Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.124
Filter
1.
J Environ Sci (China) ; 145: 193-204, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844319

ABSTRACT

An eco-friendly adsorbent was prepared by reverse suspension crosslinking method to remove multiple pollutants from aqueous solution. Both raw materials, derived from humus (HS) and chitosan (CS), are biodegradable and low-cost natural biopolymers. After combining HS with CS, the adsorption capacity was significantly improved due to compensation effects between the two components. HS/CS exhibited the features of amphoteric adsorption through pH adjustment, enabling it to adsorb not only anionic pollutants (Methyl Orange (MO) and Cr(VI)), but also cationic ones (Methylene Blue (MB) and Pb(II)). The adsorption capacities were approximately 242 mg/g, 69 mg/g, 188 mg/g and 57 mg/g for MO, Cr(VI), MB and Pb(II), respectively. HS/CS showed a slight preference for MO in MO/Cr(VI) co-adsorption system, whereas strong selectivity for MB over Pb(II) in MB/Pb(II) system under acidic condition (pH<3.0). This selective behavior would allow for potential applications in separating MB/Pb(II) effluents and selectively recycling Pb(II) in acidic environment. The isothermal and kinetic adsorption behaviors followed Langmuir model and pseudo-second-order model, respectively. The density functional theory (DFT) confirmed that the interaction between metal ions and adsorbents was primarily attributed to chelation and electrostatic adsorption, owing to nitric and oxygenic functional groups. Whereas, the adsorption mechanisms for dyes were involved in electrostatic attraction, H-bond and π-π bond, due to available hydrogen, oxygen, nitrogen atoms and aromatic groups on the surface of adsorbent and adsorbates. The adsorbent could be efficiently regenerated and retained over 90% of its adsorption capacity after five cycles, which has a potential for practical applications in water treatment.


Subject(s)
Chitosan , Coloring Agents , Hydrogels , Metals, Heavy , Water Pollutants, Chemical , Chitosan/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Metals, Heavy/chemistry , Hydrogels/chemistry , Coloring Agents/chemistry , Humic Substances , Kinetics , Waste Disposal, Fluid/methods , Models, Chemical , Water Purification/methods
2.
Int J Biol Macromol ; : 132720, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38845257

ABSTRACT

Chitosan has been considered an eco-friendly biopolymer. Chitosan is a natural polycationic linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine linked by ß-1,4-glycosidic bonds. Chitosan has been used as an eco-friendly biopolymer for so many agricultural applications. Unfortunately, the relatively poor solubility and poor antimicrobial properties limit its widespread applications in agriculture sciences. Hence, chitosan derivatives are produced via various chemical approaches such as cross-linking, carboxylation, ionic binding, and so on. As an alternative to chemical fertilizers, chitosan derivatives, chitosan conjugates, nanostructures, semisynthetic derivatives, oligo mixes, chitosan nanoparticles, and chitosan nano-carriers are synthesized for various agricultural applications. Its several chemical and physical properties such as biocompatibility, biodegradability, permeability, cost-effectiveness, low toxicity, and environmental friendliness make it useful for many agricultural applications. Hence, popularizing its use as an elicitor molecule for different host-pathogen interaction studies. Thus, the versatile and plethora of chitosan derivatives are gaining momentum in agricultural sciences. Bio-stimulant properties and multifunctional benefits are associated with further prospective research. Therefore, in the present review, we decipher the potential pros and cons of chitosan derivatives in plants.

