Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Front Immunol ; 15: 1389551, 2024.
Article in English | MEDLINE | ID: mdl-38966642

ABSTRACT

Introduction: Pathogenesis of cutaneous leishmaniases involves parasite growth, persistent inflammation, and likely participation of lipoproteins (LP). The cholesteryl ester transfer protein (CETP), involved in LP remodeling, has been shown to participate in the inflammatory response and the evolution of infectious conditions. Methods: We evaluated the impact of the presence of CETP on infection by Leishmania (L.) amazonensis in an experimental model of cutaneous leishmaniasis using C57BL6/J mice transgenic for human CETP (CETP), having as control their littermates that do not express the protein, wild-type (WT) mice. The progression of the lesion after infection in the footpad was monitored for 12 weeks. Two groups of animals were formed to collect the plantar pad in the 4th and 12th week post-infection. Results: The lesion increased from the 3rd week onwards, in both groups, with a gradual decrease from the 10th week onwards in the CETP group compared to the WT group, showing a reduction in parasitism and an improvement in the healing process, a reduction in CD68+ cells, and an increase in CD163+ and CD206, characterizing a population of M2 macrophages. A reduction in ARG1+ cells and an increase in INOS+ cells were observed. During infection, the LP profile showed an increase in triglycerides in the VLDL fraction in the CETP group at 12 weeks. Gene expression revealed a decrease in the CD36 receptor in the CETP group at 12 weeks, correlating with healing and parasite reduction. In vitro, macrophages derived from bone marrow cells from CETP mice showed lower parasite load at 48 h and, a reduction in arginase activity at 4 h accompanied by increased NO production at 4 and 24 h compared to WT macrophages, corroborating the in vivo findings. Discussion: The data indicate that the presence of CETP plays an important role in resolving Leishmania (L.) amazonensis infection, reducing parasitism, and modulating the inflammatory response in controlling infection and tissue repair.


Subject(s)
Cholesterol Ester Transfer Proteins , Leishmaniasis, Cutaneous , Macrophages , Mice, Inbred C57BL , Mice, Transgenic , Animals , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Humans , Disease Progression , Disease Models, Animal
2.
Cureus ; 16(5): e59942, 2024 May.
Article in English | MEDLINE | ID: mdl-38854305

ABSTRACT

Background and objectives Ginsenoside Re (Re), a protopanaxatriol-type saponin extracted from ginseng, is known to have potential cardioprotective effects; however, the mechanisms of Re in improving cardiac hypertrophy have not been fully elucidated. This study aimed to investigate the therapeutic effects and underlying mechanism of Re on isoproterenol (ISO)-induced cardiac hypertrophy in vivo and in vitro. Methods Rats were intraperitoneally injected with ISO 30 mg/kg thrice daily for 14 consecutive days to induce cardiac hypertrophy, and these rats were treated with atorvastatin (ATC, 20 mg/kg) or Re (20 mg/kg or 40 mg/kg) once daily for three days in advance until the end of the experiment. Heart weight index, hematoxylin and eosin staining, and hypertrophy-related fetal gene expression were measured to evaluate the effect of Re on cardiac hypertrophy in vivo. Meanwhile, the rat H9c2 cardiomyocyte hypertrophy model was induced by ISO 10 µM for 24 hours. Cell surface area and hypertrophy-related fetal gene expression were determined to assess the effect of Re on ISO-induced cardiomyocyte hypertrophy in vitro. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in both serum and cardiomyocytes were detected by enzymatic colorimetric assays. Furthermore, we chose cholesteryl ester transfer protein (CETP) as a target to explore the influence of Re on CETP expression in vivo and in vitro through real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay. Results Intraperitoneal administration of ISO into rats resulted in increases in cross-sectional cardiomyocyte area, the ratio of heart weight to body weight, the ratio of left ventricular weight to body weight, and the ratio of right ventricular weight to body weight, as well as reactivation of fetal genes; however, treatment with Re or ATC ameliorated most of these hypertrophic responses. Similarly, Re pronouncedly alleviated ISO-induced cardiomyocyte hypertrophy, as evidenced by a decreased cell surface area and downregulation of fetal genes. Moreover, our in vivo and in vitro data revealed that Re reduced TC, TG, and LDL-C levels, and enhanced HDL-C levels. Re improved cardiac hypertrophy mainly associated with the inhibition of mRNA level and protein expression of CETP, to an extent comparable to that of the classical CETP inhibitor, anacetrapib. Conclusions Our research found that CETP inhibition contributes to the protection of Re against ISO-induced cardiac hypertrophy, which provides evidence for the application of Re for cardiovascular disease treatments.

