Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biotechnol ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619801

ABSTRACT

N6-methyladenosine (m6A) is a common posttranscriptional RNA modification and plays an important role in cancer biology. Circular RNAs (circRNAs) are also reported to participate in lung adenocarcinoma (LUAD) progression. Here, we aimed to investigate the functions of Wilms tumor 1-associating protein (WTAP) methyltransferase and circEEF2 in LUAD cell tumorigenesis, and probe whether circEEF2 functioned through WTAP-induced m6A modification and its potential mechanisms. Functional analyses were conducted by tube formation, sphere formation, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays in vitro as well as tumor formation experiments in mice, respectively. The N6-methyladenine (m6A) modification in circEEF2 mRNA was determined by RNA immunoprecipitation (Me-RIP) assay. The interaction between IGF2BP2 (Insulin Like Growth Factor 2 MRNA-Binding Protein 2) and circEEF2 or Calcium-activated nucleotidase 1 (CANT1) mRNA was confirmed using RIP assay. LUAD tissues and cells showed high circEEF2 expression, and the deficiency of circEEF2 suppressed LUAD cell angiogenesis, stemness, proliferation, migration, and invasion. WTAP induced circEEF2 m6A modification. WTAP silencing repressed the oncogenic phenotypes of LUAD cells via stabilizing circEEF2 in an m6A-dependent manner. IGF2BP2 interacted with circEEF2 and CANT1, and WTAP and circEEF2 could regulate CANT1 expression through IGF2BP2. The inhibition of LUAD cell oncogenic phenotypes caused by circEEF2 deficiency was abolished by CANT1 overexpression. In addition, WTAP silencing impeded LUAD growth via modulating circEEF2 and CANT1 in vivo. WTAP-mediated m6A modification of circEEF2 promotes lung adenocarcinoma growth and tumorigenesis by stabilizing CANT1 through IGF2BP2.

2.
Am J Cancer Res ; 10(11): 3737-3751, 2020.
Article in English | MEDLINE | ID: mdl-33294264

ABSTRACT

Circular RNAs, a special class of non-coding RNA with closed circular structure, have been increasingly proven to be involved in the progression of various tumors. However, the biological functions of circular RNAs in epithelial ovarian cancer (EOC) tissues remain a mystery. In this study, we detected the function of circEEF2 (has-circ-0048559) in EOC tissues. Firstly, the basic characteristics including closed circular structure and spliced mature sequence length of circEEF2 were confirmed. The location and expression in EOC tissues was detected by fluorescence in situ hybridization (FISH). The regulatory effect of circEEF2 on autophagy, proliferation, and invasion were investigated in SKOV3 and A2780 cells. The relationship between circEEF2 and mir-6881-3p was confirmed using dual-luciferase reporter gene assay. The binding of circEEF2 with ANXA2 was confirmed using RNA-pulldown assay and MALDI-TOF-MS. We found that the expression level of circEEF2 was higher in EOC tissue than in normal tissue. CircEEF2 promoted autophagy, proliferation, and invasion. CircEEF2-regulated EOC proliferation and invasion are closely related to the occurrence of autophagy. Mechanistically, circEEF2 harbor miR-6881-3p to upregulate the latter's targets ATG5 and ATG7. Moreover, circEEF2 could directly bind with ANXA2 to inhibit the expression of p-mTOR. In conclusion, findings of the current study illustrate that circEEF2 promoted autophagy, proliferation, and invasion of EOC by interacting with miR-6881-3p and ANXA2.

SELECTION OF CITATIONS
SEARCH DETAIL