3.
Curr Med Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38847253

ABSTRACT

Cancer therapy has seen significant advancements in recent years, with the emergence of RNA interference (RNAi) as a promising strategy for targeted gene silencing. However, the successful delivery of small interfering RNA (siRNA) to cancer cells remains a challenge. Chitosan nanoparticles (CSNPs) can be derived from the natural polysaccharide chitin sources. CSNPs have gained considerable attention as a potential solution to encapsulate siRNA due to their biocompatibility, and biodegradability. This article explores the application of CSNPs for siRNA delivery in cancer therapy. Firstly, it discusses the significance of siRNA in gene regulation and highlights its potential to selectively silence oncogenes or tumor suppressor genes, making it a powerful tool in cancer treatment. The obstacles associated with effective siRNA delivery, such as degradation by nucleases and poor cellular uptake, are also addressed. Next, the focus shifts to the unique properties of CSNPs that make them attractive for siRNA delivery. The discussion revolves around how chitosan can interact electrostatically with siRNA to create stable complexes, as well as the controlled release of siRNA from CSNPs. This controlled release ensures sustained and efficient delivery of siRNA to cancer cells, maximizing therapeutic efficacy. Moreover, the biocompatibility and biodegradability of CSNPs make them ideal for in vivo applications. Different approaches to modifying and functionalizing surfaces are investigated by emphasizing on enhancement of stability and targeting abilities of CSNPs in cancer treatment. Registered trials for CS and siRNA are summarized, along with ongoing investigations into various applications of chitosan in medical treatments. Overall, the application of CSNPs in siRNA delivery for cancer therapy holds great promise and offers a potential solution to overcome the challenges associated with RNAi-based treatments. Continued advancements in this field will likely lead to improved targeted therapies with reduced side effects, ultimately benefitting cancer patients worldwide.

4.
Article in English | MEDLINE | ID: mdl-38850560

ABSTRACT

By overcoming interspecies differences and mimicking the in vivo microenvironment, three-dimensional (3D) in vitro corneal models have become a significant novel tool in contemporary ophthalmic disease research. However, existing 3D corneal models struggle to replicate the actual human corneal environment, especially the dome-shaped physiological structure with adjustable curvature. Addressing these challenges, this study introduces a straightforward method for fabricating collagen/chitosan-alginate eyeball-shaped gel microspheres with a Janus structure via a two-phase aqueous system, used subsequently to construct in vitro 3D corneal epithelial tissue models. By adjusting the diameter ratio of collagen/chitosan to alginate droplets, we can create eyeball-shaped gel microspheres with varying curvatures. Human corneal epithelial cells were seeded on the surfaces of these microspheres, leading to the formation of in vitro 3D corneal epithelial tissues characterized by dome-like multilayers and tight junctions. Additionally, the model demonstrated responsiveness to UVB exposure through the secretion of reactive oxygen species (ROS) and proinflammatory factors. Therefore, we believe that in vitro 3D corneal epithelial tissue models with dome-shaped structures hold significant potential for advancing ophthalmic research.

5.
J Colloid Interface Sci ; 672: 338-349, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850861

ABSTRACT

Phase change materials (PCMs) can store and release latent heat under the designed phased change temperature and have received substantial interest for energy conservation and thermal control purposes. The use of PCMs in the construction of constant temperature buildings can improve the comfortable environment and save more energy. However, the leakage of PCMs during phase change process limits the application of PCMs. In this paper, a series of PCMs microcapsules with controllable core numbers is synthesized with paraffin (37 ℃) as the core and cross-linked chitosan as the wall. The single-core phase-change microcapsules (S-PCM) and multicore phase-change microcapsules (M-PCM) were prepared by adjusting the preparation condition. The latent heat of S-PCM and M-PCM are 61.4 mJ mg-1 and 50.1 mJ mg-1, respectively. The S-PCM and M-PCM display good stability without paraffin leakage. In addition, the composite blocks of gypsum and S-PCM (GSCM) and M-PCM (GMCM) were prepared and the thermoregulatory effection was investigated, where the surface temperature of GSCM was 5-10 ℃ lower than that of pure gypsum block. PCMs may also have broad application space in electronics, cold chain, and other industries.

6.
Food Chem ; 455: 139908, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38850971

ABSTRACT

Chitosan quaternary phosphine salts (NPCS) were synthesized with enhanced antimicrobial properties using a two-step method. Composite films (CNSP) were prepared by incorporating NPCS and polyvinyl alcohol (PVA) as the base material, citric acid as the crosslinker and functional additive, exhibiting antibacterial and UV-blocking properties. The composite film showed a maximum tensile strength of 20.4 MPa, an elongation at break of 677%, and a UV light barrier transmittance of 70%. Application of these composite membranes in preserving strawberries demonstrated effectiveness in maintaining freshness by preventing water loss, inhibiting microbial growth, and extending shelf life. In addition, the composite film demonstrated biosafety. These results indicate that CNSP composite films holds significant promise for safe and sustainable food packaging applications.