3.
BMC Chem ; 18(1): 95, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702788

ABSTRACT

Cholesteryl ester transfer protein (CETP) is a promising therapeutic target for cardiovascular diseases. It effectively lowers the low-density lipoprotein cholesterol levels and increases the high-density lipoprotein cholesterol levels in the human plasma. This study identified novel and highly potent CETP inhibitors using virtual screening techniques. Molecular docking and molecular dynamics (MD) simulations revealed the binding patterns of these inhibitors, with the top 50 compounds selected according to their predicted binding affinity. Protein-ligand interaction analyses were performed, leading to the selection of 26 compounds for further evaluation. A CETP inhibition assay confirmed the inhibitory activities of the selected compounds. The results of the MD simulations revealed the structural stability of the protein-ligand complexes, with the binding site remaining significantly unchanged, indicating that the five compounds (AK-968/40709303, AG-690/11820117, AO-081/41378586, AK-968/12713193, and AN-465/14952302) identified have the potential as active CETP inhibitors and are promising leads for drug development.

4.
J Atheroscler Thromb ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569868

ABSTRACT

AIMS: Obicetrapib is a highly selective cholesteryl ester transfer protein (CETP) inhibitor shown to reduce low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (apoB), when taken as monotherapy and in combination with ezetimibe on a background of statins, in clinical trials predominantly conducted in Northern European/Caucasian participants. We characterized the efficacy, safety, and tolerability of obicetrapib within an Asian-Pacific region population. METHODS: This double-blind, randomized, phase 2 trial examined obicetrapib 2.5, 5, and 10 mg/d, compared with placebo, for 8 weeks as an adjunct to stable statin therapy (atorvastatin 10 or 20 mg/d or rosuvastatin 5 or 10 mg/d) in Japanese men and women who had not achieved 2022 Japan Atherosclerosis Society Guidelines and had LDL-C >70 mg/dL or non-high-density lipoprotein cholesterol (non-HDL-C) >100 mg/dL and triglycerides (TG) <400 mg/dL. Endpoints included LDL-C, non-HDL-C, HDL-C, very low-density lipoprotein cholesterol, apolipoproteins, TG, steady state pharmacokinetics (PK) in obicetrapib arms, safety, and tolerability. RESULTS: In the 102 randomized subjects (mean age 64.8 y, 71.6% male), obicetrapib significantly lowered median LDL-C, apoB, and non-HDL-C, and raised HDL-C at all doses; responses in the obicetrapib 10 mg group were -45.8%, -29.7%, -37.0%, and +159%, respectively (all p<0.0001 vs. placebo). The PK profile demonstrated near complete elimination of drug by 4 weeks. Obicetrapib was well tolerated and there were no adverse safety signals. CONCLUSIONS: All doses of obicetrapib taken as an adjunct to stable statin therapy significantly lowered atherogenic lipoprotein lipid parameters, showed near complete elimination of drug by 4 weeks, and were safe and well tolerated in a Japanese population, similar to previous studies of obicetrapib conducted in predominantly Caucasian participants.

