Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Gene ; 927: 148744, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38964492

ABSTRACT

Current understanding of genetic polymorphisms and natural selection in Plasmodium falciparum circumsporozoite (PfCSP), the leading malaria vaccine, is crucial for the development of next-generation vaccines, and such data is lacking in Africa. Blood samples were collected among Plasmodium-infected individuals living in four Cameroonian areas (Douala, Maroua, Mayo-Oulo, Pette). DNA samples were amplified using nested PCR protocols, sequenced, and BLASTed. Single nucleotide polymorphisms (SNPs) were analysed in each PfCSP region, and their impact on PfCSP function/structure was predicted in silico. The N-terminal region showed a limited polymorphism with four haplotypes, and three novel SNPs (N68Y, R87W, K93E) were found. Thirty-five haplotypes were identified in the central region, with several variants (e.g., NVNP and KANP). The C-terminal region was also highly diverse, with 25 haplotypes and eight novel SNPs (N290D, N308I, S312G, K317A, V344I, D356E, E357L, D359Y). Most polymorphic codon sites were mainly observed in the Th2R subregion in isolates from Douala and Pette. The codon site 321 was under episodic positive selection. One novel (E357L) and three known (K322I, G349D, D359Y) SNPs show an impact on function/structure. This study showed extensive genetic diversity with geographical patterns and evidence of the selection of Cameroonian PfCSP central and C-terminal regions.


Subject(s)
Haplotypes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Polymorphism, Single Nucleotide , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Cameroon , Protozoan Proteins/genetics , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malaria Vaccines/genetics , Malaria Vaccines/immunology
2.
J Biol Chem ; : 107557, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002668

ABSTRACT

Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of P. falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI-anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [3H]-palmitic acid and [3H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for presence of myo-inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for a highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo-inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.

3.
Malar J ; 23(1): 139, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720288

ABSTRACT

BACKGROUND: In 2021 and 2023, the World Health Organization approved RTS,S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (PfCSP), but polymorphisms in the gene raise concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission intensities in Mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. METHODS: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of Mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. RESULTS: Based on Fws (< 0.95), there was high polyclonality (ranging from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST = 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences revealed 50 different haplotypes (H_1 to H_50), with only 2% of sequences matching the 3D7 strain haplotype (H_50). Conversely, with the NF54 strain, the Pfcsp C-terminal sequences revealed 49 different haplotypes (H_1 to H_49), with only 0.4% of the sequences matching the NF54 strain (Hap_49). CONCLUSIONS: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values, consistent with balancing selection for variants within Th2R and Th3R regions. The study observed differences between the intended haplotypes incorporated into the design of RTS,S and R21 vaccines and those present in natural parasite populations. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.


Subject(s)
Plasmodium falciparum , Polymorphism, Genetic , Protozoan Proteins , Selection, Genetic , Humans , Endemic Diseases , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Tanzania
4.
Vaccines (Basel) ; 12(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38675734

ABSTRACT

Efficacy data on two malaria vaccines, RTS,S and R21, targeting Plasmodium falciparum circumsporozoite protein (PfCSP), are encouraging. Efficacy may be improved by induction of additional antibodies to neutralizing epitopes outside of the central immunodominant repeat domain of PfCSP. We designed four rPfCSP-based vaccines in an effort to improve the diversity of the antibody response. We also evaluated P. falciparum merozoite surface protein 8 (PfMSP8) as a malaria-specific carrier protein as an alternative to hepatitis B surface antigen. We measured the magnitude, specificity, subclass, avidity, durability, and efficacy of vaccine-induced antibodies in outbred CD1 mice. In comparison to N-terminal- or C-terminal-focused constructs, immunization with near full-length vaccines, rPfCSP (#1) or the chimeric rPfCSP/8 (#2), markedly increased the breadth of B cell epitopes recognized covering the N-terminal domain, junctional region, and central repeat. Both rPfCSP (#1) and rPfCSP/8 (#2) also elicited a high proportion of antibodies to conformation-dependent epitopes in the C-terminus of PfCSP. Fusion of PfCSP to PfMSP8 shifted the specificity of the T cell response away from PfCSP toward PfMSP8 epitopes. Challenge studies with transgenic Plasmodium yoelii sporozoites expressing PfCSP demonstrated high and consistent sterile protection following rPfCSP/8 (#2) immunization. Of note, antibodies to conformational C-terminal epitopes were not required for protection. These results indicate that inclusion of the N-terminal domain of PfCSP can drive responses to protective, repeat, and non-repeat B cell epitopes and that PfMSP8 is an effective carrier for induction of high-titer, durable anti-PfCSP antibodies.

