Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 15: 1444100, 2024.
Article in English | MEDLINE | ID: mdl-39381000

ABSTRACT

Background: Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by persistent inflammatory cascades, with macrophage activation playing a pivotal role. Chitinase 1 (CHIT1), produced by activated macrophages, is a key player in this cascade. In this study, we aimed to explore the role of CHIT1 in MASH with progressive liver fibrosis. Methods: Fibrotic liver tissue and serum from distinct patient groups were analyzed using nCounter MAX, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay. A MASH mouse model was constructed to evaluate the effectiveness of OATD-01, a chitinase inhibitor. Macrophage profiling was performed using single-nuclei RNA sequencing and flow cytometry. Results: CHIT1 expression in fibrotic liver tissues was significantly correlated with the extent of liver fibrosis, macrophages, and inflammation. Single-nuclei RNA sequencing demonstrated a notable increase in macrophages numbers, particularly of lipid-associated macrophages, in MASH mice. Treatment with OATD-01 reduced non-alcoholic fatty liver disease activity score and Sirius red-positive area. Additionally, OATD-01-treated mice had lower CHIT1, F4/80, and α-smooth muscle actin positivity, as well as significantly lower levels of inflammatory markers, pro-fibrotic genes, and matrix remodeling-related mRNAs than vehicle-treated mice. Although the population of F4/80+CD11b+ intrahepatic mononuclear phagocytes remained unchanged, their infiltration and activation (CHIT1+MerTK+) significantly decreased in OATD-01-treated mice, compared with that observed in vehicle-treated mice. Conclusions: Our study underscores the pivotal role of CHIT1 in MASH. The observed significant improvement in inflammation and hepatic fibrosis, particularly at higher doses of the CHIT1 inhibitor, strongly suggests the potential of CHIT1 as a therapeutic target in MASH accompanied by progressive liver fibrosis.


Subject(s)
Chitinases , Disease Models, Animal , Macrophages , Animals , Humans , Mice , Male , Macrophages/metabolism , Macrophages/immunology , Chitinases/metabolism , Chitinases/antagonists & inhibitors , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/etiology , Female , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Middle Aged , Liver/metabolism , Liver/pathology , Macrophage Activation/drug effects
2.
Am J Respir Cell Mol Biol ; 67(3): 309-319, 2022 09.
Article in English | MEDLINE | ID: mdl-35679109

ABSTRACT

Pulmonary fibrosis is a devastating lung disease with few therapeutic options. CHIT1 (chitinase 1), an 18 glycosyl hydrolase family member, contributes to the pathogenesis of pulmonary fibrosis through the regulation of TGF-ß (transforming growth factor-ß) signaling and effector function. Therefore, CHIT1 is a potential therapeutic target for pulmonary fibrosis. This study aimed to identify and characterize a druggable CHIT1 inhibitor with strong antifibrotic activity and minimal toxicity for therapeutic application to pulmonary fibrosis. Extensive screening of small molecule libraries identified the aminoglycoside antibiotic kasugamycin (KSM) as a potent CHIT1 inhibitor. Elevated concentrations of CHIT1 were detected in the lungs of patients with pulmonary fibrosis. In in vivo bleomycin- and TGF-ß-stimulated murine models of pulmonary fibrosis, KSM showed impressive antifibrotic effects in both preventive and therapeutic conditions. In vitro studies also demonstrated that KSM inhibits fibrotic macrophage activation, fibroblast proliferation, and myofibroblast transformation. Null mutation of TGFBRAP1 (TGF-ß-associated protein 1), a recently identified CHIT1 interacting signaling molecule, phenocopied antifibrotic effects of KSM in in vivo lungs and in vitro fibroblasts responses. KSM inhibits the physical association between CHIT1 and TGFBRAP1, suggesting that the antifibrotic effect of KSM is mediated through regulation of TGFBRAP1, at least in part. These studies demonstrate that KSM is a novel CHIT1 inhibitor with a strong antifibrotic effect that can be further developed as an effective and safe therapeutic drug for pulmonary fibrosis.