7.
Heliyon ; 10(11): e31576, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38832282

ABSTRACT

Dendritic fibrous nanosilica (DFNS) was functionalized using microcrystalline chitosan, derived from shrimp exoskeletons, to act as a robust anchor, resulting in DFNS@Chitosan. In order to prevent the restacking of chitosan sheets, the supramolecular polymerized chitosan not only served as a spacer but was also incorporated into cement-based composites. The physical-chemical characteristics of DFNS@Chitosan were assessed through various analytical techniques such as TEM, SEM, TGA, FTIR, AFM, XPS, and EDX. The potency and auto-induced contraction of Cement-based composite materials fortified with DFNS@Chitosan were probed. The incorporation of DFNS@Chitosan resulted in an increase in both compressive and interfacial stretching potency of the cement-based composites. Furthermore, the presence of DFNS@Chitosan effectively inhibited the occurrence of auto-induced contraction in the cement-based paste. This research endeavor is anticipated to promote an alternative utilization of DFNS and shrimp waste shells in the development of sustainable building materials.

8.
Int J Nanomedicine ; 19: 5021-5044, 2024.
Article in English | MEDLINE | ID: mdl-38832335

ABSTRACT

Nanoparticle systems integrating alginate and chitosan emerge as a promising avenue to tackle challenges in leveraging the potency of pharmacological active agents. Owing to their intrinsic properties as polysaccharides, alginate and chitosan, exhibit remarkable biocompatibility, rendering them conducive to bodily integration. By downsizing drug particles to the nano-scale, the system enhances drug solubility in aqueous environments by augmenting surface area. Additionally, the system orchestrates extended drug release kinetics, aligning well with the exigencies of chronic drug release requisite for antibacterial therapeutics. A thorough scrutiny of existing literature underscores a wealth of evidence supporting the utilization of the alginate-chitosan nanoparticle system for antibacterial agent delivery. Literature reviews present abundant evidence of the utilization of nanoparticle systems based on a combination of alginate and chitosan for antibacterial agent delivery. Various experiments demonstrate enhanced antibacterial efficacy, including an increase in the inhibitory zone diameter, improvement in the minimum inhibitory concentration, and an enhancement in the bacterial reduction rate. This enhancement in efficacy occurs due to mechanisms involving increased solubility resulting from particle size reduction, prolonged release effects, and enhanced selectivity towards bacterial cell walls, stemming from ionic interactions between positively charged particles and teichoic acid on bacterial cell walls. However, clinical studies remain limited, and there are currently no marketed antibacterial drugs utilizing this system. Hence, expediting clinical efficacy validation is crucial to maximize its benefits promptly.


Subject(s)
Alginates , Anti-Bacterial Agents , Chitosan , Nanoparticles , Chitosan/chemistry , Chitosan/pharmacology , Alginates/chemistry , Alginates/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Humans , Nanoparticles/chemistry , Particle Size , Drug Liberation , Drug Carriers/chemistry , Microbial Sensitivity Tests , Animals , Drug Delivery Systems/methods , Solubility , Bacteria/drug effects
9.
Sci Rep ; 14(1): 12865, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834811

ABSTRACT

In this work, a novel procedure for immobilization of phosphomolybdic acid (PMA) on Magnetic polycalix[4]resorcinarene grafted to chitosan by EDTA (calix-EDTA-Cs) was reported. The heterogeneous nanocomposite (CoFe2O4@calix-EDTA-Cs@PMA) was applied an acid nanocatalyst for the synthesis of 5-aroyl-NH-1,3-oxazolidine-2-ones through the reaction of α-epoxyketones with sodium cyanate (NaOCN) in polyethylene glycol (PEG) as a green solvent under ultrasonic irradiation conditions. Some features of this work include quick reaction time, high reaction yield, easy separation of the catalyst, thermal stability, and eco-friendly.