5.
J Infect Dis ; 229(6): 1883-1893, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38330357

ABSTRACT

BACKGROUND: Malaria is preventable yet causes >600 000 deaths annually. RTS,S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation phase 1 study of a full-length recombinant circumsporozoite protein vaccine (rCSP) administered with adjuvant glucopyranosyl lipid A-liposome Quillaja saponaria 21 formulation (GLA-LSQ) on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naive adults. The primary end points were safety and reactogenicity. The secondary end points were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection. RESULTS: Participants were enrolled into 4 groups receiving rCSP/GLA-LSQ: 10 µg × 3 (n = 20), 30 µg × 3 (n = 10), 60 µg × 3 (n = 10), or 60 µg × 2 (n = 9); 10 participants received 30 µg rCSP alone × 3, and there were 6 infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent controlled human malaria infection 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher immunoglobulin G titers but did not achieve previously established RTS,S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess whether adjuvant or schedule adjustments improve efficacy. CLINICAL TRIALS REGISTRATION: NCT03589794.


Subject(s)
Adjuvants, Immunologic , Antibodies, Protozoan , Lipid A , Liposomes , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Humans , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Adult , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Female , Male , Adjuvants, Immunologic/administration & dosage , Young Adult , Lipid A/analogs & derivatives , Lipid A/administration & dosage , Lipid A/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Quillaja/chemistry , Adolescent , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Middle Aged , Glucosides
6.
Mol Microbiol ; 121(3): 565-577, 2024 03.
Article in English | MEDLINE | ID: mdl-38396332

ABSTRACT

Plasmodium sporozoites are the highly motile and invasive forms of the malaria parasite transmitted by mosquitoes. Sporozoites form within oocysts at the midgut wall of the mosquito, egress from oocysts and enter salivary glands prior to transmission. The GPI-anchored major surface protein, the circumsporozoite protein (CSP) is important for Plasmodium sporozoite formation, egress, migration and invasion. To visualize CSP, we previously generated full-length versions of CSP internally tagged with the green fluorescent protein, GFP. However, while these allowed for imaging of sporogony in oocysts, sporozoites failed to egress. Here, we explore different strategies to overcome this block in egress and obtain salivary gland resident sporozoites that express CSP-GFP. Replacing the N-terminal and repeat region with GFP did not allow sporozoite formation. Lowering expression of CSP-GFP at the endogenous locus allowed sporozoite formation but did not overcome egress block. Crossing of CSP-GFP expressing parasites that are blocked in egress with wild-type parasites yielded a small fraction of parasites that entered salivary glands and expressed various levels of CSP-GFP. Expressing CSP-GFP constructs from a silent chromosome region from promoters that are active only post salivary gland invasion yielded normal numbers of fluorescent salivary gland sporozoites, albeit with low levels of fluorescence. We also show that lowering CSP expression by 50% allowed egress from oocysts but not salivary gland entry. In conclusion, Plasmodium berghei parasites with normal CSP expression tolerate a certain level of CSP-GFP without disruption of oocyst egress and salivary gland invasion.


