Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 986
Filter
1.
Se Pu ; 42(8): 805-811, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086250

ABSTRACT

Tobacco flavor, an important tobacco additive, is an essential raw material in cigarette production that can effectively improve the quality of tobacco products, add aroma and taste, and increase the suction flavor. The quality consistency of tobacco flavors affects the quality stability of branded cigarettes. Therefore, the quality control of tobacco flavors is a major concern for cigarette and flavor manufacturers. Physical and chemical indices, odor similarity, and sensory efficacy are employed to evaluate the quality of tobacco flavors, and the analysis of chemical components in tobacco flavors is usually conducted using gas chromatography (GC) and high performance liquid chromatography (HPLC). However, because the composition of tobacco flavors is complex, their quality cannot be fully reflected using a single component or combination of components. Therefore, establishing an objective analytical method for the quality control of tobacco flavors is of extreme importance. Chromatographic fingerprint analysis is routinely used for the discriminative analysis of tobacco flavors. Chromatographic fingerprints refer to the general characteristics of the concentration profiles of different chemical compounds. In the daily procurement process, fingerprints established by GC and HPLC are effective for the evaluation and identification of tobacco flavors. However, given continuous improvements in aroma-imitation technology, some flavors with high similarity cannot be directly distinguished using existing methods. In this study, a method for the determination of organic acids and inorganic anions in tobacco flavors based on ion chromatography (IC) was developed to ensure the quality consistency of tobacco flavors. A 1.0 g sample of tobacco flavors and 10 mL of deionized water were mixed and vibrated for 30 min. The aqueous sample solution was passed through a 0.45 µm membrane filter and RP pretreatment column in succession to eliminate interferences and then subjected to IC. Standard solutions containing nine organic acids and seven inorganic anions were used to identify the anions in the tobacco flavors, and satisfactory reproducibility was obtained. The relative standard deviations (RSDs) for retention times and peak areas were <0.71% and <6.02%, respectively. The chromatographic fingerprints of four types of tobacco flavors (samples A-D) from five different batches were obtained. Nine tobacco flavor samples from different manufacturers (samples AY1-AY3, BY1-BY2, CY1-CY2, DY1-DY2) were also analyzed to obtain their chromatographic fingerprints. Hierarchical cluster and similarity analyses were used to evaluate the quality of tobacco flavors from different manufacturers. Hierarchical clustering refers to the process of subdividing a group of samples into clusters that exhibit a high degree of intracluster similarity and intercluster dissimilarity. The dendrograms obtained using SPSS 12.0 indicated good quality consistency among the samples in different batches. Samples AY3, BY2, CY2, and DY1 clustered with the batches of standard tobacco flavors. Therefore, hierarchical cluster analysis can effectively distinguish the quality of products from different manufacturers. The Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (version 2.0) was used to evaluate the similarity between the standard tobacco flavors and products from different manufacturers. Among the samples analyzed, samples AY3, BY2, CY2, and DY1 showed the highest similarity values (>97.7%), which was consistent with the results of the hierarchical cluster analysis. This finding indicates that IC combined with chromatographic fingerprint analysis could accurately determine the quality of tobacco flavors. GC combined with ultrasonic-assisted liquid-liquid extraction was also used to analyze the tobacco flavors and verify the accuracy of the proposed method. Compared with GC coupled with ultrasonic-assisted liquid-liquid extraction, IC demonstrated more significant quality differences among certain tobacco flavors.


Subject(s)
Nicotiana , Quality Control , Nicotiana/chemistry , Flavoring Agents/analysis , Tobacco Products/analysis , Chromatography, High Pressure Liquid/methods , Chromatography, Gas/methods , Chromatography, Ion Exchange/methods
2.
J Chromatogr A ; 1732: 465218, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39106663

