer. We investigated the effects of distillers' grain organic fertilizer (DGOF) on soil chemical properties and microbial community composition, as well as the effects of chemical properties on the abundance of keystone species. The results indicated that the application of DGOF significantly increased tobacco yield by 14.8% and mainly affected the composition rather than the alpha diversity of the bacterial community. Ten amplicon sequence variants (ASVs) were identified as keystone species in the bacterial communities, and most of their relative abundance was influenced by the DGOF addition through affecting soil chemical properties. Our results elucidated the alterations in soil chemical properties and microbial community composition resulting from DGOF application, which is of great importance to better understand the relationship between DGOF and soil microorganisms in the flue-cured tobacco cultivation field.
Subject(s)
Microbiota , Soil , Soil/chemistry , Fertilizers/analysis , Bacteria/genetics , Edible Grain , Soil MicrobiologyABSTRACT
Over the past eight years, bee products such as wax, honey, propolis, and pollen have generated intense curiosity about their potential food uses; to explore these possibilities, this review examines the nutritional benefits and notable characteristics of each product related to the food industry. While all offer distinct advantages, there are challenges to overcome, including the risk of honey contamination. Indeed, honey has excellent potential as a healthier alternative to sugar, while propolis's remarkable antibacterial and antioxidant properties can be enhanced through microencapsulation. Pollen is a versatile food with multiple applications in various products. In addition, the addition of beeswax to oleogels and its use as a coating demonstrate significant improvements in the quality and preservation of environmentally sustainable foods over time. This study demonstrates that bee products and apitherapy are essential for sustainable future food and innovative medical treatments.
ABSTRACT
Liupan Mountains are an important region in China in the context of forest cover and vegetation due to huge afforestation and plantation practices, which brought changes in soil physio-chemical properties, soil stocks, and soil stoichiometries are rarely been understood. The study aims to explore the distribution of soil nutrients at 1-m soil depth in the plantation forest region. The soil samples at five depth increments (0-20, 20-40, 40-60, 60-80, and 80-100 cm) were collected and analyzed for different soil physio-chemical characteristics. The results showed a significant variation in soil bulk density (BD), soil porosity, pH, cation exchange capacity (CEC), and electric conductivity (EC) values. More soil BD (1.41 g cm-3) and pH (6.97) were noticed in the deep soil layer (80-100 cm), while the highest values of porosity (60.6%), EC (0.09 mS cm-1), and CEC (32.9 c mol kg-1) were reflected in the uppermost soil layer (0-20 cm). Similarly, the highest contents of soil organic carbon (SOC), total phosphorus (TP), available phosphorus (AP), total nitrogen (TN), and available potassium (AK) were calculated in the surface soil layer (0-20 cm). With increasing soil depth increment a decreasing trend in the SOC and other nutrient concentration were found, whereas the soil total potassium (TK) produced a negative correlation with soil layer depth. The entire results produced the distribution of SOCs and TNs (stocks) at various soil depths in forestland patterns were 0â20cm > 20â40cm > 40â60cm ≥ 60â80cm ≥ 80â100 cm. Furthermore, the stoichiometric ratios of C, N, and P, the C/P, and N/P ratios showed maximum values (66.49 and 5.46) in 0-20 cm and lowest values (23.78 and 1.91) in 80-100 cm soil layer depth. Though the C/N ratio was statistically similar across the whole soil profile (0-100 cm). These results highlighted that the soil depth increments might largely be attributed to fluctuations in soil physio-chemical properties, soil stocks, and soil stoichiometries. Further study is needed to draw more conclusions on nutrient dynamics, soil stocks, and soil stoichiometry in these forests.