Subject(s)
Anopheles , Sporozoites , Animals , Sporozoites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Anopheles/parasitology , Oocysts , Plasmodium berghei/genetics , Plasmodium berghei/metabolism
7.
medRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38343796

ABSTRACT

Background: In 2021 and 2023, the World Health Organization approved RTS, S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (Pfcsp) but polymorphisms in this gene raises concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission in mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. Methods: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. Results: Based on Fws (< 0.95), there was high polyclonality (ranged from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST= 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences had 50 different haplotypes (H_1 to H_50) and only 2% of sequences matched the 3D7 strain haplotype (H_50). Conclusions: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values for parasite populations, consistent with balancing selection for variants within Th2R and Th3R regions. This data is consistent with other studies conducted across Africa and worldwide, which demonstrate low 3D7 haplotypes and little population structure. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.

8.
Methods Mol Biol ; 2762: 109-121, 2024.
Article in English | MEDLINE | ID: mdl-38315362

ABSTRACT

Malaria is a vector-borne disease caused by Plasmodium parasites of which Plasmodium falciparum contributed to an estimated 247 million cases worldwide in 2021 (WHO malaria report 2022). The P. falciparum Circumsporozoite protein (PfCSP) covers the surface of the sporozoite which is critical to cell invasion in the human host. PfCSP is the leading pre-erythrocytic vaccine candidate and forms the basis of the RTS'S (Mosquirix®) malaria vaccine. However, high-yield production of full-length PfCSP with proper folding has been challenging. Here, we describe expression and purification of full-length PfCSP (containing 4 NVDP and 38 NANP repeats) with proper conformation by a simple three-step procedure in the Lactococcus lactis expression system.


Subject(s)
Lactococcus lactis , Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Malaria/prevention & control , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Antibodies, Protozoan
9.
FEBS Lett ; 598(7): 801-817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369616

ABSTRACT

Secretory proteins of Plasmodium exhibit differential spatial and functional activity within the host cell nucleus. However, the nuclear localization signals (NLSs) for these proteins remain largely uncharacterized. In this study, we have identified and characterized two NLSs in the circumsporozoite protein of Plasmodium falciparum (Pf-CSP). Both NLSs in the Pf-CSP contain clusters of lysine and arginine residues essential for specific interactions with the conserved tryptophan and asparagine residues of importin-α, facilitating nuclear translocation of Pf-CSP. While the two NLSs of Pf-CSP function independently and are both crucial for nuclear localization, a single NLS of Pf-CSP leads to weak nuclear localization. These findings shed light on the mechanism of nuclear penetrability of secretory proteins of Plasmodium proteins.


Subject(s)
Nuclear Localization Signals , Plasmodium falciparum , Nuclear Localization Signals/genetics , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/metabolism , alpha Karyopherins/metabolism , Active Transport, Cell Nucleus , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Cell Nucleus/metabolism
10.
Protein Sci ; 33(1): e4852, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38059674

ABSTRACT

The circumsporozoite protein (CSP) is the main surface antigen of the Plasmodium sporozoite (SPZ) and forms the basis of the currently only licensed anti-malarial vaccine (RTS,S/AS01). CSP uniformly coats the SPZ and plays a pivotal role in its immunobiology, in both the insect and the vertebrate hosts. Although CSP's N-terminal domain (CSPN ) has been reported to play an important role in multiple CSP functions, a thorough biophysical and structural characterization of CSPN is currently lacking. Here, we present an alternative method for the recombinant production and purification of CSPN from Plasmodium falciparum (PfCSPN ), which provides pure, high-quality protein preparations with high yields. Through an interdisciplinary approach combining in-solution experimental methods and in silico analyses, we provide strong evidence that PfCSPN is an intrinsically disordered region displaying some degree of compaction.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Malaria Vaccines/chemistry , Malaria Vaccines/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry
11.
J Infect Dis ; 229(3): 795-799, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37889513