ABSTRACT

We describe a non-chromatographic, ligand-free platform for the efficient purification of recombinant human lactoferrin (LF). The platform consists of a [metal:chelator] complex precipitate in the presence of osmotically active polyethylene glycol 6000 (PEG-6000). Purification is achieved in three stages. Following formation of the complex, LF is captured under neutral conditions by the aggregated complexes (Step I), a washing step follows (Step II) and then, (Step III) LF is extracted in pure form with 100 mM tribasic Na citrate buffer (pH 7). Of the four complexes investigated, [bathophenanthroline (batho)3:Fe2+] was determined to be the most efficient. LF is recovered with high yield (∼90%, by densitometry) and purity (≥97%, by SDS polyacrylamide gel electrophoresis (SDS-PAGE)) from an artificial contamination background comprising E. coli lysate proteins. Purified LF is demonstrated to be monomeric by dynamic light scattering (DLS); to preserve its native secondary structure by circular dichroism (CD) spectroscopy; and, as apo-LF, to efficiently inhibit bacterial growth. Process yield is not affected by a 45-fold increase in LF concentration from 0.2 to 9 mg/mL. We provide evidence that protein capture relies on [cation:π] interactions between the lysine and arginine residues of LF with the fully aromatic [(batho)3:Fe2+] complexes. The use of [metal:chelator] complex aggregates is demonstrated to provide an economical and efficient avenue for LF purification.

3.
Phytochem Anal ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103224

ABSTRACT

INTRODUCTION: Schisandrae Chinensis Fructus (SCF), a traditional Chinese medicine, has been used in treating virtual injury and strain since ancient times. The Chinese Pharmacopoeia reveals that SCF includes raw (RSCF) and vinegar-processed (VSCF) decoction pieces. OBJECTIVE: This study developed an effective method combining the electronic eye (e-eye), electronic tongue (e-tongue), and chemometrics to discriminate RSCF and VSCF from the perspective of chemical composition, color, and taste. MATERIAL AND METHODS: First, RSCF were collected and processed into VSCF, and their color parameters, e-tongue sensory properties, high-performance liquid chromatography (HPLC) and ultra-HPLC (UPLC) characteristic fingerprints, and nominal ingredients were determined. Multivariate statistical analyses, including principal component, linear discriminant, similarity, and partial least squares discriminant analyses, were conducted. RESULTS: HPLC and UPLC fingerprints were established, demonstrating a > 0.900 similarity. The content determination indicated increased schisantherin A, schisantherin B, and schisandrin A contents in VSCF. The e-eye data demonstrated a > 1.5 total color difference before and after processing ΔE*ab, indicating the significantly changed sample color and appearance before and after processing. The e-tongue technology was used to quantitatively characterize the taste of RSCF and VSCF. The t-test revealed significantly reduced sourness, aftertaste-bitter, and aftertaste-astringent values of SCF after vinegar processing. Principal component and partial least squares discriminant analyses indicated that e-eye and e-tongue realize the rapid RSCF and VSCF identification. CONCLUSION: The proposed comprehensive strategy of electronic eye and electronic tongue combined with chemometrics demonstrated satisfactory results with high efficiency, accuracy, and reliability. This can be developed into a novel and accurate method for discriminating RSCF and VSCF.

4.
Anal Chim Acta ; 1316: 342811, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969401

ABSTRACT

BACKGROUND: Lipids such as phosphatidic acids (PAs) and cardiolipins (CLs) present strongly tailing peaks in reversed phase liquid chromatography, which entails low detectability. They are usually analyzed by hydrophilic interaction liquid chromatography (HILIC), which hampers high-throughput lipidomics. Thus, there is a great need for improved analytical methods in order to obtain a broader coverage of the lipidome in a single chromatographic method. We investigated the effect of ammonium bicarbonate (ABC) on peak asymmetry and detectability, in comparison with ammonium formate (AFO) on both a conventional BEH C18 column and an HST-CSH C18 column. RESULTS: The combination of 2.5 mM ABC buffer pH 8 with an HST-CSH C18 column produced significantly improved results, reducing the asymmetry factor at 10 % peak height of PA 16:0/18:1 from 8.4 to 1.6. Furthermore, on average, there was up to a 54-fold enhancement in the peak height of its [M - H]- ion compared to AFO and the BEH C18 column. We confirmed this beneficial effect on other strongly tailing lipids, with accessible phosphate moieties e.g., cardiolipins, phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, phosphorylated ceramide and phosphorylated sphingosine. Furthermore, we found an increased detectability of phospho- and sphingolipids up to 28 times in negative mode when using an HST-CSH C18 column. The method was successfully applied to mouse liver samples, where previously undetected endogenous phospholipids could be analyzed with improved chromatographic separation. SIGNIFICANCE: In conclusion, the use of 2.5 mM ABC substantially improved the peak shape of PAs and enhanced the detectability of the lipidome in negative mode on an RPLC-ESI-Q-TOF-MS system on both BEH C18 and HST-CSH C18 columns. This method provides a wider coverage of the lipidome with one single injection for future lipidomic applications in negative mode.