As montanhas de Liupan são uma região importante na China no contexto de cobertura florestal e vegetação devido às enormes práticas de florestamento e plantação, que trouxeram mudanças nas propriedades físico-químicas do solo, e estoques e estequiometrias do solo raramente são compreendidos. O estudo visa explorar a distribuição de nutrientes do solo a 1 m de profundidade do solo na região da floresta plantada. As amostras de solo em cinco incrementos de profundidade (0-20, 20-40, 40-60, 60-80 e 80-100 cm) foram coletadas e analisadas para diferentes características físico-químicas do solo. Os resultados mostraram uma variação significativa nos valores de densidade do solo (BD), porosidade do solo, pH, capacidade de troca catiônica (CEC) e condutividade elétrica (CE). Mais DB do solo (1,41 g cm-3) e pH (6,97) do solo foram observados na camada profunda do solo (80-100 cm), enquanto os maiores valores de porosidade (60,6%), CE (0,09 mS cm-1) e CEC (32,9 c mol kg-1) foram refletidos na camada superior do solo (0-20 cm). Da mesma forma, os maiores teores de carbono orgânico do solo (SOC), fósforo total (TP), fósforo disponível (AP), nitrogênio total (TN) e potássio disponível (AK) foram calculados na camada superficial do solo (0-20 cm). Com o aumento do incremento da profundidade do solo, uma tendência decrescente no SOC e na concentração de outros nutrientes foi encontrada, enquanto o potássio total do solo (TK) produziu uma correlação negativa com a profundidade da camada do solo. Todos os resultados produziram a distribuição de SOCs e TNs (estoques) em várias profundidades de solo em padrões de floresta 0 â 20cm> 20 â 40cm> 40 â 60cm ≥ 60 â 80cm ≥ 80 â 100 cm. Além disso, as relações estequiométricas de C, N e P, as relações C / P e N / P, apresentaram valores máximos (66,49 e 5,46) em 0-20 cm, e valores mais baixos (23,78 e 1,91) em solo de 80-100 cm profundidade da camada. Embora a relação C / N fosse estatisticamente semelhante em todo o perfil do solo (0-100 cm). Esses resultados destacaram que os incrementos de profundidade do solo podem ser amplamente atribuídos a flutuações nas propriedades físico-químicas do solo, estoques e estequiometrias do solo. Mais estudos são necessários para tirar conclusões adicionais sobre a dinâmica dos nutrientes, estoques de solo e estequiometria do solo nessas florestas.
Subject(s)
Soil/chemistry , Soil Analysis , Forests , ChinaABSTRACT
Abstract Liupan Mountains are an important region in China in the context of forest cover and vegetation due to huge afforestation and plantation practices, which brought changes in soil physio-chemical properties, soil stocks, and soil stoichiometries are rarely been understood. The study aims to explore the distribution of soil nutrients at 1-m soil depth in the plantation forest region. The soil samples at five depth increments (0-20, 20-40, 40-60, 60-80, and 80-100 cm) were collected and analyzed for different soil physio-chemical characteristics. The results showed a significant variation in soil bulk density (BD), soil porosity, pH, cation exchange capacity (CEC), and electric conductivity (EC) values. More soil BD (1.41 g cm-3) and pH (6.97) were noticed in the deep soil layer (80-100 cm), while the highest values of porosity (60.6%), EC (0.09 mS cm-1), and CEC (32.9 c mol kg-1) were reflected in the uppermost soil layer (0-20 cm). Similarly, the highest contents of soil organic carbon (SOC), total phosphorus (TP), available phosphorus (AP), total nitrogen (TN), and available potassium (AK) were calculated in the surface soil layer (0-20 cm). With increasing soil depth increment a decreasing trend in the SOC and other nutrient concentration were found, whereas the soil total potassium (TK) produced a negative correlation with soil layer depth. The entire results produced the distribution of SOCs and TNs (stocks) at various soil depths in forestland patterns were 020cm > 2040cm > 4060cm 6080cm 80100 cm. Furthermore, the stoichiometric ratios of C, N, and P, the C/P, and N/P ratios showed maximum values (66.49 and 5.46) in 0-20 cm and lowest values (23.78 and 1.91) in 80-100 cm soil layer depth. Though the C/N ratio was statistically similar across the whole soil profile (0-100 cm). These results highlighted that the soil depth increments might largely be attributed to fluctuations in soil physio-chemical properties, soil stocks, and soil stoichiometries. Further study is needed to draw more conclusions on nutrient dynamics, soil stocks, and soil stoichiometry in these forests.
Resumo As montanhas de Liupan são uma região importante na China no contexto de cobertura florestal e vegetação devido às enormes práticas de florestamento e plantação, que trouxeram mudanças nas propriedades físico-químicas do solo, e estoques e estequiometrias do solo raramente são compreendidos. O estudo visa explorar a distribuição de nutrientes do solo a 1 m de profundidade do solo na região da floresta plantada. As amostras de solo em cinco incrementos de profundidade (0-20, 20-40, 40-60, 60-80 e 80-100 cm) foram coletadas e analisadas para diferentes características físico-químicas do solo. Os resultados mostraram uma variação significativa nos valores de densidade do solo (BD), porosidade do solo, pH, capacidade de troca catiônica (CEC) e condutividade elétrica (CE). Mais DB do solo (1,41 g cm-3) e pH (6,97) do solo foram observados na camada profunda do solo (80-100 cm), enquanto os maiores valores de porosidade (60,6%), CE (0,09 mS cm-1) e CEC (32,9 c mol kg-1) foram refletidos na camada superior do solo (0-20 cm). Da mesma forma, os maiores teores de carbono orgânico do solo (SOC), fósforo total (TP), fósforo disponível (AP), nitrogênio total (TN) e potássio disponível (AK) foram calculados na camada superficial do solo (0-20 cm). Com o aumento do incremento da profundidade do solo, uma tendência decrescente no SOC e na concentração de outros nutrientes foi encontrada, enquanto o potássio total do solo (TK) produziu uma correlação negativa com a profundidade da camada do solo. Todos os resultados produziram a distribuição de SOCs e TNs (estoques) em várias profundidades de solo em padrões de floresta 0 20cm> 20 40cm> 40 60cm 60 80cm 80 100 cm. Além disso, as relações estequiométricas de C, N e P, as relações C / P e N / P, apresentaram valores máximos (66,49 e 5,46) em 0-20 cm, e valores mais baixos (23,78 e 1,91) em solo de 80-100 cm profundidade da camada. Embora a relação C / N fosse estatisticamente semelhante em todo o perfil do solo (0-100 cm). Esses resultados destacaram que os incrementos de profundidade do solo podem ser amplamente atribuídos a flutuações nas propriedades físico-químicas do solo, estoques e estequiometrias do solo. Mais estudos são necessários para tirar conclusões adicionais sobre a dinâmica dos nutrientes, estoques de solo e estequiometria do solo nessas florestas.