10.
Front Vet Sci ; 11: 1374923, 2024.
Article in English | MEDLINE | ID: mdl-38840641

ABSTRACT

Introduction: Avian leukosis, a viral disease affecting birds such as chickens, presents significant challenges in poultry farming due to tumor formation, decreased egg production, and increased mortality. Despite the absence of a commercial vaccine, avian leukosis virus (ALV) infections have been extensively documented, resulting in substantial economic losses in the poultry industry. This study aimed to develop alginate-chitosan composite microspheres loaded with ALV-J Gp85 protein (referred to as aCHP-gp85) as a potential vaccine candidate. Methods: Sodium alginate and chitosan were utilized as encapsulating materials, with the ALV-J Gp85 protein serving as the active ingredient. The study involved 45 specific pathogen-free (SPF) chickens to evaluate the immunological effectiveness of aCHP-gp85 compared to a traditional Freund adjuvant-gp85 vaccine (Freund-gp85). Two rounds of vaccination were administered, and antibody levels, mRNA expression of immune markers, splenic lymphocyte proliferation, and immune response were assessed. An animal challenge experiment was conducted to evaluate the vaccine's efficacy in reducing ALV-J virus presence and improving clinical conditions. Results: The results demonstrated that aCHP-gp85 induced a significant and sustained increase in antibody levels compared to Freund-gp85, with the elevated response lasting for 84 days. Furthermore, aCHP-gp85 significantly upregulated mRNA expression levels of key immune markers, notably TNF-α and IFN-γ. The application of ALV-J Gp85 protein within the aCHP-gp85 group led to a significant increase in splenic lymphocyte proliferation and immune response. In the animal challenge experiment, aCHP-gp85 effectively reduced ALV-J virus presence and improved clinical conditions compared to other groups, with no significant pathological changes observed. Discussion: The findings suggest that aCHP-gp85 elicits a strong and prolonged immune response compared to Freund-gp85, indicating its potential as an innovative ALV-J vaccine candidate. These results provide valuable insights for addressing avian leukosis in the poultry industry, both academically and practically.

11.
J Parasit Dis ; 48(2): 381-399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840868

ABSTRACT

Schistosomiasis is one of the most common causes of morbidity and mortality from parasitic diseases. Mass treatment has proven to be insufficient because of repeated infection after treatment and the appearance of strains resistant to drug therapy. Hence, immunization is a new approach to control the disease and limit the pathological consequences of schistosomiasis. To evaluate the prophylactic effect of Cercarial antigen (CAP) loaded on chitosan nanoparticles (CSNPs) as a potential vaccine against Schistosoma mansoni-infected mice. 130 mice divided into 2 groups were used: Group I: Control groups (50 mice) subdivided into subgroup Ia (10 mice): Non-infected mice (normal control), subgroup Ib (20 mice): Schistosoma infected mice (infected control) and subgroup Ic (20 mice): Non-infected mice receiving NPs only. Group II: Vaccinated group (80 mice) subdivided equally into subgroup IIa (CAP): Received cercarial antigen and subgroup IIb (CAP + CSNP): Received cercarial antigen loaded on chitosan NPs then both vaccinated groups were infected with S. mansoni 3 weeks following the initial vaccination dose. CAP + CSNP and CAP groups showed significant reduction in adult worms count, hepatic egg count, hepatic granulomas number and size in comparison to the infected control group. Elevation of serum IgG and IgM levels, CD4+ and CD8+ T cell frequencies, IL-4, IL-10 and INF-γ levels was more significant in CAP + CSNP group than CAP group. CAP + CSNP is a promising new preparation of Schistosomal antigens that gave better results than immunization with CAP alone. CSNPs enhanced the immune and protective effect of CAP as validated by parasitological, histopathological and immunohistochemical studies.