ABSTRACT

The RTS,S/AS02A malaria vaccine is based on the Plasmodium falciparum circumsporozoite protein (PfCSP), which is O-fucosylated on the sporozoite surface. We determined whether RTS,S/AS02A-induced immunoglobulin G (IgG) antibodies recognize vaccine-like nonfucosylated PfCSP better than native-like fucosylated PfCSP. Similar to previous vaccine trials, RTS,S/AS02A vaccination induced high anti-PfCSP IgG levels associated with malaria protection. IgG recognition of nonfucosylated and fucosylated PfCSP was equivalent, suggesting that PfCSP fucosylation does not affect antibody recognition. Clinical Trials Registration. NCT00197041.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Plasmodium falciparum , Malaria, Falciparum/prevention & control , Immunoglobulin G , Antibodies, Protozoan , Protozoan Proteins
13.
Front Immunol ; 14: 1303446, 2023.
Article in English | MEDLINE | ID: mdl-38152401

ABSTRACT

Introduction: Pre-erythrocytic malaria vaccines hold the promise of inducing sterile protection thereby preventing the morbidity and mortality associated with Plasmodium infection. The main surface antigen of P. falciparum sporozoites, i.e., the circumsporozoite protein (CSP), has been extensively explored as a target of such vaccines with significant success in recent years. Systematic adjuvant selection, refinements of the immunization regimen, and physical properties of the antigen may all contribute to the potential of increasing the efficacy of CSP-based vaccines. Protection appears to be dependent in large part on CSP antibodies. However due to a knowledge gap related to the exact correlates of immunity, there is a critical need to improve our ability to down select candidates preclinically before entering clinical trials including with controlled human malaria infections (CHMI). Methods: We developed a novel multiplex competition assay based on well-characterized monoclonal antibodies (mAbs) that target crucial epitopes across the CSP molecule. This new tool assesses both, quality and epitope-specific concentrations of vaccine-induced antibodies by measuring their equivalency with a panel of well-characterized, CSP-epitope-specific mAbs. Results: Applying this method to RTS,S-immune sera from a CHMI trial demonstrated a quantitative epitope-specificity profile of antibody responses that can differentiate between protected vs. nonprotected individuals. Aligning vaccine efficacy with quantitation of the epitope fine specificity results of this equivalency assay reveals the importance of epitope specificity. Discussion: The newly developed serological equivalence assay will inform future vaccine design and possibly even adjuvant selection. This methodology can be adapted to other antigens and disease models, when a panel of relevant mAbs exists, and could offer a unique tool for comparing and down-selecting vaccine formulations.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Antibodies, Protozoan , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Antibodies, Monoclonal , Adjuvants, Immunologic , Epitopes
14.
Cell Rep ; 42(11): 113330, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38007690

ABSTRACT

IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.


Subject(s)
Malaria, Falciparum , Malaria , Mice , Humans , Animals , Plasmodium falciparum/genetics , Antibodies, Protozoan , Protozoan Proteins/genetics , Epitopes , Antibodies, Monoclonal , Malaria, Falciparum/parasitology
15.
Malar J ; 22(1): 335, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936181

ABSTRACT

BACKGROUND: Acquired functional inhibitory antibodies are one of several humoral immune mechanisms used to neutralize foreign pathogens. In vitro bioassays are useful tools for quantifying antibody-mediated inhibition and evaluating anti-parasite immune antibodies. However, a gap remains in understanding of how antibody-mediated inhibition in vitro translates to inhibition in vivo. In this study, two well-characterized transgenic Plasmodium berghei parasite lines, PbmCh-luc and Pb-PfCSP(r), and murine monoclonal antibodies (mAbs) specific to P. berghei and Plasmodium falciparum circumsporozoite protein (CSP), 3D11 and 2A10, respectively, were used to evaluate antibody-mediated inhibition of parasite development in both in vitro and in vivo functional assays. METHODS: IC50 values of mAbs were determined using an established inhibition of liver-stage development assay (ILSDA). For the in vivo inhibition assay, mice were passively immunized by transfer of the mAbs and subsequently challenged with 5.0 × 103 sporozoites via tail vein injection. The infection burden in both assays was quantified by luminescence and qRT-PCR of P. berghei 18S rRNA normalized to host GAPDH. RESULTS: The IC50 values quantified by relative luminescence of mAbs 3D11 and 2A10 were 0.396 µg/ml and 0.093 µg/ml, respectively, against transgenic lines in vitro. Using the highest (> 90%) inhibitory antibody concentrations in a passive transfer, an IC50 of 233.8 µg/ml and 181.5 µg/ml for mAbs 3D11 and 2A10, respectively, was observed in vivo. At 25 µg (250 µg/ml), the 2A10 antibody significantly inhibited liver burden in mice compared to control. Additionally, qRT-PCR of P. berghei 18S rRNA served as a secondary validation of liver burden quantification. CONCLUSIONS: Results from both experimental models, ILSDA and in vivo challenge, demonstrated that increased concentrations of the homologous anti-CSP repeat mAbs increased parasite inhibition. However, differences in antibody IC50 values between parasite lines did not allow a direct correlation between the inhibition of sporozoite invasion in vitro by ILSDA and the inhibition of mouse liver stage burden. Further studies are needed to establish the conditions for confident predictions for the in vitro ILSDA to be a predictor of in vivo outcomes using this model system.