ABSTRACT
To complement previous results, an analysis of the chemical and morphological properties of babassu fibers (Attalea speciosa Mart. ex Spreng.) was conducted in order to evaluate their potential as reinforcements in the production of composites with epoxy matrix. The diameter distribution was analyzed in a sample of one hundred fibers, allowing the verification of its variation. The determination of the chemical properties involved experimental analyses of the constituent index and X-ray diffraction. The diffractogram was used to calculate the crystallinity index and the microfibril angle, which are crucial parameters that indicate the consistency of the mechanical properties of babassu fibers and the feasibility of their use in composites. The results revealed that babassu fiber has a chemical composition, with contents of 28.53% lignin, 32.34% hemicellulose, and 37.97% cellulose. In addition, it showed a high crystallinity index of 81.06% and a microfibril angle of 7.67°. These characteristics, together with previous results, indicate that babassu fibers have favorable chemical and morphological properties to be used as reinforcements in composites, highlighting its potential as an important material for applications in technology areas.
ABSTRACT
In this work, poly (vinyl alcohol) (PVA) was employed to produce a Mesoporous Composition of Matter-48 Modified (MCM-48-M or MCM-48-PVA). After surface modification, MCM-48-M was used to produce nanocomposite (NC) films with polycaprolactone (PCL) as a matrix at room temperature. PCL and MCM-48 nanoparticles (NPs) were chosen due to their great biocompatibility and low toxicity. However, MCM-48-M is more compatible with PCL than MCM-48. NC films were sterilized by gamma radiation with a dose of 25 kGy and characterized by experimental techniques to investigate their chemical, mechanical (tensile) and thermal properties. Scanning electron microscopy (SEM) and transmission electronic microscopy (TEM) results indicated that MCM-48-M exhibited a random distribution in the PCL matrix. The PCL chemical structure was preserved in NC films as described by Fourier transform infrared (FT-IR) spectroscopy as well as the tensile and thermal properties of NC films. FT-IR and thermogravimetric analysis (TGA) results showed surface modification. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) showed that crystalline symmetries were preserved and the crystallinity of NC films had small variations in all samples before and after irradiation, respectively. But, our results did not indicate major changes showing that this method is successful for the sterilization of PCL/MCM-48-PVA NC films.
ABSTRACT
The objective of this work was to compare the dry matter intake, milk yield and quality, physiological and biochemical parameters in Holstein (n=10) and Jersey (n=10) cows under heat stress and insolation, in two treatments: CL - cooling by ventilation and sprinkling and HS - heat stress and insolation. Data were submitted to ANOVA. There was an interaction between treatment and breed and day effect for dry matter intake. For consumption in % of body weight, CL and Jersey cows consumed more. CL cows produced more milk and 3.5% fat-corrected milk. Feed efficiency was similar between treatments and breeds. Fat, lactose, total solids, and somatic cell score did not differ. The concentration of milk urea nitrogen was higher for CL cows. Milk from Holstein cows had greater stability to alcohol, and from HT cows had a greater freezing point of milk. HT cows had higher respiratory rates in the morning and surface temperatures in the afternoon. There were no differences in beta-hydroxybutyrate and glucose concentrations. Heat stress, with insulation, reduces intake, especially in Holstein cows, as well as milk production and increases the freezing point of milk, respiratory rate, and surface temperature.