5.
Article in English | MEDLINE | ID: mdl-38424428

ABSTRACT

BACKGROUND: Hyperlipidemia is characterized by an abnormally elevated serum cholesterol, triglycerides, or both. The relationship between an elevated level of LDL and cardiovascular diseases is well-established. Cholesteryl ester transfer protein (CETP) is an enzyme that moves cholesterol esters and triglycerides between LDL, VLDL, and HDL. CETP inhibition leads to a reduction in cardiovascular disease by raising HDL and minimizing LDL. OBJECTIVE: This study synthesized ten meta-chlorinated benzene sulfonamides 6a-6j and explored their structure-activity relationship. METHODS: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and HR-MS. Moreover, cheminformatics analyses included pharmacophore mapping, LibDock studies, and cheminformatics characterization using 2-dimensional (2D) molecular descriptors and principal component analysis. RESULTS: Based on in vitro functional CETP assays, compounds 6e, 6i, and 6j demonstrated the strongest inhibitory activities against CETP, reaching 100% inhibition. The inhibitory activity of compounds 6a-6d and 6f-6h ranged from 47.5% to 96.5% at 10 µM concentration. Pharmacophore mapping results suggested CETP inhibitory action, while the docking scores and calculated binding energies predicted favoring binding at the CETP active site. Best-scoring docking poses predicted critical hydrophobic features corresponding to key interactions with His232 and Cys13. Cheminformatics analysis using 2D molecular descriptors indicated that the synthesized compounds span various physicochemical properties and drug-likeness. CONCLUSION: It was found that a chloro moiety at the ortho-position, or a nitro group at the meta and para-positions, improves the CETP inhibitory activity of synthesized analogs. Computational studies suggest the formation of stable ligand-protein complexes between compounds 6a- 6j and CETP.

6.
Curr Atheroscler Rep ; 26(2): 35-44, 2024 02.
Article in English | MEDLINE | ID: mdl-38133847

ABSTRACT

PURPOSE OF REVIEW: To discuss the history of cardiovascular outcomes trials of cholesteryl ester transfer protein (CETP) inhibitors and to describe obicetrapib, a next-generation, oral, once-daily, low-dose CETP inhibitor in late-stage development for dyslipidemia and atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS: Phase 1 and 2 trials have evaluated the safety and lipid/lipoprotein effects of obicetrapib as monotherapy, in conjunction with statins, on top of high-intensity statins (HIS), and with ezetimibe on top of HIS. In ROSE2, 10 mg obicetrapib monotherapy and combined with 10 mg ezetimibe, each on top of HIS, significantly reduced low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B, total LDL particles, small LDL particles, small, dense LDL-C, and lipoprotein (a), and increased HDL-C. Phase 3 pivotal registration trials including a cardiovascular outcomes trial are underway. Obicetrapib has an excellent safety and tolerability profile and robustly lowers atherogenic lipoproteins and raises HDL-C. As such, obicetrapib may be a promising agent for the treatment of ASCVD.


Subject(s)
Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Cholesterol Ester Transfer Proteins , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cholesterol, LDL , Cholesterol, HDL , Atherosclerosis/drug therapy , Lipoproteins , Ezetimibe
7.
Front Cardiovasc Med ; 10: 1260679, 2023.
Article in English | MEDLINE | ID: mdl-38146445

ABSTRACT

Aims: This meta-analysis aimed to assess the association of the polymorphisms of cholesterol ester transfer protein (CETP) rs708272 (G>A), rs5882 (G>A), rs1800775 (C>A), rs4783961 (G>A), rs247616 (C>T), rs5883 (C>T), rs1800776 (C>A), and rs1532624 (C>A) with coronary artery disease (CAD) and the related underlying mechanisms. Methods: A comprehensive search was performed using five databases such as PubMed, EMBASE, Web of Science, Cochrane Library and Scopus to obtain the appropriate articles. The quality of the included studies was assessed by the Newcastle-Ottawa Scale. The statistical analysis of the data was performed using STATA 17.0 software. The association between CETP gene polymorphisms and risk of CAD was estimated using the pooled odds ratio (OR) and 95% confidence interval (95% CI). The association of CETP gene polymorphisms with lipids and with CETP levels was assessed using the pooled standardized mean difference and corresponding 95% CI. P < 0.05 was considered statistically significant. Results: A total of 70 case-control studies with 30,619 cases and 31,836 controls from 46 articles were included. The results showed the CETP rs708272 polymorphism was significantly associated with a reduced risk of CAD under the allele model (OR = 0.846, P < 0.001), the dominant model (OR = 0.838, P < 0.001) and the recessive model (OR = 0.758, P < 0.001). AA genotype and GA genotype corresponded to higher high-density lipoprotein cholesterol (HDL-C) concentrations in the blood compared with GG genotype across the studied groups (all P < 0.05). The CETP rs5882 and rs1800775 polymorphisms were not significantly associated with CAD under the allele model (P = 0.802, P = 0.392), the dominant model (P = 0.556, P = 0.183) and the recessive model (P = 0.429, P = 0.551). Similarly, the other mentioned gene polymorphisms were not significantly associated with CAD under the three genetic models. Conclusions: The CETP rs708272 polymorphism shows a significant association with CAD, and the carriers of the allele A are associated with a lower risk of CAD and higher HDL-C concentrations in the blood compared to the non-carriers. The CETP rs5882, rs1800775, rs4783961, rs247616, rs5883, rs1800776, and rs1532624 are not significantly associated with CAD. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023432865, identifier: CRD42023432865.