Subject(s)
Antibodies, Monoclonal , Malaria Vaccines , Mice , Animals , Plasmodium berghei/genetics , Plasmodium falciparum/genetics , RNA, Ribosomal, 18S , Protozoan Proteins/genetics , Animals, Genetically Modified , Antibodies, Protozoan
16.
Vaccines (Basel) ; 11(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38005982

ABSTRACT

BACKGROUND: malaria caused by Plasmodium parasites remains a public health threat. The circumsporozoite proteins (CSPs) of Plasmodium sporozoite play a key role in Plasmodium infection, serving as an excellent vaccine target. METHODS: using a self-assembled S60 nanoparticle platform, we generated pseudovirus nanoparticles (PVNPs) displaying CSPs, named S-CSPs, for enhanced immunogenicity. RESULTS: purified Hisx6-tagged or tag-free S-CSPs self-assembled into PVNPs that consist of a norovirus S60 inner shell and multiple surface-displayed CSPs. The majority of the PVNPs measured ~27 nm with some size variations, and their three-dimensional structure was modeled. The PVNP-displayed CSPs retained their glycan receptor-binding function. A mouse immunization study showed that PVNPs induced a high antibody response against CSP antigens and the PVNP-immunized mouse sera stained the CSPs of Plasmodium sporozoites at high titer. CONCLUSIONS AND DISCUSSION: the PVNP-displayed CSPs retain their authentic antigenic feature and receptor-binding function. The CSP-specific antibody elicited by the S-CSP PVNPs binds original CSPs and potentially inhibits the attachment of Plasmodium sporozoites to their host cells, a key step for liver invasion by the sporozoites. Thus, S-CSP PVNPs may be an excellent vaccine candidate against malaria caused by Plasmodium parasites.

17.
Vaccine ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37827967

ABSTRACT

Malaria affects ∼ » billion people globally and requires the development of additional tools to aid in elimination efforts. The recently approved RTS,S/AS01 vaccine represents a positive step, however, the moderate efficacy necessitates the development of more efficacious vaccines. PfCSP is a key target antigen for pre-erythrocytic vaccines aimed at preventing Plasmodium falciparum malaria infections. Epitopes within the central repeat region and at the junction of the repeat and N-terminal domain are well documented as major protective B cell epitopes. On the other hand, a majority of antibodies against the epitopes in the C-terminal domain, have been shown to be non-protective against sporozoite challenge. The C-terminal domain, however, contains CD4+ and CD8+ T cell epitopes previously shown to be important for regulating immune responses. The present study was designed to further explore the immunomodulatory potential of the C-terminal domain using DNA vaccines encoding PfCSP with sequential C-terminal truncations following known T cell epitopes. Five DNA vaccines encoding different truncations of PfCSP within the C-terminal domain were administered via intramuscular route and in vivo electroporation for effective immunogenicity. Protection in mice was evaluated by challenge with transgenic P. berghei expressing PfCSP. In Balb/c mice, antibody responses and protective efficacy were both affected progressively with sequential deletion of C-terminal amino acid residues. Similar studies in C57Bl/6 mice revealed that immunizations with plasmids encoding truncated PfCSP showed partial protection from sporozoite challenge with no significant differences in antibody titers observed compared to full-length PfCSP DNA immunized mice. Further analysis revealed murine strain-specific differences in the recognition of specific epitopes.