O objetivo deste trabalho foi comparar o consumo de matéria seca, a produção e a qualidade do leite, os parâmetros fisiológicos e bioquímicos em vacas das raças Holandesa (n=10) e Jersey (n=10) sob estresse calórico e insolação, em dois tratamentos: CL - resfriamento por ventilação e aspersão; HS - estresse térmico e insolação. Os dados foram submetidos à análise de variância. Houve interação entre tratamento e raça e efeito de dia para consumo de matéria seca. Para consumo em % de peso vivo, vacas CL e Jersey consumiram mais. Vacas CL produziram mais leite e leite corrigido a 3,5% de gordura. A eficiência alimentar foi similar entre tratamentos e raças. Teores de gordura, lactose, sólidos totais e escore de células somáticas não diferiram. A concentração de nitrogênio ureico do leite foi maior para vacas CL. O leite das vacas Holandesas apresentou maior estabilidade ao álcool, e de vacas HT maior crioscopia. Vacas HT apresentaram maior frequência respiratória de manhã e temperatura superficial à tarde. Não houve diferenças para concentração de beta-hidroxibutirato e glicose. O estresse calórico, com insolação, reduz o consumo, especialmente em vacas Holandesas, bem como a produção de leite, com aumento da crioscopia, elevando a frequência respiratória e a temperatura superficial.
Subject(s)
Animals , Cattle , Sunstroke , Solar Radiation , Milk/chemistry , Hot Temperature/adverse effectsABSTRACT
Abstract We evaluated the microbial composition of water kefir grains and beverage overthe course of one year to determine whether the number and type of microorganisms changedover the time. Bacteria and yeast colonies with different morphologies were isolated fromwater kefir and their antimicrobial activity was evaluated against Paenibacillus larvae andAscosphaera apis. A chemical characterization of kefir was also carried out. Our results con-firmed that bacteria and yeasts were more numerous in kefir grains compared with those in thebeverage. The counts of microorganisms declined, although an important microbial community was still present in kefir after the long storage period. Eleven strains which inhibited bee pathogens were isolated from kefir. Genotypic results demonstrated that these isolates included Lentilactobacillus hilgardii, Lentilactobacillus buchneri and Saccharomyces cerevisiae. Thus, water kefir may be an innovative source of potential probiotic strains for bee nutrition in order to control honeybee diseases.
Resumen Evaluamos la composición microbiana del kéfir de agua durante un ano para determinar si la cantidad y el tipo de microorganismos cambiaban con el tiempo. Se aislaron colonias de bacterias y de levaduras con diferentes morfologías, y su actividad antimicrobiana se evaluó frente a Paenibacillus larvaey Ascosphaeraapis. También se realizó una caracterización química del kéfir. Nuestros resultados confirmaron que las bacterias y las levaduras eran más numerosas en los gránulos de kéfir en comparación con la parte líquida. Los recuentos de microorganismos disminuyeron, aunque una cantidad igualmente importante se encontró en el kéfir después de un año. Se aislaron del kéfir once cepas que inhibieron los mencionados patógenos de abejas. Los resultados genotípicos demostraron que estos aislamientos eran Lentilactobacillus hilgardii, Lentilactobacillus buchneri y Saccharomyces cerevisiae. Por lo tanto, el kéfir de agua podría ser una fuente innovadora de potenciales cepas probióticas para contribuir a la nutrición y sanidad de las abejas.
ABSTRACT
The search for new analytical methods is a latent reality in the so-called green analytical chemistry area, which aims at correlating analytical demands to environmental issues. Among the approaches used, it is possible to highlight green solvents as substitutes to the dangerous and conventional organic solvents as the most prominent alternative for this purpose. In the last few years, the amount of research focused on the usage of deep eutectic solvents (DESs) has been growing as an alternative to these issues. Thus, this work aimed to investigate the main physical-chemical and ecotoxical properties of seven different DESs. The results showed that DESs' evaluated properties are influenced by the chemical structure of their precursors, which may regulate DESs' viscosity, superficial tension, and antagonistic action against vegetable tissues and microbial cells. The constatations pointed here introduce a new perspective about the conscious usage of DESs on a green analytical point of view.