Subject(s)
Aminoglycosides , Antifibrotic Agents , Chitinases , Pulmonary Fibrosis , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Animals , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Bleomycin/pharmacology , Chitinases/antagonists & inhibitors , Fibroblasts/metabolism , Humans , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Transforming Growth Factor beta/metabolism
3.
Front Pharmacol ; 13: 826471, 2022.
Article in English | MEDLINE | ID: mdl-35370755

ABSTRACT

Chitinase 1 (CHIT1) and chitinase 3-like-1 (CHI3L1), two representative members of 18-Glycosyl hydrolases family, are significantly implicated in the pathogenesis of various human diseases characterized by inflammation and remodeling. Notably, dysregulated expression of CHIT1 and CHI3L1 was noted in the patients with pulmonary fibrosis and their levels were inversely correlated with clinical outcome of the patients. CHIT1 and CHI3L1, mainly expressed in alveolar macrophages, regulate profibrotic macrophage activation, fibroblast proliferation and myofibroblast transformation, and TGF-ß signaling and effector function. Although the mechanism or the pathways that CHIT1 and CHI3L1 use to regulate pulmonary fibrosis have not been fully understood yet, these studies identify CHIT1 and CHI3L1 as significant modulators of fibroproliferative responses leading to persistent and progressive pulmonary fibrosis. These studies suggest a possibility that CHIT1 and CHI3L1 could be reasonable therapeutic targets to intervene or reverse established pulmonary fibrosis. In this review, we will discuss specific roles and regulatory mechanisms of CHIT1 and CHI3L1 in profibrotic cell and tissue responses as novel therapeutic targets of pulmonary fibrosis.

4.
Front Immunol ; 13: 760776, 2022.
Article in English | MEDLINE | ID: mdl-35222369

ABSTRACT

Background: Although chitin is absent in humans, chitinases are present in healthy subjects and show dysregulated expression in a variety of diseases resulting from abnormal tissue injury and repair responses. It was shown that chitotriosidase (chitinase 1/CHIT1) and structurally-related chitinase 3-like 1 protein (CHI3L1/YKL-40) play important roles in the pathobiology of idiopathic pulmonary fibrosis (IPF), however little is known about their longitudinal serum levels and relationship to clinical measures in IPF. Methods: The present study is the first to evaluate serial measurements of serum CHIT1 activity and YKL-40 concentrations in patients with IPF starting antifibrotic treatment and followed up for 24 months. In addition, baseline serum CHIT1 and YKL-40 were compared between patients with IPF and control subjects, and possible CHIT1 and YKL-40 relationships to longitudinal clinical assessments in IPF were explored. Results: Baseline serum CHIT1 activity and YKL-40 concentrations were significantly elevated in patients with IPF compared to control subjects and showed similar discriminatory ability in distinguishing IPF from controls. No significant differences between the median serum CHIT1 activity and YKL-40 concentration measured over a study follow-up were noted. We found significantly elevated baseline serum CHIT1 activity in the progressors compared with the stables in the first year, while significantly increased baseline serum CHIT1 activity was noted in the stables compared to the progressors in the second year. Additionally, we observed a significant negative correlation between a change in serum YKL-40 concentration and a change in forced vital capacity (FVC) % predicted (% pred.) in the stables subgroup, whereas, a change in serum CHIT1 activity correlated negatively with a change in FVC% pred. in the progressors subgroup. Conclusions: This explorative study findings add further evidence that CHIT1 and YKL-40 are upregulated in patients with IPF, and suggest that longitudinally stable serum CHIT1 activity and YKL-40 concentration levels may potentially be associated with the antifibrotic treatment response. In addition, our findings are supporting the possible role of CHIT1 and YKL-40 as candidate diagnostic and prognostic biomarkers in IPF. Further research is needed to validate present study findings.


Subject(s)
Chitinases , Idiopathic Pulmonary Fibrosis , Chitinase-3-Like Protein 1 , Hexosaminidases , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/metabolism
5.
Neuroscience ; 355: 61-70, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28499970

ABSTRACT

Chitinase activity is increased in Alzheimer's disease (AD). However, the role of chitinase1 in AD is unknown. We investigated the effects of chitinase1 on Alzheimer's pathology and microglia function. Artificial chitinase1 and chitinase inhibitor (chitinase-IN-2) were used to determine the effects of chitinase1 on inflammatory factors and ß-amyloid (Aß) oligomers deposition in D-galactose/AlCl3-induced rat model with cognitive impairments. Aß-treated N9 microglia cells were analyzed to further verify whether the changes in inflammatory factors following chitinase1 treatment were associated with microglia alternative activation. Our data displayed that the activity of chitinase1 was both improved in D-galactose/AlCl3-injected rats and Aß-pretreated microglia. Moreover, there was an improvement in cognitive function in chitinase1-treated AD rats. Furthermore, anti-inflammation factors (Arginase 1, Arg-1, mannose receptor type C 1, MRC1/CD206) were increased and pro-inflammation factors (tumor necrosis factor alpha, TNFα, interleukin 1 beta, IL-1ß) were decreased in D-galactose/AlCl3-induced AD rats with chitinase1 treatment. A higher level of M2 markers (Arg-1, MRC1/CD206) and a lower level of classic M1 markers (TNFa, IL-1ß) were obtained in Aß-pretreated N9 cells with chitinase1, suggesting that chitinase1 polarized the microglia into an anti-AD M2 phenotype. We also detected that chitnase1 could weaken the deposition of Aß oligomers in the brain of D-galactose/ AlCl3-induced AD rats. In conclusion, Chitinase1 might exert protective effects against AD by polarizing microglia to an M2 phenotype and resisting Aß oligomer deposition.