Subject(s)
Bicarbonates , Animals , Mice , Buffers , Bicarbonates/chemistry , Lipids/chemistry , Chromatography, Reverse-Phase/methods , Surface Properties , Lipidomics/methods , Mice, Inbred C57BL , Hydrophobic and Hydrophilic Interactions , Phosphatidic Acids/chemistry , Liver/chemistry
5.
Molecules ; 29(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064851

ABSTRACT

Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.


Subject(s)
Biological Products , Pyrrolizidine Alkaloids , Pyrrolizidine Alkaloids/analysis , Humans , Biological Products/analysis , Biological Products/chemistry , Plants, Medicinal/chemistry , Mass Spectrometry/methods , Food Contamination/analysis , Toxins, Biological/analysis
6.
Plants (Basel) ; 13(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065442

ABSTRACT

Phedimus aizoon has been utilized as a medicinal plant in Asia. However, the production of phytochemical-rich extracts from P. aizoon and the evaluation of their bioactivity are limited. Herein, phytochemical-rich extracts were prepared by ultrasound-assisted extraction of P. aizoon, with a high extraction yield of 16.56%. The extracts contained about 126 mg of phenolics and 31 mg of flavonoids per g of the extracts. The chromatographic analysis (GC-MS and HPLC analyses) identified 19 notable phytochemicals of the extracts from P. aizoon, including pentacosane, hexadecanoic acid, gallic acid, vanillic acid, and quercetin. The gallic acid content of the extracts was relatively high at 2.75 mg/g. The identified compounds are known to have various bioactivities, such as antioxidant, antibacterial, and antifungal activities. In fact, the prepared extracts exhibited antioxidant activity at 24-28% of that of ascorbic acid. In addition, it showed antibacterial activity against both Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). This study highlights that P. aizoon deserves attention as a natural bioactive substance and emphasizes the need for applications of the extracts from P. aizoon.

7.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063043

ABSTRACT

Ibuprofen is a well-known and broadly used, nonsteroidal anti-inflammatory and painkiller medicine. Ibuprofen is a chiral compound, and its two isomers have different biological effects, therefore, their chiral separation is necessary. Ibuprofen and its derivatives were used as model compounds to establish transportable structure chiral selectivity relationships. Chiral selectors were permethylated α-, ß-, and γ-cyclodextrins containing gas chromatographic stationary phases. The chiral selectivity of ibuprofen as a free acid and its various alkyl esters (methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and isoamyl esters) derivatives were tested at different temperatures. Every tested stationary phase was capable of the chiral separations of ibuprofen in its free acid form. The less strong included S optical isomers eluted before R optical isomers in every separate case. The results offer to draw transportable guidelines for the chiral selectivity vs. analyte structures. It was recognized that the S isomers of free ibuprofen acid showed an overloading phenomenon, but the R isomer did not. The results were supported by molecular modeling studies.


Subject(s)
Ibuprofen , Ibuprofen/chemistry , Chromatography, Gas/methods , Stereoisomerism , Cyclodextrins/chemistry , Models, Molecular , Methylation , Anti-Inflammatory Agents, Non-Steroidal/chemistry , gamma-Cyclodextrins/chemistry
8.
Materials (Basel) ; 17(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063862

ABSTRACT

Detecting temperature and concentration fields within engine combustors holds paramount significance in enhancing combustion efficiency and ensuring operational safety. Within the realm of engine combustors, the laminar absorption spectroscopy technique has garnered considerable attention. Particularly crucial is the optimization of the optical path configuration to enhance the efficacy of reconstruction. This study presents a flame parameter field reconstruction model founded on laminar absorption spectroscopy. Furthermore, an optimization approach for refining the optical path configuration is delineated. In addressing non-axisymmetric flames, the simulated annealing algorithm (SA) and Harris's Hawk algorithm (HHO) are employed to optimize the optical path layout across varying beam quantities. The findings underscore a marked reduction in imaging errors with the optimized optical path configuration compared to conventional setups, thereby elevating detection precision. Notably, the HHO algorithm demonstrates superior performance over the SA algorithm in terms of optimization outcomes and computational efficiency. Compared with the parallel optical path, the optimized optical path of the HHO algorithm reduces the temperature field error by 25.5% and the concentration field error by 26.5%.