Subject(s)
Deep Eutectic Solvents , Solvents/chemistry , ViscosityABSTRACT
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
ABSTRACT
Objectives: This study evaluated the effect of different nanoparticulated zinc oxide (nano-ZnO) and conventional-ZnO ratios on the physicochemical properties of calcium aluminate cement (CAC). Materials and Methods: The conventional-ZnO and nano-ZnO were added to the cement powder in the following proportions: G1 (20% conventional-ZnO), G2 (15% conventional-ZnO + 5% nano-ZnO), G3 (12% conventional-ZnO + 3% nano-ZnO) and G4 (10% conventional-ZnO + 5% nano-ZnO). The radiopacity (Rad), setting time (Set), dimensional change (Dc), solubility (Sol), compressive strength (Cst), and pH were evaluated. The nano-ZnO and CAC containing conventional-ZnO were also assessed using scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Radiopacity data were analyzed by the 1-way analysis of variance (ANOVA) and Bonferroni tests (p < 0.05). The data of the other properties were analyzed by the ANOVA, Tukey, and Fisher tests (p < 0.05). Results: The nano-ZnO and CAC containing conventional-ZnO powders presented particles with few impurities and nanometric and micrometric sizes, respectively. G1 had the highest Rad mean value (p < 0.05). When compared to G1, groups containing nano-ZnO had a significant reduction in the Set (p < 0.05) and lower values of Dc at 24 hours (p < 0.05). The Cst was higher for G4, with a significant difference for the other groups (p < 0.05). The Sol did not present significant differences among groups (p > 0.05). Conclusions: The addition of nano-ZnO to CAC improved its dimensional change, setting time, and compressive strength, which may be promising for the clinical performance of this cement.
ABSTRACT
(1) Background: Starch is the main component of mango (Mangifera indica) kernel, making it an alternative to obtain an ingredient from a non-conventional source with potential application in food and other industrial applications; however, reports on the use of new extraction techniques for this material are scarce. The main objective of this research was to evaluate the effect of ultrasound-assisted extraction (UAE) on the yield, chemical, techno-functional, rheological, and pasting properties of starch isolated from a non-conventional source such as a mango kernel. (2) Methods: Different power sonication conditions (120, 300, and 480 W) and sonication time (10, 20, and 30 min) were evaluated along with a control treatment (extracted by the wet milling method). (3) Results: Ultrasound-assisted extraction increases starch yield, with the highest values (54%) at 480 W and 20 min. A significant increase in the amylose content, water-holding capacity, oil-holding capacity, solubility, and swelling power of ultrasonically extracted starches was observed. Similarly, mango kernel starch (MKS) exhibited interesting antioxidant properties. The sol-gel transition temperature and pasting parameters, such as the breakdown viscosity (BD) and the setback viscosity (SB), decreased with ultrasound application; (4) Conclusion: indicating that ultrasound caused changes in physical, chemical, techno-functional, rheological, and pasting properties, depending on the power and time of sonication, so it can be used as an alternative starch extraction and modification technique, for example, for potential application in thermally processed food products such as baked goods, canned foods, and frozen foods.
ABSTRACT
High entropy alloys (HEAs) of the type CrCuFeNiTi-Alx were processed through mechanical alloying. The aluminum concentration was varied in the alloy, to determine its effect on the HEAs' microstructure, phase formation, and chemical behavior. X-ray diffraction studies performed on the pressureless sintered samples revealed the presence of structures composed of face centered cubic (FCC) and body centered cubic (BCC) solid-solution phases. Since the valences of the elements that form the alloy are different, a nearly stoichiometric compound was obtained, increasing the final entropy of the alloy. The aluminum was partly responsible for this situation, which also favored transforming part of the FCC phase into BCC phase on the sintered bodies. X-ray diffraction also indicated the formation of different compounds with the alloy's metals. Bulk samples exhibited microstructures with different phases. The presence of these phases and the results of the chemical analyses revealed the formation of alloying elements that, in turn, formed a solid solution and, consequently, had a high entropy. From the corrosion tests, it could be concluded that the samples with a lower aluminum content were the most resistant to corrosion.
ABSTRACT
We evaluated the microbial composition of water kefir grains and beverage over the course of one year to determine whether the number and type of microorganisms changed over the time. Bacteria and yeast colonies with different morphologies were isolated from water kefir and their antimicrobial activity was evaluated against Paenibacillus larvae and Ascosphaera apis. A chemical characterization of kefir was also carried out. Our results confirmed that bacteria and yeasts were more numerous in kefir grains compared with those in the beverage. The counts of microorganisms declined, although an important microbial community was still present in kefir after the long storage period. Eleven strains which inhibited bee pathogens were isolated from kefir. Genotypic results demonstrated that these isolates included Lentilactobacillus hilgardii, Lentilactobacillus buchneri and Saccharomyces cerevisiae. Thus, water kefir may be an innovative source of potential probiotic strains for bee nutrition in order to control honeybee diseases.
