ABSTRACT
Chemoreception through odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs) represents the functions of key proteins in the chemical ecology of insects. Recent studies have identified chemoreceptors in coleopterans, facilitating the evolutionary analysis of not only ORs but also IRs and GRs. Thus, Cerambycidae, Tenebrionidae and Curculionidae have received increased attention. However, knowledge of the chemoreceptors from Scarabaeidae is still limited, particularly for those that are sympatric. Considering the roles of chemoreceptors, this analysis could shed light on evolutionary processes in the context of sympatry. Therefore, the aim of this study was to identify and compare the repertoires of ORs, GRs and IRs between two sympatric scarab beetles, Hylamorpha elegans and Brachysternus prasinus. Here, construction of the antennal transcriptomes of both scarab beetle species and analyses of their phylogeny, molecular evolution and relative expression were performed. Thus, 119 new candidate chemoreceptors were identified for the first time, including 17 transcripts for B. prasinus (1 GR, 3 IRs and 13 ORs) and 102 for H. elegans (22 GRs, 14 IRs and 66 ORs). Orthologs between the two scarab beetle species were found, revealing specific expansions as well as absence in some clades. Purifying selection appears to have occurred on H. elegans and B. prasinus ORs. Further efforts will be focused on target identification to characterize kairomone and/or pheromone receptors.
Subject(s)
Coleoptera , Receptors, Odorant , Weevils , Animals , Transcriptome , Sympatry , Gene Expression Profiling , Coleoptera/genetics , Coleoptera/metabolism , Weevils/genetics , Phylogeny , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Arthropod Antennae/metabolismABSTRACT
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
ABSTRACT
Entomopathogenic fungi such as Beauveria bassiana are extensively used for the control of insect pests worldwide. They infect mostly by adhesion to the insect surface and penetration through the cuticle. However, some insects, such as the red flour beetle Tribolium castaneum (Herbst), have evolved resistance by embedding their cuticle with antifungal compounds. Thus, they avoid fungal germination on the cuticle, which result in low susceptibility to entomopathogenic fungi. In adult T. castaneum, these antifungals are the well-known defensive compounds methyl-1,4- and ethyl-1,4-benzoquinone. In this study, we added B. bassiana conidia on the diet of adult beetles to study the effect of the entomopathogen on the secretion and detection of the beetle volatile blend containing both benzoquinones. The compounds were analyzed by solid phase microextraction coupled to gas chromatography-flame ionization detection, and were detected by electroantennography. In addition, we measured the expression level of four genes encoding for two odorant-binding proteins (OBP), one chemosensory protein (CSP), and one odorant receptor (OR) in both healthy and fungus-treated insects. Significant alterations in the secretion of both benzoquinones, as well as in the perception of methyl-1,4-benzoquinone, were found in fungus-treated insects. TcOBP7D, TcOBP0A and TcCSP3A genes were down-regulated in insects fed conidia for 12 and 48 h, and the latter gene was up-regulated in 72 h samples. TcOR1 expression was not altered at the feeding times studied. We conclude that fungus-treated insects alter both secretion and perception of benzoquinones, but additional functional and genetic studies are needed to fully understand the effects of fungal infection on the insect chemical ecology.
ABSTRACT
In moths, sex pheromones play a key role in mate finding. These chemicals are transported in the antennae by odorant-binding proteins (OBPs). Commonly, males encounter conspecific females; therefore, several OBPs are male-biased. Less is known, however, about how the olfactory system of moths has evolved toward inverse sexual communication, ie where females seek males. Therefore, the objective of this study was to identify the profile of OBPs and their expression patterns in the bee hive pest, Galleria mellonella, a moth that uses inverse sexual communication. Here, OBP-related transcripts were identified by an RNA Sequencing (RNA-Seq) approach and analysed through both Reverse Transcription Polymerase Chain Reaction (RT-PCR) in different tissues and quantitative real-time PCR for two states, virgin and postmating. Our results indicate that G. mellonella has 20 OBPs distributed amongst different tissues. Interestingly, 17 of the 20 OBPs were significantly down-regulated after mating in females, whereas only OBP7 was up-regulated. By contrast, 18 OBP transcripts were up-regulated in males after mating. Additionally, binding assays and structural simulations showed general odorant-binding protein 2 (GOBP2) was able to bind sex pheromone components and analogues. These findings suggest a possible role of OBPs, especially GOBPs, in the inverse sexual communication of G. mellonella, with gene expression regulated as a response to mating.