9.
Compr Rev Food Sci Food Saf ; 23(4): e13399, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072953

ABSTRACT

Milk, as a widely consumed nutrient-rich food, is crucial for bone health, growth, and overall nutrition. The persistent application of veterinary drugs for controlling diseases and heightening milk yield has imparted substantial repercussions on human health and environmental ecosystems. Due to the high demand, fresh consumption, complex composition of milk, and the potential adverse impacts of drug residues, advanced greener analytical methods are necessitated. Among them, functional materials-based analytical methods attract wide concerns. The magnetic molecularly imprinted polymers (MMIPs), as a kind of typical functional material, possess excellent greenification characteristics and potencies, and they are easily integrated into various detection technologies, which have offered green approaches toward analytes such as veterinary drugs in milk. Despite their increasing applications and great potential, MMIPs' use in dairy matrices remains underexplored, especially regarding ecological sustainability. This work reviews recent advances in MMIPs' synthesis and application as efficient sorbents for veterinary drug extraction in milk followed by chromatographic analysis. The uniqueness and effectiveness of MMIPs in real milk samples are evaluated, current limitations are addressed, and greenification opportunities are proposed. MMIPs show promise in revolutionizing green analytical procedures for veterinary drug detection, aligning with the environmental goals of modern food production systems.


Subject(s)
Drug Residues , Green Chemistry Technology , Milk , Molecularly Imprinted Polymers , Veterinary Drugs , Milk/chemistry , Drug Residues/analysis , Drug Residues/chemistry , Molecularly Imprinted Polymers/chemistry , Animals , Veterinary Drugs/analysis , Veterinary Drugs/chemistry , Green Chemistry Technology/methods , Food Contamination/analysis , Molecular Imprinting/methods , Chromatography/methods
10.
J Chromatogr A ; 1731: 465180, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39053255

ABSTRACT

Novel magnetic covalent organic frameworks (COFs) were prepared by one-pot synthetic strategy and employed as an efficient adsorbent for magnetic solid-phase extraction (MSPE) of naphthaleneacetic acid (NAA) in food samples. Depending on the predesigned the hydrogen bonding, π-π and hydrophobic interactions of magnetic COFs, the efficient and selective extraction process for NAA was achieved within 15 min. The magnetic COFs adsorbent combined with HPLC-UV was devoted to develop a novel quantitative method for NAA in complex food. The method afforded good coefficient in range of 0.002-10.0 µg mL-1 and low limit of detection was 0.0006 µg mL-1. And the newly established method afforded less adsorbent consumption, wider linearity and lower LODs than the reported analytical methods. Ultimately, the method was successfully applied to determine NAA in fresh pear, tomato and peach juice. The magnetic COFs based MSPE coupled with HPLC-UV method provided a simple, efficient and dependable alternative to monitor trace NAA in food samples.

11.
J Pharm Biomed Anal ; 249: 116346, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39018721

ABSTRACT

Phyllanthus emblica (P. emblica) is a vital medicinal plant with both medical and edible values. In the quality standard of P. emblica listed by the Chinese Pharmacopoeia, gallic acid is used as the index component for the content determination. However, a large number of tannin components can be decomposed into gallic acid during its refluxing extraction process, thus affecting the accuracy and specificity of the content determination. Thus, the index component used for the quality control needs to be further determined. In this study, the quality markers of P. emblica was specified by integrating chromatographic fingerprint, serum pharmacochemistry and network pharmacology. The chromatographic fingerprint of 18 batches of P. emblica samples were established by ultra-high-performance liquid chromatography (UPLC), and 8 differential components causing quality fluctuation were identified by chemometric analysis and UPLC-Q-TOF/MS analysis. Afterwards, 14 prototype migration components absorbed into the blood after gavage administration to rats were identified by UPLC-Q-TOF/MS analysis. Subsequently, a network pharmacology approach was used to construct the component-target-disease-pathway network, resulting in the identification of 22 components responsible for efficacy of P. emblica. Finally, by integrating the above results, ellagic acid was screened out as one of the Q-markers and could be employed as a quantitative component of P. emblica to improve the quality standard. The strategy is also informative for discovering Q-markers of other TCMs.