12.
Front Chem ; 12: 1402870, 2024.
Article in English | MEDLINE | ID: mdl-38841337

ABSTRACT

The healing of damaged skin is a complex and dynamic process, and the multi-functional hydrogel dressings could promote skin tissue healing. This study, therefore, explored the development of a composite multifunctional hydrogel (HDCP) by incorporating the dopamine modified hyaluronic acid (HA-DA) and phenylboronic acid modified chitosan (CS-PBA) crosslinked using boric acid ester bonds. The integration of HA-DA and CS-PBA could be confirmed using the Fourier transform infrared spectrometer and 1H nuclear magnetic resonance analyses. The fabricated HDCP hydrogels exhibited porous structure, elastic solid behavior, shear-thinning, and adhesion properties. Furthermore, the HDCP hydrogels exhibited antibacterial efficacy against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Subsequently, the cytocompatibility of the HDCP hydrogels was verified through CCK-8 assay and fluorescent image analysis following co-cultivation with NIH-3T3 cells. This research presents an innovative multifunctional hydrogel that holds promise as a wound dressing for various applications within the realm of wound healing.

13.
Heliyon ; 10(11): e31823, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845862

ABSTRACT

In drug delivery, it is common to use porous particles as carrier media, instead of dense particles, due to their high specific surface area and available entrapment volume, which allows a higher amount of drug to be encapsulated and then released. Chitosan microparticles are extensively used in drug delivery, but porous chitosan microparticles are scarcely reported. In this work, the preparation of porous chitosan microparticles using membrane emulsification is addressed, a technology that involves mild operating conditions and less energy consumption than traditional methods (such as ultrasound), and with higher control of the particle size. The dense structure is obtained by a water-in-oil emulsion. The porous structure is obtained by a gas-in-water-in-oil G/W/O double emulsion, where argon bubbles get entrapped in an aqueous chitosan solution that is further emulsified in a paraffin/petroleum ether mixture. Porous chitosan particles were obtained with sizes of 7.7 ± 1.6 µm, which was comparable with dense chitosan particles (6.2 ± 2.3 µm). The pore structure was optimized by varying the argon flow rate, being optimized at 0.24 L h-1. The impact of drug loading by adsorption or encapsulation, and of the drug release behaviour when using porous and dense particles were assessed, using the protein bovine serum albumin (BSA) as a model drug. The results showed that by encapsulating BSA the loading efficiency was above 95 % for both types of particles, with the release being slightly slower for the dense particles. As for the adsorbed BSA, the loading efficiency was significantly higher for porous particles - 70 % - against the 40 % for dense particles. Porous chitosan particles were successfully obtained using the membrane emulsification technology and showed that these carriers are advantageous regarding drug loading and release.

14.
Stem Cell Res Ther ; 15(1): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824568

ABSTRACT

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.


Subject(s)
Adipose Tissue , Chitosan , Mesenchymal Stem Cells , Microspheres , Nerve Regeneration , Rats, Sprague-Dawley , Chitosan/chemistry , Nerve Regeneration/physiology , Animals , Rats , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Sciatic Nerve/physiology , Porosity , Tissue Scaffolds/chemistry , Male , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Cells, Cultured
15.
Heliyon ; 10(10): e31617, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38826735

ABSTRACT

The detection of ampicillin plays a crucial role in managing and monitoring its usage and resistance. This study introduces a simple and effective biosensor for ampicillin detection, utilizing the unique absorbance features of Mn-doped ZnS capped by chitosan micromaterials in conjunction with ß-lactamase activity. The biosensors can detect ampicillin concentrations from 13.1 to 72.2 µM, with a minimum detection limit of 2.93 µM for sensors based on 300 mg/L of the sensing material. In addition, these sensors show high specificity for ampicillin over other antibiotics such as penicillin, tetracycline, amoxicillin, cephalexin, and a non-antibiotic-glucose. This specificity is demonstrated by an enhancing effect when beta-lactamase is used, as opposed to a quenching effect observed at 340 nm in the absorbance spectrum when no beta-lactamase is present. This research highlights the potential of affordable chitosan-capped Mn-doped ZnS micromaterials for detecting ampicillin through simple absorbance measurements, which could improve the monitoring of antibiotics in both clinical and environmental settings.