Subject(s)
Amyloid beta-Peptides/metabolism , Chitinases/therapeutic use , Cognition Disorders/drug therapy , Microglia/drug effects , Aluminum/toxicity , Alzheimer Disease/chemically induced , Alzheimer Disease/complications , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Cell Polarity/drug effects , Cell Polarity/physiology , Chitin/metabolism , Chitinases/metabolism , Cognition Disorders/etiology , Cognition Disorders/pathology , Cytokines/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Galactose/toxicity , Male , Maze Learning/drug effects , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , alpha-Fetoproteins/metabolism
6.
Article in English | MEDLINE | ID: mdl-27826036

ABSTRACT

Chitinase is an enzyme that plays an important role in the chitin metabolism of a wide range of organisms. However, the function of chitinase in the pearl oyster Pinctada fucata is yet to be determined. In this study, a chitinase gene (named PfChi1) was cloned from P. fucata and its expression profiles were investigated. The full-length cDNA of PfChi1 was 2743bp and consisted of a 2187-bp open reading frame encoding 728 amino acid residues, a 47-bp 5'-untranslated region (UTR), and a 509-bp 3'-UTR. Similar to other known chitinases, the PfChi1 protein is composed of an N-terminal leading signal peptide, a catalytic domain, a linker region, and a C-terminal chitin-binding domain. The results of qRT-PCR showed that PfChi1 was expressed in a wide range of tissues with relatively high levels in the mantle, muscle, gill, and gonad, and relatively low levels in hemocytes, the intestine, and the digestive gland (P<0.05). In situ hybridization showed that PfChi1 was mainly expressed in the mantle edge, particularly in the outer epithelial cells of the inner fold, whereas few hybridization signals were detected in the inner epithelial cells of the middle fold. A shell damage experiment indicated that PfChi1 transcript levels were up-regulated significantly (P<0.05) at 24h after shell damage and decreased gradually thereafter, followed by shell regeneration, indicating that PfChi1 is involved in shell formation. In addition, PfChi1 expression was higher in trochophore larvae than in other developmental stages (P<0.05), indicating a possible association with the formation of prodissoconch shells. To the best of our knowledge, this study is the first to report the potential biomineralization function of a chitinase in P. fucata.


Subject(s)
Chitinases/genetics , Chitinases/metabolism , Gene Expression Regulation, Enzymologic , Pinctada/enzymology , Pinctada/genetics , Animal Shells/growth & development , Animals , Cloning, Molecular , Gene Expression Regulation, Developmental , Larva/growth & development , Pinctada/anatomy & histology , Pinctada/growth & development , Protein Transport
7.
Neurochem Res ; 41(7): 1604-11, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26935740

ABSTRACT

It is reported that chitinase1 increases in Alzheimer's disease (AD). However, the alteration of chitinase1 in the progress of AD is still unclear. Thus, we designed the present study to detect chitinase1 level in different stages of APP/PS1 double transgenic mice. Experimental models were APP/PS1 double transgenic mice with 4, 12 and 22 months. Cognitive function was detected by Morris water maze test in APP/PS1 mice as well as controls. ELISA and the quantitative RT-PCR were used to detect chitinase1 level in different groups. The study displayed that expression of chitinase1 gradually increased in a time-dependent manner in APP/PS1 mice, while there were no statistical differences among the wild-type mice in varies ages. Moreover, chitnase1 increased significantly in APP/PS1 mice aged 12 and 22 months compared with the age matched wild-type group, respectively. However, no difference of chitnase1 was found between 4 months-old APP/PS1 mice and wild-type mice. Comparing with the age matched wild type group, the consequences of mRNA on the increase in chitnase1 is in accordance with protein in APP/PS1 mice. Furthermore, Morris water maze showed that 4 months-old APP/PS1 mice have normal spatial learning and impaired spatial memory; both spatial learning and spatial memory in 12 and 22 months-old APP/PS1 mice were declined. Time-dependent increase of chitnase1 in APP/PS1 double transgenic mice indicates that the level of chitinase1 is associated with decline of cognition. Therefore, chitinase1 might be a biomarker of disease progression in AD.


Subject(s)
Aging/metabolism , Amyloid beta-Protein Precursor , Brain/enzymology , Chitinase-3-Like Protein 1/biosynthesis , Presenilin-1 , Aging/genetics , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Chitinase-3-Like Protein 1/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL