Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Virol Sin ; 38(2): 244-256, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36587795

ABSTRACT

Many studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect various animals and transmit among animals, and even to humans, posing a threat to humans and animals. There is an urgent need to develop inexpensive and efficient animal vaccines to prevent and control coronavirus disease 2019 (COVID-19) in animals. Rabies virus (RABV) is another important zoonotic pathogen that infects almost all warm-blooded animals and poses a great public health threat. The present study constructed two recombinant chimeric viruses expressing the S1 and RBD proteins of the SARS-CoV-2 Wuhan01 strain based on a reverse genetic system of the RABV SRV9 strain and evaluated their immunogenicity in mice, cats and dogs. The results showed that both inactivated recombinant viruses induced durable neutralizing antibodies against SARS-CoV-2 and RABV and a strong cellular immune response in mice. Notably, inactivated SRV-nCoV-RBD induced earlier antibody production than SRV-nCoV-S1, which was maintained at high levels for longer periods. Inactivated SRV-nCoV-RBD induced neutralizing antibodies against both SARS-CoV-2 and RABV in cats and dogs, with a relatively broad-spectrum cross-neutralization capability against the SARS-CoV-2 pseudoviruses including Alpha, Beta, Gamma, Delta, and Omicron, showing potential to be used as a safe bivalent vaccine candidate against COVID-19 and rabies in animals.


Subject(s)
COVID-19 , Rabies Vaccines , Rabies virus , Rabies , Humans , Animals , Mice , Cats , Dogs , Rabies virus/genetics , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Immunity, Cellular , Spike Glycoprotein, Coronavirus
2.
Appl Microbiol Biotechnol ; 102(2): 961-970, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29184988

ABSTRACT

Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious and economically important disease of pigs. The envelope glycoprotein E2 of CSFV is the major antigen that induces neutralizing antibodies and confers protection against CSFV infections. Previously, we developed a murine monoclonal antibody (MAb), HQ06, against the E2 protein of CSFV. To produce the antibody conveniently and stably, the genes coding for the variable regions of the heavy and light chains of HQ06 and constant region genes from the swine antibody were fused and cloned into lentiviral expression vectors to express a recombinant porcinized MAb (rHQ06Sw) in mammalian cells. rHQ06Sw was able to react with the E2 protein or the CSFV virions specifically in different assays. Notably, rHQ06Sw could neutralize CSFV infection in a dose-dependent manner. Taken together, the functional porcinized MAb rHQ06Sw was generated, which can be used to develop novel diagnostic assays or to investigate the structure and functions of the E2 protein.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Classical Swine Fever Virus , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Cell Line , Genetic Engineering , Genetic Vectors , Lentivirus , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Swine
3.
Sheng Wu Gong Cheng Xue Bao ; 33(8): 1235-1243, 2017 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-28853251

ABSTRACT

Classical swine fever (CSF), one of OIE-listed diseases, is a highly contagious and economically important disease of pigs. Classical swine fever virus (CSFV) is the causative agent of CSF. The capsid (C) protein and the glycoproteins Erns, E1 and E2, are structural components of the virus. E2 is the most immunogenic protein of the CSFV glycoproteins, inducing neutralizing antibodies that provide protection against lethal CSFV challenge. In a previous study, we developed a murine MAb HQ06 against the E2 protein of CSFV. In this study, the variable region genes from HQ06 and constant regions gene of swine antibody are fused and cloned into the eukaryotic expression vectors to establish a cell line which can stably express a chimeric porcinized MAb (cHQ06) against E2 in CHO cell. The purified cHQ06 antibody protein was determined to be successfully generated, which exhibited high reactivity between cHQ06 and the E2 protein of CSFV by enzyme-linked immunosorbent assay (ELISA) and Western blotting. More importantly, we investigated the neutralizing activity of cHQ06 against CSFV. In conclusion, this study generated cHQ06 for efficient and stable production which can be used against to develop novel diagnostic assays, investigate the structure and function of the E2 protein and generate novel preparations of diagnosis and treatment.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Viral/immunology , Classical Swine Fever Virus/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , Cell Line , Classical Swine Fever , Enzyme-Linked Immunosorbent Assay , Genetic Vectors , Mice , Swine , Viral Vaccines
4.
Chinese Journal of Biotechnology ; (12): 1235-1243, 2017.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-242262

ABSTRACT

Classical swine fever (CSF), one of OIE-listed diseases, is a highly contagious and economically important disease of pigs. Classical swine fever virus (CSFV) is the causative agent of CSF. The capsid (C) protein and the glycoproteins Erns, E1 and E2, are structural components of the virus. E2 is the most immunogenic protein of the CSFV glycoproteins, inducing neutralizing antibodies that provide protection against lethal CSFV challenge. In a previous study, we developed a murine MAb HQ06 against the E2 protein of CSFV. In this study, the variable region genes from HQ06 and constant regions gene of swine antibody are fused and cloned into the eukaryotic expression vectors to establish a cell line which can stably express a chimeric porcinized MAb (cHQ06) against E2 in CHO cell. The purified cHQ06 antibody protein was determined to be successfully generated, which exhibited high reactivity between cHQ06 and the E2 protein of CSFV by enzyme-linked immunosorbent assay (ELISA) and Western blotting. More importantly, we investigated the neutralizing activity of cHQ06 against CSFV. In conclusion, this study generated cHQ06 for efficient and stable production which can be used against to develop novel diagnostic assays, investigate the structure and function of the E2 protein and generate novel preparations of diagnosis and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...