Subject(s)
Kefir , Probiotics , Bees , Animals , Kefir/microbiology , Water , Beverages/microbiology , Bacteria , Saccharomyces cerevisiae , FermentationABSTRACT
The aim of the present study was to evaluate the influence of ultrasonic activation (UA) on the setting time and flow of four endodontic sealers: AH Plus (AH), Sealer Plus (SP), MTA Fillapex (MTAF), and BioRoot RCS (BIO). Properties were evaluated as required by ANSI/ADA Specification N° 57 (2008); only the size of the specimens was modified. UA was applied using a smooth tapered ultrasonic tip coupled to a piezoelectric ultrasonic device (30% power) on the freshly mixed materials in two cycles of 20 seconds. The results were statistically analyzed using the ANOVA and Kruskal-Wallis tests, followed by the Tukey and Dunn posthoc tests, respectively, depending on the normality of the data. The shortest setting times, initial and final, were, 115 (BIO/UA) and 148.6 (BIO/UA) min, whereas the longest were 1215 (AH) and 1928 (AH) min. The MTAF sealer did not set throughout the experimental period (2880 minutes). Significant differences were observed between BIO and MTAF and the other sealers, with or without UA, both in the initial and final setting time (P < 0.05). UA did not change the initial setting times; however, it reduced the final setting of BIO (P < 0.05). The highest and lowest flow values observed were 25.52 mm (AH/UA) and 18.66 mm (BIO/UA), respectively. The AH sealer, regardless of UA, exhibited higher flow values compared to the other sealers (P < 0.05), except for the MTAF/UA group, which was the only sealer in which UA promoted a significant flow increase (P < 0.05). Under the conditions of the study, it can be concluded that the BIO, under UA, presented the lowest setting time; however, it exhibited the lowest flow values. The MTAF sealer did not reach its final setting. Moreover, the SP groups exhibited intermediate results in all analyses. In summary, only the final setting time of the BIO group and the flow values of the MTAF group were influenced by UA.
O objetivo do presente estudo foi avaliar a influência da ativação ultrassônica (UA) no tempo e fluxo de ajuste de quatro selantes endodônticos: AH Plus (AH), Sealer Plus (SP), MTA Fillapex (MTAF) e BioRoot RCS (BIO). As propriedades foram avaliadas conforme exigido pela Especificação N° 57 (2008) da ANSI/ADA; apenas o tamanho dos espécimes foi modificado. O UA foi aplicado usando uma ponta de ultrassom suave cônica acoplada a um dispositivo ultrassônico piezoelétrico (30% de potência) nos materiais recém-misturados em dois ciclos de 20 segundos. Os resultados foram analisados estatisticamente usando os testes ANOVA e Kruskal-Wallis, seguidos pelos testes póstticos de Tukey e Dunn, respectivamente, dependendo da normalidade dos dados. Os tempos de ajuste mais curtos, iniciais e finais, foram 115 (BIO/UA) e 148,6 (BIO/UA) min, enquanto os mais longos foram 1215 (AH) e 1928 (AH) min. O selador da MTAF não foi colocado durante todo o período experimental (2880 minutos). Foram observadas diferenças significativas entre o BIO e o MTAF e os demais seladores, com ou sem UA, tanto no tempo de ajuste inicial quanto final (P < 0,05). A UA não alterou os tempos de ajuste inicial; no entanto, reduziu o ajuste final da BIO (P < 0,05). Os valores de fluxo mais alto e mais baixo observados foram 25,52 mm (AH/UA) e 18,66 mm (BIO/UA), respectivamente. O selador AH, independentemente do UA, apresentou valores de fluxo mais elevados em comparação com os outros seladores (P < 0,05), exceto para o grupo MTAF/UA, que foi o único selador no qual o UA promoveu um aumento significativo do fluxo (P < 0,05). Nas condições do estudo, pode-se concluir que o BIO, sob UA, apresentou o menor tempo de ajuste; no entanto, exibiu os menores valores de fluxo. O selador MTAF não atingiu seu ajuste final. Além disso, os grupos de SP apresentaram resultados intermediários em todas as análises. Em resumo, apenas o tempo de ajuste final do grupo BIO e os valores de fluxo do grupo MTAF foram influenciados pelo UA.