12.
Foods ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928832

ABSTRACT

The quality of oil is highly dependent on its free fatty acid (FFA) content, especially due to increased restrictions on renewable fuels. As a result, there has been a growing interest in free fatty acid determination methods over the last few decades. While various standard methods are currently available, such as the American Oil Chemists Society (AOCS), International Union of Pure and Applied Chemistry (IUPAC), and Japan Oil Chemists' Society (JOCS), to obtain accurate results, there is a pressing need to investigate a fast, accurate, feasible, and eco-friendly methodology for determining FFA in biological materials. This is owing to inadequate characteristics of the methods, such as solvent consumption and reproducibility, among others. This study aims to investigate FFA determination methods to identify suitable approaches and introduce a fresh perspective.

13.
Food Chem ; 457: 140123, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38917562

ABSTRACT

A magnetic biochar nanomaterial derived from fungal hyphae was introduced into the sample preparation field. The magnetic fungal hyphae-derived biomass carbon (MFHBC) could be produced by a controllable hydrothermal method. In order to obtain the best sorbent for magnetic solid-phase extraction (MSPE), the reaction conditions containing temperature, time and the consumption of fungal hyphae were investigated. A series of MFHBC materials were characterized by vibrating sample magnetometers, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. A material with a satisfactory saturation magnetization (21.58 emu g-1) and largest surface area (88.06 m2 g-1) was selected as the sorbent to extract ten typical organochlorine pesticides (OCPs). The extraction conditions were optimized as 20 mL of sample solution with 70 mg of sorbent and 2.0 g of NaCl oscillated at 50 °C for 5.0 min. And the optimum desorption was performed by oscillating sorbent in 1.0 mL acetonitrile for 5.0 min. Then, the MFHBC-based MSPE-GC-MS/MS methods were established for different samples including water samples, tea beverages, and Chinese traditional medicines. The linearities were 10-2500 ng L-1 or 100-25,000 ng kg-1, and the limits of detection were 0.3-13.9 ng L-1 for water sample, 0.1-9.7 ng L-1 for tea beverage samples, 0.1-21.4 ng L-1 for Shenqi Fuzheng injection samples, and 7.2-278.3 ng kg-1 for Astragali Radix decoction pieces. Except for satisfactory repeatability (RSDs ≤13.8%) in intra-day and inter-day tests (n = 3), the reproducibility (RSDs ≤13.5%, n = 3) of MFHBC was acceptable. The methods were applied in the determination of OCPs from above real samples, with the recoveries of 80.5-117.2% and the RSDs (n = 3) <8.9%. The methods were suitable in the sensitive determination of OCPs from simple to complex matrix samples.


Subject(s)
Hydrocarbons, Chlorinated , Solid Phase Extraction , Tandem Mass Spectrometry , Solid Phase Extraction/methods , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/isolation & purification , Tea/chemistry , Pesticides/chemistry , Gas Chromatography-Mass Spectrometry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Carbon/chemistry , Charcoal/chemistry , Medicine, Chinese Traditional , Fungi/chemistry , Fungi/isolation & purification , Drugs, Chinese Herbal/chemistry , Biomass , Food Contamination/analysis , Pesticide Residues/chemistry
14.
J Chromatogr A ; 1730: 465059, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38905948