8.
Mol Neurodegener ; 18(1): 86, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974180

ABSTRACT

This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.


Subject(s)
Alzheimer Disease , Cholesterol Ester Transfer Proteins , Humans , Mice , Animals , Cholesterol Esters/metabolism , Cholesterol, LDL , Endothelial Cells/metabolism , Neuroinflammatory Diseases , Lipoproteins/metabolism , Lipoproteins, HDL/metabolism , Triglycerides
9.
Pharmacol Res ; 197: 106972, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37898443

ABSTRACT

The main role of cholesteryl ester transfer protein (CETP) is the transfer of cholesteryl esters and triglycerides between high-density lipoprotein (HDL) particles and triglyceride-rich lipoprotein and low-density lipoprotein (LDL) particles. There is a long history of investigations regarding the inhibition of CETP as a target for reducing major adverse cardiovascular events. Initially, the potential effect on cardiovascular events of CETP inhibitors was hypothesized to be mediated by their ability to increase HDL cholesterol, but, based on evidence from anacetrapib and the newest CETP inhibitor, obicetrapib, it is now understood to be primarily due to reducing LDL cholesterol and apolipoprotein B. Nevertheless, evidence is also mounting that other roles of HDL, including its promotion of cholesterol efflux, as well as its apolipoprotein composition and anti-inflammatory, anti-oxidative, and anti-diabetic properties, may play important roles in several diseases beyond cardiovascular disease, including, but not limited to, Alzheimer's disease, diabetes, and sepsis. Furthermore, although Mendelian randomization analyses suggested that higher HDL cholesterol is associated with increased risk of age-related macular degeneration (AMD), excess risk of AMD was absent in all CETP inhibitor randomized controlled trial data comprising over 70,000 patients. In fact, certain HDL subclasses may, in contrast, be beneficial for treating the retinal cholesterol accumulation that occurs with AMD. This review describes the latest biological evidence regarding the relationship between HDL and CETP inhibition for Alzheimer's disease, type 2 diabetes mellitus, sepsis, and AMD.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Sepsis , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Cholesterol, HDL , Cholesterol Ester Transfer Proteins , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Alzheimer Disease/complications , Cholesterol/metabolism , Apolipoproteins/metabolism , Sepsis/complications
10.
Article in English | MEDLINE | ID: mdl-37855352