El objetivo del presente estudio fue evaluar la influencia de la activación ultrasónica (AU) sobre el tiempo de ajuste y flujo de cuatro selladores endodónticos: AH Plus (AH), Sealer Plus (SP), MTA Fillapex (MTAF) y BioRoot RCS (BIO). Las propiedades se evaluaron según lo requerido por la especificación ANSI/ADA N° 57 (2008), sólo se modificó el tamaño de los ejemplares. El AU se aplicó utilizando una punta ultrasónica cónica lisa acoplada a un dispositivo piezoeléctrico ultrasónico (30% de potencia) sobre los materiales recién mezclados en dos ciclos de 20 segundos. Los resultados se analizaron estadísticamente mediante las pruebas ANOVA y Kruskal- Wallis, seguidas de las pruebas postcográficas de Tukey y Dunn, respectivamente, dependiendo de la normalidad de los datos. Los tiempos de fraguado más cortos, inicial y final, fueron 115 (BIO/UA) y 148,6 (BIO/UA) min, mientras que los más largos fueron 1215 (AH) y 1928 (AH) min. El sellador MTAF no se ajustó durante todo el período experimental (2880 minutos). Se observaron diferencias significativas entre BIO y MTAF y los demás selladores, con o sin AU, tanto en el tiempo de ajuste inicial como final (P < 0,05). La AU no modificó los tiempos de ajuste inicial, pero redujo el ajuste final de BIO (P < 0,05). Los valores más altos y más bajos de caudal observados fueron 25,52 mm (AH/UA) y 18,66 mm (BIO/UA), respectivamente. El sellador AH, independientemente del AU, presentó valores de caudal más altos en comparación con los demás selladores (P < 0,05), excepto para el grupo MTAF/AU, que fue el único sellador en el que el AU promovió un incremento significativo del caudal (P < 0,05). Bajo las condiciones del estudio, se puede concluir que el BIO, bajo AU, presentó el menor tiempo de fraguado, sin embargo, presentó los menores valores de caudal. El sellador MTAF no alcanzó su ajuste final. Por otra parte, los grupos SP presentaron resultados intermedios en todos los análisis. En resumen, solo el tiempo de ajuste final del grupo BIO y los valores de flujo del grupo MTAF fueron influenciados por el AU.
ABSTRACT
Abstract Mineral trioxide aggregate (MTA) has many clinical applications in dentistry; the main drawback is the long setting. The main objective is to investigate and compare the chemical effect of using two commercially available hyaluronic acid hydrogels (HA) instead of distilled water for mixing MTA as an accelerant of setting time. Materials and method: Test materials were divided into three groups; Group 1: (control) mixing MTA with distilled water supplied by the manufacturer; Group 2: mixing MTA with a hybrid cooperative complex of high and low molecular weight HA (Profhilo®); Group 3: mixing MTA with High molecular weight / non-cross-linked HA (Jalupro®). Mixing time, and setting time (initial and final) were determined, Fourier-transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy, Field emission Scanning Electron Microscopy, and X-ray diffraction were performed. Results: mixing time, initial, and final setting time for (MTA + HA) groups were significantly different and lower in comparison to the control group (p < 0.05). This study revealed higher expression of calcium silicate hydrate and calcium hydroxide expression with higher Ca release in the MTA + HA group than the control group. Conclusion: commercially available HA demonstrated better chemical properties when used as a mixing medium for MTA. The Mixing and setting time for MTA + HA group were significantly shorter than those of the control group were. Thus, commercially available HA can be used as a mixing medium for MTA.
Resumo O agregado de trióxido mineral (MTA) tem muitas aplicações clínicas em odontologia, mas a principal desvantagem é a longa presa. O objetivo principal é investigar e comparar o efeito químico do uso de dois hidrogéis de ácido hialurônico (HA) disponíveis comercialmente em vez de água destilada para misturar o MTA como um acelerador do tempo de presa. Materiais e método: Os materiais de teste foram divididos em três grupos: Grupo 1: (controle) misturando o MTA com água destilada fornecida pelo fabricante; Grupo 2: misturando o MTA com um complexo cooperativo híbrido de HA de alto e baixo peso molecular (Profhilo®); Grupo 3: misturando o MTA com HA de alto peso molecular/não reticulado (Jalupro®). Foram determinados o tempo de mistura e o tempo de presa (inicial e final), a espectroscopia de infravermelho com transformada de Fourier, a espectroscopia de raios X com dispersão de energia, a microscopia eletrônica de varredura com emissão de campo e a difração de raios X. Resultados: o tempo de mistura, o tempo de presa inicial e final dos grupos (MTA + HA) foram significativamente diferentes e menores em comparação com o grupo de controle (p < 0,05). Esse estudo revelou maior expressão de silicato de cálcio hidratado e expressão de hidróxido de cálcio com maior liberação de Ca no grupo MTA + HA do que no grupo de controle. Conclusão: a HA disponível comercialmente demonstrou melhores propriedades químicas quando usada como meio de mistura para o MTA. O tempo de mistura e de presa do grupo MTA + HA foi significativamente menor do que o do grupo de controle. Portanto, a HA disponível comercialmente pode ser usada como meio de mistura para o MTA.