ABSTRACT

To date, the most commonly used column characterization databases do not determine the relative positive charge associated with new generation RP columns, or they fail to successfully discriminate between RP columns of purportedly low level positive and neutral characters. This paper rectifies this in that it describes a convenient and robust chromatographic procedure for the assessment of the low levels of positive charge on a range of RP columns. The low degree of positive charge was determined by their electrostatic attraction towards the negatively charged 4-n-octylbenzene sulfonic acid (4-OBSA) relative to their retention of the hydrophobic marker toluene (Tol). The new parameter (α4-OBSA/Tol) was determined for 15 commercially available RP-LC columns. When this was combined with existing Tanaka parameters it was possible to guide the chromatographer towards similar columns as "backup / equivalent phases" or dissimilar columns for exploitation in method development strategies. It should be noted that under certain chromatographic conditions the retention mechanism(s) may be too complex to allow direct location of a "backup / equivalent" column(s). The α4-OBSA/Tol results indicate that even the new generation neutral alkyl phases may exhibit a small degree of positive charge at low buffer concentrations. Mobile phases containing low % MeCN were demonstrated to promote mixed mode (anionic exchange / hydrophobic) retention whereas at high % MeCN anionic exchange retention dominated. The measure of electrostatic repulsion between positively charged columns and positively charged bases was assessed by evaluating the relative retention of a range of bases and neutral analytes. The greatest electrostatic repulsion was observed with hydrophilic bases. While there was no correlation between the positive charge associated with the phases assessed by electrostatic attraction or repulsion, the columns could be broadly divided into three subsets (i.e., significant positive character, medium to low positive character and insignificant positive character). Finally, the results were used to highlight the usefulness of the column characterization database containing the new anionic exchange retention parameter (α4-OBSA/Tol) for the selection of an equivalent column possessing a low level of positive character in the analysis of a real-life biopharmaceutical application.


Subject(s)
Chromatography, Reverse-Phase , Hydrophobic and Hydrophilic Interactions , Static Electricity , Toluene , Chromatography, Reverse-Phase/methods , Toluene/chemistry , Chromatography, High Pressure Liquid/methods
15.
Crit Rev Anal Chem ; : 1-22, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900595

ABSTRACT

This review paper critically examines the current state of research concerning the analysis and derivatization of aldehyde, aromatic hydrocarbons and carboxylic acids components in foods and drinks samples, with a specific focus on the application of Chromatographic techniques. These diverse components, as vital contributors to the sensory attributes of food, necessitate accurate and sensitive analytical methods for their identification and quantification, which is crucial for ensuring food safety and compliance with regulatory standards. In this paper, High-Performance Liquid Chromatography (HPLC) and Gas Chromatographic (GC) methods for the separation, identification, and quantification of aldehydes in complex food matrices were reviewed. In addition, the review explores derivatization strategies employed to enhance the detectability and stability of aldehydes during chromatographic analysis. Derivatization methods, when applied judiciously, improve separation efficiency and increase detection sensitivity, thereby ensuring a more accurate and reliable quantification of aldehyde aromatic hydrocarbons and carboxylic acids species in food samples. Furthermore, methodological aspects encompassing sample preparation, chromatographic separation, and derivatization techniques are discussed. Validation was carried out in term of limit of detections are highlighted as crucial elements in achieving accurate quantification of compounds content. The discussion presented by emphasizing the significance of the combined HPLC and GC chromatography methods, along with derivatization strategies, in advancing the analytical capabilities within the realm of food science.

16.
BMC Chem ; 18(1): 111, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38863068

ABSTRACT

A new, sensitive, and rapid isocratic reversed phase chromatographic method (RP-HPLC-UV) was developed for simultaneous separation of two newly co-formulated antiulcer mixtures; Amoxicillin, Vonoprazan and Clarithromycin [Mixture (I)], and Amoxicillin, Lansoprazole and Clarithromycin [Mixture (II)]. Analytical separation was performed using a Promosil C18 column and ultraviolet detection at 210 nm. The separation was achieved within only 8 min. For both mixtures, an aqueous solution, composed of (Acetonitrile: Methanol: 0. 2 M phosphoric acid) within ratio of (30: 30: 40) adjusted to final pH 3.0, was the mobile phase. This method was validated as per the International Conference on Harmonization guidelines. The linearity ranges of these proposed method of the (Mixture (I)) were 25.0-400.0 µg/mL Amoxicillin, 0.5-8.0 µg/mL Vonoprazan, and 12.5-200.0 µg/mL Clarithromycin. And the linearity ranges of the (Mixture (II)) were 10.0-300.0 µg/mL Amoxicillin, 0.3-9.0 µg/mL Lansoprazole and 5.0-150.0 µg/mL Clarithromycin. This method was firstly applied for effective separation of Amoxicillin, Vonoprazan and Clarithromycin [Mixture (I)]. It fulfilled good repeatability, sensitivity, and accuracy (R.S.D. < 2.0%). The mean recoveries of the analytes in their Tri-Pak formulations were acceptable. The greenness of the developed chromatographic methods was assessed using an Eco-scale method and it was applied for content uniformity testing as per the United States Pharmacopoeia (USP) and the acceptance value of Amoxicillin, in Mixture (I) was 2.88, the acceptance values for Amoxicillin, Lansoprazole in Mixture (II) were 2.592, 2.424, respectively.