ABSTRACT

BACKGROUND: Hyperlipidemia, a cardiovascular disease risk factor, is characterized by a rise in low-density lipoprotein (LDL), triglycerides and total cholesterol, and a decrease in high-density lipoprotein (HDL). Cholesteryl ester transfer protein (CETP) enables the transfer of cholesteryl ester from HDL to LDL and very low-density lipoprotein. OBJECTIVE: CETP inhibition is a promising approach to prevent and treat cardiovascular diseases. By inhibiting lipid transport activity, it increases HDL levels and decreases LDL levels. METHOD: Herein, diaryl sulfonamides 6a-6g and 7a-7g were prepared, and the structure of these compounds was fully determined using different spectroscopic techniques. RESULTS: These compounds underwent biological evaluation in vitro and showed different inhibitory activities against CETP; 100% inhibitory activity was observed for compounds 7a-7g, while activities of compounds 6a-6g ranged up to 42.6% at 10 µM concentration. Pharmacophore mapping agreed with the bioassay results where the four aromatic ring compounds 7a-7g possessed higher fit values against Hypo4/8 and the shape-complemented Hypo4/8 in comparison to compounds 6a-6g. CONCLUSION: Docking of the synthesized compounds using libdock and ligandfit engines revealed that compounds 7a-7g formed п-п stacking and hydrophobic interactions with the binding pocket, while compounds 6a-6g missed these hydrophobic interactions with amino acids Leu206, Phe265, and Phe263.

11.
Biophys Chem ; 301: 107093, 2023 10.
Article in English | MEDLINE | ID: mdl-37639752

ABSTRACT

Cholesteryl Ester Transfer Protein (CETP) is a plasma glycoprotein that intervenes the reverse cholesterol transport (RCT) by equimolar exchange of Cholesteryl esters (CE) and Triglycerides (TGs) between anti-atherogenic High-Density Lipoproteins (HDLs) and pro-atherogenic Low-Density Lipoproteins (LDLs) resulting in the increased concentration of CEs in LDL. This is a potential cause for the formation of atherosclerotic plaques in blood vessels leading to fatality. Therefore, blocking the function of CETP has emerged as a novel strategy for suppressing atherosclerotic plaques. The crystal structure of CETP revealed two Cholesteryl esters (CEs) in the hydrophobic tunnel and two phospholipids (PLs) plugged on the concave surface. Previous lipid transfer assay experimental studies have shown a substantial reduction in the neutral lipid transfer in [R201S] and [I443W, V198W] mutants. However, the protein conformational arrangements due to the mutations present in the CETP system leading to a decrease in the transfer rate of neutral lipids is not explored. Thus, I explored the reason behind the decreased transfer rate in mutants using molecular dynamics (MD) simulations and free energy calculations. Resulting evidences show that R201S mutant induces unfavorable bending angle to CETP with a decreased binding efficiency between N-terminal phospholipid of CETP with S201. Also, an unfavorable conformation state of TGs is formed which makes them difficult to transfer across CETP. Likewise, [I443W, V198W] mutant induces unfavorable CE, TG, and bending angle conformation to CETP impeding neutral lipid transfer. Thus, my results provide sufficient insights on the causation for a decreased transfer rate as reported earlier. The detailed understanding obtained here could help in developing a new strategy in preventing the function of CETP by blocking the role of potential hot spot residues.


Subject(s)
Cholesterol Ester Transfer Proteins , Plaque, Atherosclerotic , Humans , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Esters , Mutation , Biological Assay , Phospholipids
12.
Front Pharmacol ; 14: 1171937, 2023.
Article in English | MEDLINE | ID: mdl-37533630

ABSTRACT

High levels of plasma cholesterol, especially high levels of low-density lipoprotein cholesterol (LDL-C), have been associated with an increased risk of Alzheimer's disease. The cholesteryl ester transfer protein (CETP) in plasma distributes cholesteryl esters between lipoproteins and increases LDL-C in plasma. Epidemiologically, decreased CETP activity has been associated with sustained cognitive performance during aging, longevity, and a lower risk of Alzheimer's disease. Thus, pharmacological CETP inhibitors could be repurposed for the treatment of Alzheimer's disease as they are safe and effective at lowering CETP activity and LDL-C. Although CETP is mostly expressed by the liver and secreted into the bloodstream, it is also expressed by astrocytes in the brain. Therefore, it is important to determine whether CETP inhibitors can enter the brain. Here, we describe the pharmacokinetic parameters of the CETP inhibitor evacetrapib in the plasma, liver, and brain tissues of CETP transgenic mice. We show that evacetrapib crosses the blood-brain barrier and is detectable in brain tissue 0.5 h after a 40 mg/kg i.v. injection in a non-linear function. We conclude that evacetrapib may prove to be a good candidate to treat CETP-mediated cholesterol dysregulation in Alzheimer's disease.