16.
Clin Cosmet Investig Dent ; 16: 179-189, 2024.
Article in English | MEDLINE | ID: mdl-38827118

ABSTRACT

Purpose: The purpose of this study was to synthesize and structurally characterize four ant nest membranes in four different concentrations and determine the best concentration that could potentially be used as an alternative material for the production of new collagen barrier membranes. Materials and Methods: Membranes were created by mixing ant nest extracts at various concentrations of 0.5%, 1%, 1.5%, and 2%, as well as collagen, chitosan, and Polyvinyl Alcohol (PVA) using a film casting. A Universal Testing Machine (UTM) was used to evaluate mechanical properties including elastic modulus, tensile strength, maximum elongation, elongation at break, and maximum force. Water absorption was performed, FTIR was used for functional group identification, and morphology was examined using SEM. Additionally, EDS was used to identify the composition and distribution of elements in membranes. Statistical analysis was conducted using ANOVA (analysis of variance) and post hoc testing with a significance level of p <0.01 for quantitative data. Results: The results showed that the mechanical properties produced the following mean (standard deviation): elastic modulus 0.87 Mpa (0.11), tensile strength 16.32 N/mm2 (2.46), maximum elongation 4.96% (1.72), elongation at break 5.23% (1.87), and maximum force 22.50 N (5.06). The average water absorption capacity of all four membranes had a p-value <0.01. FTIR spectrum showed various peaks corresponding to functional groups, while SEM results indicated a homogeneous mixture. EDS analysis confirmed that the addition of ant plant extract at 0.5%, 1%, and 1.5% resulted in the presence of elements C, O, and Ca. Meanwhile, membranes prepared with 2% concentration had a different composition, namely C, O, Ca, and Na. Conclusion: Increasing the concentration of ant nest affects the values of the membrane's mechanical properties parameters, including the elastic modulus (0.87 Mpa), tensile strength (16.32 N/mm2), maximum elongation (4.96%), elongation at break (5.23%), and maximum force (22.50 N). The average membrane absorption of water (p value <0.01) was also affected. SEM images showed homogeneous mixing, and membrane EDS results consisted of C, O, and Ca composition. However, there was no effect on FTIR functional groups. The anthill membrane with a 1% concentration has the potential to serve as an alternative membrane in guided tissue regeneration.

17.
Iran J Biotechnol ; 22(1): e3612, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38827340

ABSTRACT

Background: Bacterial infection remains the most frequent complication of burn injury, which can lead to sepsis, even if antibiotics are used topically and systemically. Pseudomonas aeruginosa (P. aeruginosa) is the main causative agent in many cases. The emergence of antibiotic-resistant strains in recent years has increased the need to find novel alternative therapies, such as probiotics. Therefore, this study aimed to examine the antimicrobial properties of probiotic cell-free supernatant (CFS), along with the potential use of a chitosan scaffold both as an antimicrobial agent and as a carrier for the delivery of these complexes. Objective: Evaluation of the antimicrobial properties of cell-free soluble factors of probiotic bacteria both alone and in combination with chitosan scaffolds. Materials and Methods: Nine isolates of P. aeruginosa previously identified by standard diagnostic tests were investigated. The antimicrobial effects of probiotics in the form of Pedilact® oral drop which contained three probiotic strains, Kidilact® sachet, which contained seven probiotic strains, and strains of Lactobacillus casei (L. casei) and Lactobacillus acidophilus (L. acidophilus) isolated from yogurt were studied by an agar well diffusion assay and by using CFS harvested at various growth stages, without pH neutralization. Chitosan with different concentrations of glutaraldehyde (GA) as a crosslinking agent was fabricated to produce a suitable scaffold for loading cell-free supernatants of probiotic strains. The scaffolds were then characterized using scanning electron microscopy. The antimicrobial properties of the CFS, chitosan, and chitosan scaffolds loaded with CFS were analyzed against MDR P. aeruginosa. Results: In the agar well diffusion assay, CFS obtained from probiotic strains effectively inhibited the growth of a clinical strain of P. aeruginosa. This effect was observed when CFS was assessed without pH neutralization. Kidilact® was the most promising synbiotic formulation based on its inhibitory activity. The chitosan scaffold was successfully fabricated, as shown by SEM, and its structure was not affected by acidic CFS. The fabricated scaffolds were able to deliver CFS and, interestingly, antibacterial activity against P. aeruginosa when CFS was loaded on the chitosan scaffold was enhanced significantly. Conclusion: The results of this study showed chitosan scaffold loaded with cell-free probiotics metabolites can be considered to be a promising antimicrobial dressing in wound healing applications.