18.
Cell Rep Methods ; 3(9): 100574, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37751696

ABSTRACT

Many vaccine candidate proteins in the malaria parasite Plasmodium falciparum are under strong immunological pressure and confer antigenic diversity. We present a sequencing and data analysis platform for the genomic surveillance of the insertion or deletion (indel)-rich antigens merozoite surface protein 1 (MSP1), MSP2, glutamate-rich protein (GLURP), and CSP from P. falciparum using long-read circular consensus sequencing (CCS) in multiclonal malaria isolates. Our platform uses 40 PCR primers per gene to asymmetrically barcode and identify multiclonal infections in pools of up to 384 samples. With msp2, we validated the method using 235 mock infections combining 10 synthetic variants at different concentrations and infection complexities. We applied this strategy to P. falciparum isolates from a longitudinal cohort in Tanzania. Finally, we constructed an analysis pipeline that streamlines the processing and interpretation of epidemiological and antigenic diversity data from demultiplexed FASTQ files. This platform can be easily adapted to other polymorphic antigens of interest in Plasmodium or any other human pathogen.


Subject(s)
Malaria, Falciparum , Plasmodium , Humans , Genomics , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Glutamic Acid
19.
Infect Drug Resist ; 16: 2147-2157, 2023.
Article in English | MEDLINE | ID: mdl-37077252

ABSTRACT

Malaria vaccines targeting the circumsporozoite protein (CSP) of the P. falciparum parasite have been overall relatively promising. RTS, S is a pre-erythrocytic recombinant protein-based malaria vaccine that targets CSP. RTS, S effectiveness shows some limited success regardless of its 58% efficacy for severe disease. P. falciparum circumsporozoite protein (Pfcsp) has stood to be the main candidate protein for most pre-erythrocytic stage vaccines. Studies on the structural and biophysical characteristics of antibodies specific to CSP (anti-CSP) are underway to achieve fine specificity with the CSP polymorphic regions. More recent studies have proposed the use of different kinds of monoclonal antibodies, the use of appropriate adjuvants, ideal vaccination dose and frequency, and improved targeting of particular epitopes for the robust production of functional antibodies and high complement-fixing activity as other potential methods for achieving long-lasting RTS, S. This review highlights recent findings regarding humoral immune responses to CSP elicited by RTS, S vaccine.

20.
Structure ; 31(4): 480-491.e4, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36931276

ABSTRACT

Monoclonal antibody L9 recognizes the Plasmodium falciparum circumsporozoite protein (PfCSP) and is highly protective following controlled human malaria challenge. To gain insight into its function, we determined cryoelectron microscopy (cryo-EM) structures of L9 in complex with full-length PfCSP and assessed how this recognition influenced protection by wild-type and mutant L9s. Cryo-EM reconstructions at 3.6- and 3.7-Å resolution revealed L9 to recognize PfCSP as an atypical trimer. Each of the three L9s in the trimer directly recognized an Asn-Pro-Asn-Val (NPNV) tetrapeptide on PfCSP and interacted homotypically to facilitate L9-trimer assembly. We analyzed peptides containing different repeat tetrapeptides for binding to wild-type and mutant L9s to delineate epitope and homotypic components of L9 recognition; we found both components necessary for potent malaria protection. Last, we found the 27-residue stretch recognized by L9 to be highly conserved in P. falciparum isolates, suggesting the newly revealed complete L9 epitope to be an attractive vaccine target.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria , Humans , Epitopes , Cryoelectron Microscopy , Plasmodium falciparum , Antibodies, Protozoan , Protozoan Proteins/genetics , Protozoan Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...