13.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569628

ABSTRACT

Current structural and functional investigations of cholesteryl ester transfer protein (CETP) inhibitor design are nearly entirely based on a fully active mutation (CETPMutant) constructed for protein crystallization, limiting the study of the dynamic structural features of authentic CETP involved in lipid transport under physiological conditions. In this study, we conducted comprehensive molecular dynamics (MD) simulations of both authentic CETP (CETPAuthentic) and CETPMutant. Considering the structural differences between the N- and C-terminal domains of CETPAuthentic and CETPMutant, and their crucial roles in lipid transfer, we identified the two domains as binding pockets of the ligands for virtual screening to discover potential lead compounds targeting CETP. Our results revealed that CETPAuthentic displays greater flexibility and pronounced curvature compared to CETPMutant. Employing virtual screening and MD simulation strategies, we found that ZINC000006242926 has a higher binding affinity for the N- and C-termini, leading to reduced N- and C-opening sizes, disruption of the continuous tunnel, and increased curvature of CETP. In conclusion, CETPAuthentic facilitates the formation of a continuous tunnel in the "neck" region, while CETPMutant does not exhibit such characteristics. The ligand ZINC000006242926 screened for binding to the N- and C-termini induces structural changes in the CETP unfavorable to lipid transport. This study sheds new light on the relationship between the structural and functional mechanisms of CETP. Furthermore, it provides novel ideas for the precise regulation of CETP functions.


Subject(s)
Cholesterol Ester Transfer Proteins , Molecular Dynamics Simulation , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Lipids , Cholesterol Esters/metabolism
14.
J Clin Lipidol ; 17(4): 491-503, 2023.
Article in English | MEDLINE | ID: mdl-37277261

ABSTRACT

BACKGROUND: Obicetrapib, a selective cholesteryl ester transfer protein (CETP) inhibitor, reduces low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), lipoprotein particles, and apolipoproteins, when added to high-intensity statin in patients with dyslipidemia. OBJECTIVE: To evaluate the safety and lipid-altering efficacy of obicetrapib plus ezetimibe combination therapy as an adjunct to high-intensity statin therapy. METHODS: This double-blind, randomized, phase 2 trial administered 10 mg obicetrapib plus 10 mg ezetimibe (n = 40), 10 mg obicetrapib (n = 39), or placebo (n = 40) for 12 weeks to patients with LDL-C >70 mg/dL and triglycerides (TG) <400 mg/dL, on stable high-intensity statin. Endpoints included concentrations of lipids, apolipoproteins, lipoprotein particles, and proprotein convertase subtilisin kexin type 9 (PCSK9), safety, and tolerability. RESULTS: Ninety-seven patients were included in the primary analysis (mean age 62.6 years, 63.9% male, 84.5% white, average body mass index of 30.9 kg/m2). LDL-C decreased from baseline to week 12 by 63.4%, 43.5%, and 6.35% in combination, monotherapy, and placebo groups, respectively (p<0.0001 vs. placebo). LDL-C levels of <100, <70, and <55 mg/dL were achieved by 100%, 93.5%, and 87.1%, respectively, of patients taking the combination. Both active treatments also significantly reduced concentrations of non-HDL-C, apolipoprotein B, and total and small LDL particles. Obicetrapib was well tolerated and no safety issues were identified. CONCLUSION: The combination of obicetrapib plus ezetimibe significantly lowered atherogenic lipid and lipoprotein parameters, and was safe and well tolerated when administered on top of high-intensity statin to patients with elevated LDL-C.