18.
Food Chem ; 455: 139923, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38833855

ABSTRACT

This research aimed to develop a novel, effective, and stable delivery system based on zein (ZE), sodium caseinate (SC), and quaternary ammonium chitosan (HACC) for curcumin (CUR). The pH-driven self-assembly combined with electrostatic deposition methods were employed to construct CUR-loaded ZE-SC nanoparticles with HACC coating (ZE-SC@HACC). The optimized nanocomposite was prepared at ZE:SC:HACC:CUR mass ratios of 1:1:2:0.1, and it had encapsulation efficiency of 89.3%, average diameter of 218.2 nm, and ζ-potential of 40.7 mV. The assembly of composites and encapsulation of CUR were facilitated primarily by hydrophobic, hydrogen-bonding, and electrostatic interactions. Physicochemical stability analysis revealed that HACC coating dramatically enhanced ZE-SC nanoparticles' colloidal stability and CUR's resistance to chemical degradation. Additionally, antioxidant activity and simulated digestion results indicated that CUR-ZE-SC@HACC nanoparticles showed higher free radical scavenging capacity and bio-accessibility of CUR than CUR-ZE-SC nanoparticles and free CUR. Therefore, the ZE-SC@HACC nanocomposite is an effective and viable delivery system for CUR.

19.
J Nanobiotechnology ; 22(1): 323, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849931

ABSTRACT

BACKGROUND: The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS: The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION: Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.


Subject(s)
Chitosan , Emulsions , Hydrogels , Metal Nanoparticles , Quercetin , Silver , Skin , Wound Healing , Quercetin/chemistry , Quercetin/pharmacology , Wound Healing/drug effects , Chitosan/chemistry , Animals , Emulsions/chemistry , Mice , Humans , Skin/drug effects , Skin/injuries , Metal Nanoparticles/chemistry , Silver/chemistry , Hydrogels/chemistry , Biocompatible Materials/chemistry , Bandages , Drug Liberation , Drug Delivery Systems/methods , Cellulose/chemistry , Male , Regeneration/drug effects , HaCaT Cells , Oxidation-Reduction , Methylgalactosides
20.
Int J Biol Macromol ; 273(Pt 1): 133000, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851618

ABSTRACT

Basil (Ocimum sanctum) leaves, commonly known as holy basil, have various health benefits due to their rich phytochemical content. However, fresh basil leaves face challenges related to their perishability and short shelf life. This study explores the use of edible coating, specifically chitosan, to extend the shelf life of basil leaves. Then basil leaves with chitosan coating were dried using microwave-assisted drying (MAD) method with variations of microwave power (136, 264, 440, and 616 W), mass of basil leaves (5, 10, and 15 g), and chitosan concentration (0, 2.5, and 5 %). The purpose of this study is to analyze the color, effective moisture diffusivity, and drying kinetics. Five mathematical models and seven error functions were used. The Avhad and Marchetti Model was identified as the most suitable model to describe the drying kinetics of basil leaves with chitosan coating. The Deff value increased with decreasing mass of basil leaves, decreasing chitosan concentration, and increasing microwave power. Deff values ranged from 0.001 to 0.002 m2/s. The thickness of the basil leaves also played a role in the fluctuation of Deff values. The highest ΔE value was obtained by 5 % concentration of chitosan. The chitosan coating, especially at a concentration of 2.5 %, showed discoloration indicating better preservation of the original color of basil leaves. In conclusion, this study shows that chitosan coating and MAD are effective strategies to extend the shelf life of basil leaves and can provide valuable insights for future applications in leaf drying or thin layer drying processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...