ABSTRACT
The aim of this study was to measure the fluoride (F) and silver (Ag) ion concentration and the pH, over time, of 2 solutions of 38% silver diamine fluoride (SDF) produced in Argentina. The brand Fluorsilver® was established as Group 1 (G1) (Densell), and the brand FAgamin® (Tedequim) as Group 2 (G2), each with two different lots. The following were determined at time 0 (t0) and 30 days after opening (t30): a) fluoride concentration (w/v) by visible spectrophotometry b) Ag content (w/v) by atomic absorption spectrophotometry c) pH. Results: The data in the freshly opened bottles were for G1 lot1/lot2: a) 0.96/1, b) 8.3/7.8, c).11.5/11.3; G2 lot1/lot2: a) 11.5/9.9, b) 39/39, c) 7/6,9; and after 30 days, G1 lot1/lot2: a) 0.85/0.81, b) 7.2/8.2, c) 11.3/11.6; G2 lot1/lot2: a) 9.35/8.43, b) 38/38, c) 7.6/7.6. Conclusion In relation to the expected values (5.0-5.9% fluoride and 24.4-28.8% silver), the average concentration of fluoride and silver ions was lower for G1, but higher for G2. The pH was alkaline for G1 and neutral for G2. Over the 30 days, the content of fluoride and silver tended to decrease.
El objetivo de este estudio fue medir las concentraciones de iones de fluoruro (F) y plata (Ag) y el pH, de 2 soluciones de diamino fluoruro de plata (SDF) al 38% producidas en Argentina. Se estableció como Grupo 1 (G1) la marca Fluorsilver® (Densell), y FAgamin® (Tedequim) como Grupo 2 (G2), cada uno con dos lotes diferentes. Se determinó: a) la concentración de fluoruro (p/v) por espectrofotometría visible, b) el contenido de Ag (p/v) por espectrofotometría de absorción atómica y c) el pH, y fue medido en un tiempo 0 (t0) y 30 días después de la apertura del frasco (t30). Resultado: En tiempo 0 para G1 lote1/lote2 fue: a) 0,96/1, b) 8,3/7,8 c).11,5/11,3 y G2 lote1/lote2: a) 11,5/9,9, b) 39/39, c) 7/6,9. A los 30 días G1 lote1/lote2: a) 0,85/0,81, b) 7,2/8,2, c) 11,3/11,6 y G2 lote1/lote2: a) 9,35/8,43, b) 38/38, c) 7,6/7,6. La concentración de iones de fluoruro y plata para G1 fue menor en relación a los valores esperados (5,0-5,9% de fluoruro y 24,4- 28.8% plata), sin embargo G2 obtuvo valores más altos. G1 muestra resultados de pH alcalino y G2 neutro. A lo largo de los 30 días, el contenido de fluoruro y plata tiende a disminuir.
Subject(s)
Dental Caries , Fluorides , Humans , Cariostatic Agents/chemistry , Argentina , Sodium Fluoride , Hydrogen-Ion ConcentrationABSTRACT
BACKGROUND: Zika fever affects poor and vulnerable populations, presenting cycles observed in, at least 86 countries, with no vaccine prevention or treatment available. It is known that the genus Flavivirus causes Zika Virus (ZIKV), as Dengue and Yellow Fever, whose genetic material decodes, among other proteins, a series of non-structural (NS) proteins essential for viral replication, such as NS2B-NS3 protease. Additionally, chemical and biological systems are commonly studied using molecular modeling approaches allowing, among several other processes, to elucidate mechanisms of action, molecule reactivity and/or chemical properties and the design of new drugs. Thus, considering the in silico complexes between the biological target and the bioactive molecule, it is possible to understand better experimental results based on molecular properties, which are compared with the findings of the biological activity. OBJECTIVE: Accordingly, this study aimed to present computational docking simulations of five previously reported active peptides against NS2B-NS3 protease of ZIKV and analyze some quantum chemical properties to identify the main contribution to improving the action. METHODS: The compounds were described by Rut and coworkers (2017) and Hill and coworkers (2018), submitted to docking simulation in Gold software and quantum chemical properties calculations in Wavefunction Spartan software. RESULTS: Total energy, electrophilicity index (ω) and energy gap (GAP) appeared to be the best properties to justify the peptide's biological activity. Moreover, the most promising compound (P1, Km 4.18 µM) had the best value of total energy (- 2763.04001 au), electrophilicity index (8.04 eV) and GAP (6.49 eV), indicating an energetically favorable molecule with good interaction with the target and, when compared to other peptides, presented moderate reactivity. P4 showed the highest electrophilicity index value (28.64 eV), which justified the interaction ability visualized in the docking simulation. However, its GAP value (4.24 eV) was the lowest in the series, suggesting high instability, possibly validating its low biological activity value (Km 19 uM). GAP was important to understand the chemical instability, and high values can promote damage to biological response. CONCLUSION: Furthermore, it was also noted that high electron affinity, related to the electrophilicity index, promoted electron-accepting characteristics, which was important to improve the biological activity of the peptides. A larger compound series must be studied to access features more precisely. However, these results have paramount importance in guiding future effort in this extremely-need health area.