Subject(s)
Anticholesteremic Agents , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Male , Middle Aged , Female , Ezetimibe/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Proprotein Convertase 9 , Anticholesteremic Agents/adverse effects , Cholesterol, LDL , Antibodies, Monoclonal, Humanized/therapeutic use , Cholesterol , Drug Therapy, Combination , Apolipoproteins , Double-Blind Method , Treatment Outcome
15.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37373432

ABSTRACT

Cholesteryl ester transfer protein (CETP) is known to influence HDL-C levels, potentially altering the profile of HDL subfractions and consequently cardiovascular risk (CVR). This study aimed to investigate the effect of five single-nucleotide polymorphisms (SNPs; rs1532624, rs5882, rs708272, rs7499892, and rs9989419) and their haplotypes (H) in the CETP gene on 10-year CVR estimated by the Systematic Coronary Risk Evaluation (SCORE), the Framingham Risk Score for Coronary Heart Disease (FRSCHD) and Cardiovascular Disease (FRSCVD) algorithms. Adjusted linear and logistic regression analyses were used to investigate the association of SNPs and 10 haplotypes (H1-H10) on 368 samples from the Hungarian general and Roma populations. The T allele of rs7499892 showed a significant association with increased CVR estimated by FRS. H5, H7, and H8 showed a significant association with increased CVR based on at least one of the algorithms. The impact of H5 was due to its effect on TG and HDL-C levels, while H7 showed a significant association with FRSCHD and H8 with FRSCVD mediated by a mechanism affecting neither TG nor HDL-C levels. Our results suggest that polymorphisms in the CETP gene may have a significant effect on CVR and that this is not mediated exclusively by their effect on TG and HDL-C levels but also by presently unknown mechanisms.


Subject(s)
Cardiovascular Diseases , Cholesterol Ester Transfer Proteins , Humans , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Haplotypes , Cardiovascular Diseases/genetics , Risk Factors , Cholesterol, HDL/metabolism , Polymorphism, Single Nucleotide , Heart Disease Risk Factors
16.
J Lipid Res ; 64(5): 100365, 2023 05.
Article in English | MEDLINE | ID: mdl-37004910

ABSTRACT

Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE-/- mice and apoE-/- mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; "apoE-/- SAA-TKO") with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE-/- mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE-/- mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE-/- SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE-/- mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.


Subject(s)
Atherosclerosis , Cholesterol Ester Transfer Proteins , Humans , Mice , Animals , Cholesterol Ester Transfer Proteins/genetics , Serum Amyloid A Protein/metabolism , Atherosclerosis/metabolism , Apolipoproteins E/metabolism , Aorta/metabolism
17.
Curr Atheroscler Rep ; 25(4): 155-166, 2023 04.
Article in English | MEDLINE | ID: mdl-36881278

ABSTRACT

PURPOSE OF REVIEW: Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS: Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Dyslipidemias , Humans , Cholesterol/metabolism , Cholesterol Ester Transfer Proteins , Cholesterol, HDL , Cholesterol, LDL , Dyslipidemias/drug therapy , Lipoproteins/metabolism
18.
J Lipid Res ; 64(1): 100316, 2023 01.
Article in English | MEDLINE | ID: mdl-36410424

ABSTRACT

The large HDL particles generated by administration of cholesteryl ester transfer protein inhibitors (CETPi) remain poorly characterized, despite their potential importance in the routing of cholesterol to the liver for excretion, which is the last step of the reverse cholesterol transport. Thus, the effects of the CETPi dalcetrapib and anacetrapib on HDL particle composition were studied in rabbits and humans. The association of rabbit HDL to the LDL receptor (LDLr) in vitro was also evaluated. New Zealand White rabbits receiving atorvastatin were treated with dalcetrapib or anacetrapib. A subset of patients from the dal-PLAQUE-2 study treated with dalcetrapib or placebo were also studied. In rabbits, dalcetrapib and anacetrapib increased HDL-C by more than 58% (P < 0.01) and in turn raised large apo E-containing HDL by 66% (P < 0.001) and 59% (P < 0.01), respectively. Additionally, HDL from CETPi-treated rabbits competed with human LDL for binding to the LDLr on HepG2 cells more than control HDL (P < 0.01). In humans, dalcetrapib increased concentrations of large HDL particles (+69%, P < 0.001) and apo B-depleted plasma apo E (+24%, P < 0.001), leading to the formation of apo E-containing HDL (+47%, P < 0.001) devoid of apo A-I. Overall, in rabbits and humans, CETPi increased large apo E-containing HDL particle concentration, which can interact with hepatic LDLr. The catabolism of these particles may depend on an adequate level of LDLr to contribute to reverse cholesterol transport.