17.
Se Pu ; 42(6): 524-532, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845513

ABSTRACT

The stationary phase is the heart of chromatographic separation technology and a critical contributor to the overall separation performance of a chromatographic separation technique. However, traditional silicon-based materials designed for this purpose usually feature complex preparation processes, suboptimal permeability, pronounced mass-transfer resistance, and limited pH-range compatibility. These limitations have spurred ongoing research efforts aimed at developing new chromatographic stationary phases characterized by higher separation efficiency, adaptable selectivity, and a broader scope of applicability. In this context, the scientific community has made significant strides toward the development of new-generation materials suitable for use as chromatographic stationary phases. These materials include carbon-based nanomaterial arrays, carbon quantum dots, and two-dimensional (2D) materials. 2D-materials are characterized by nanometer-scale thicknesses, extensive specific surface areas, distinctive layered structures, and outstanding mechanical properties under standard conditions. Thus, these materials demonstrate excellent utility in various applications, such as electrical and thermal conductivity enhancements, gas storage and separation solutions, membrane separation technologies, and catalysis. Graphene, which is arguably the most popular 2D-material used for chromatographic separation, consists of a 2D-lattice of carbon atoms arranged in a single layer, with a large specific surface area and efficient adsorption properties. Its widespread adoption in research and various industries is a testament to its versatility and effectiveness. In addition to graphene, the scientific community has developed various 2D-materials that mirror the layered structures of graphene, such as boron nitride, transition-metal sulfides, and 2D porous organic frameworks, all of which offer unique advantages. 2D porous organic frameworks, in particular, have received attention because of their nanosheet morphology, one-dimensional pores, and special interlayer forces; thus, these frameworks are considered promising candidate chromatographic stationary phase materials. Such recognition is especially true for 2D-metal organic frameworks (MOFs) and 2D-covalent organic frameworks (COFs), which exhibit low densities, high porosities, and substantial specific surface areas. The modifiability of these materials, in terms of pore size, shape, functional groups, and layer-stacking arrangements allows for excellent separation selectivity, highlighting their promising potential in chromatographic separation. Compared with their three-dimensional counterparts, 2D-MOFs feature a simple pore structure that offers reduced mass-transfer resistance and enhanced column efficiency. These attributes highlight the advantages of 2D-MOF nanosheets as chromatographic stationary phases. Similarly, 2D-COFs, given their high specific surface area and porosity, not only exhibit great thermal stability and chemical tolerance but also support a wide selection of solvents and operational conditions. Therefore, their role in the preparation of chromatographic stationary phases is considered highly promising. This review discusses the latest research developments in 2D porous organic framework materials in the context of gas- and liquid-chromatographic stationary phases. It introduces the synthesis methods for these novel materials, elucidates their retention mechanisms, and describes the applications of other 2D-materials, such as graphene, its derivatives, graphitic carbon nitride, and boron nitride, in chromatography. This review aims to shed light on the promising development prospects and future directions of 2D-materials in the field of chromatographic separation, offering valuable insights into the rational design and application of new 2D-materials in chromatography.