Subject(s)
Anticholesteremic Agents , Humans , Rabbits , Animals , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/therapeutic use , Cholesterol/metabolism , Apolipoproteins E/metabolism , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol, HDL
19.
Med Chem ; 19(4): 393-404, 2023.
Article in English | MEDLINE | ID: mdl-36093822

ABSTRACT

BACKGROUND: Cardiovascular disease is one of the leading causes of death. Atherosclerosis causes arterial constriction or obstruction, resulting in acute cardiovascular illness. Cholesteryl ester transfer protein (CETP) facilitates reverse cholesterol transport. It supports the transfer of cholesteryl ester from HDL to LDL and VLDL. Inhibition of CETP by drugs limits cardiovascular disease by decreasing LDL and increasing HDL. OBJECTIVES: In this study, fourteen trifluoromethyl substituted benzene sulfonamides 6a-6g and 7a-7g were prepared. METHODS: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR and HR-MS. They were in vitro tested to estimate their CETP inhibitory activity. RESULTS: In vitro biological evaluation showed that compounds 7d-7f had the highest inhibitory activity with 100% inhibition, while the inhibition observed by compounds 6a-6g, 7a-7c and 7g ranged from 2%-72% at 10 µM concentration. It was found that the addition of a fourth aromatic ring significantly improved the activity, which may be due to the hydrophobic nature of CETP. Also, the presence of ortho-chloro, meta-chloro and para-methyl substituents results in high inhibitory activity. CONCLUSION: The induced fit docking studies revealed that hydrophobic interaction guided ligand/ CETP binding interaction in addition to H-bond formation with Q199, R201, and H232. Furthermore, pharmacophore mapping demonstrated that this series satisfies the functionalities of the current CETP inhibitors.


Subject(s)
Cardiovascular Diseases , Cholesterol Ester Transfer Proteins , Humans , Cholesterol Ester Transfer Proteins/metabolism , Sulfonamides/pharmacology , Pharmacophore
20.
Metab Syndr Relat Disord ; 21(1): 41-47, 2023 02.
Article in English | MEDLINE | ID: mdl-36318507

ABSTRACT

Background: Nonalcoholic fatty liver disease (NAFLD) is generated by the interaction between environmental and genetic factors, and the presence of metabolic alterations. Since Taq1B cholesteryl ester transfer protein (CETP) polymorphism is associated with abnormal serum lipid values, it could be related to NAFLD. The aim of this study was to determine the role of the Taq1B CETP polymorphism with serum lipids, anthropometric variables, and the extent of steatosis in Mexican-mestizo women with gallstone disease (GD). Methods: Sixty-two women were enrolled in this cross-sectional study. Serum lipids were determined by dry chemistry. The Taq1B CETP polymorphism was determined by allelic discrimination. CETP serum levels were measured by enzyme-linked immunosorbent assay, and the extent of steatosis with a biopsy staining with Oil-Red-O. Results: Subjects with the B1B2/B2B2 genotype had higher percentage of degree of steatosis than those with B1B1 (11.95% vs. 2.19%, P = 0.008). The B1B2/B2B2 genotype (odds ratio [OR] 3.90 [confidence interval {CI} 95% 1.891-8.536], P = 0.04) and an elevated low-density lipoproteins (LDL)-cholesterol (OR 3.54 [CI 95% 1.042-2.058, P = 0.039) significantly increase the risk for NAFLD. Conclusions: This study provides evidence that the B1B2/B2B2 genotype of CETP and the elevated LDL-cholesterol serum levels increase the risk of NAFLD in women with GD.


Subject(s)
Cholelithiasis , Non-alcoholic Fatty Liver Disease , Humans , Female , Cholesterol Ester Transfer Proteins/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Cross-Sectional Studies , Genotype , Cholesterol, HDL , Lipoproteins, LDL
SELECTION OF CITATIONS
SEARCH DETAIL
...