18.
Se Pu ; 42(6): 533-543, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845514

ABSTRACT

Antibody drugs are becoming increasingly popular in disease diagnosis, targeted therapy, and immunoprevention owing to their characteristics of high targeting ability, strong specificity, low toxicity, and mild side effects. The demand for antibody drugs is steadily increasing, and their production scale is expanding. Upstream cell culture technology has been greatly improved by the high-capacity production of monoclonal antibodies. However, the downstream purification of antibodies presents a bottleneck in the production process. Moreover, the purification cost of antibodies is extremely high, accounting for approximately 50%-80% of the total cost of antibody production. Chromatographic technology, given its selectivity and high separation efficiency, is the main method for antibody purification. This process usually involves three stages: antibody capture, intermediate purification, and polishing. Different chromatographic techniques, such as affinity chromatography, ion-exchange chromatography, hydrophobic interaction chromatography, mixed-mode chromatography, and temperature-responsive chromatography, are used in each stage. Affinity chromatography, mainly protein A affinity chromatography, is applied for the selective capture and purification of antibodies from raw biofluids or harvested cell culture supernatants. Other chromatographic techniques, such as ion-exchange chromatography, hydrophobic interaction chromatography, and mixed-mode chromatography, are used for intermediate purification and antibody polishing. Affinity biomimetic chromatography and hydrophobic charge-induction chromatography can produce antibodies with purities comparable with those obtained through protein A chromatography, by employing artificial chemical/short peptide ligands with good selectivity, high stability, and low cost. Temperature-responsive chromatography is a promising technique for the separation and purification of antibodies. In this technique, antibody capture and elution is controlled by simply adjusting the column temperature, which greatly eliminates the risk of antibody aggregation and inactivation under acidic elution conditions. The combination of different chromatographic methods to improve separation selectivity and achieve effective elution under mild conditions is another useful strategy to enhance the yield and quality of antibodies. This review provides an overview of recent advances in the field of antibody purification using chromatography and discusses future developments in this technology.


Subject(s)
Chromatography, Affinity , Antibodies/isolation & purification , Antibodies/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/chemistry , Chromatography/methods , Chromatography, Affinity/methods , Chromatography, Ion Exchange/methods , Hydrophobic and Hydrophilic Interactions
19.
J Chromatogr A ; 1727: 465008, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38788402

ABSTRACT

A critical factor for automated method development in chromatography is the maximization or minimization of an objective function describing the quality (and speed) of the separation. In chromatography, this function is commonly referred to as a chromatographic response function (CRF). Many CRFs have previously been introduced, but many have unfavourable properties such as featuring multiple optima, insufficient discriminatory power, and a too strong dependence on the weight factors needed to balance resolution and time penalty components. To overcome these problems, the present study introduces a new type of CRF wherein the relative weight of the time penalty term is a self-adaptive function of the separation quality. The ability to unambiguously identify the optimal gradient settings of this newly proposed CRF is compared to that of some of the most frequently used CRFs in a study covering 100 randomly composed in silico samples. Doing so, the new CRF is found to flawlessly lead to the correct solution (=linear gradient parameters providing the highest resolution in the shortest potential time) in 100 % of the cases, while the most frequently used literature CRFs were off-target for about 50 to 60 % of the samples, even when considering the availability of spectral peak shape data. Some slight alterations to the proposed CRF are introduced and discussed as well.


Subject(s)
Algorithms , Computer Simulation , Chromatography/methods , Automation
20.
Mikrochim Acta ; 191(6): 345, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802617

ABSTRACT

Carbon dots (CDs) derived crosslinked covalent organic nanomaterials (CONs) possessing high specific surface area and abundant surface functional groups are considered to be potential candidates for multimodal chromatographic separations. Typically, the synthesis of CDs and CONs requires harsh reaction conditions and toxic organic solvents, hence, the pursuit of facile and mild preparation strategies is the goal of researchers. In this work, 3-aminopropyltriethoxysilane and D-glucose were used as nitrogen and carbon sources, respectively, to prepare amino-CDs (AmCDs) by rapid low-temperature polymerization rather than the common high-temperature and high-pressure reaction. Then, surface functionalization of the aminated silica gel was carried out in a deep eutectic solvent by using hydrophilic AmCDs and 1,3,5-triformylbenzene (TFB) as the functional monomers. Consequently, a novel N-rich CDs derived CON surface-functionalized silica gel (AmCDs-CON@SiO2) was obtained under mild reaction conditions. The combination of AmCDs and TFB created an ideal CON based chromatographic stationary phase. The incorporation of TFB not only contributed to the successful construction of a crosslinked CON, but also enhanced the interaction forces. The developed AmCDs-CON@SiO2 has a great potential for versatile applications in liquid chromatography. This study proposes a simple stationary phase preparation strategy by the surface modification of silica gel with CDs-based CON. Moreover, this study verified the application potential of CDs derived CON in chromatographic separation. This not only promotes the development of CDs in the field of liquid chromatographic stationary phase, but also provides some reference value for the wide application of cross-linked CON.

SELECTION OF CITATIONS
SEARCH DETAIL
...