Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Expert Opin Investig Drugs ; : 1-12, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171350

ABSTRACT

OBJECTIVES: This Phase 1 trial was planned to investigate the pharmacokinetics (PK), pharmacodynamics (PD), safety, and tolerability of a single dose of riliprubart in healthy East-Asian adult participants. METHODS: A single-center, parallel-group, randomized, open-label, single-dose study was performed to evaluate the PK, PD, safety, and tolerability of riliprubart (50 mg/kg intravenous [IV] or 600 mg subcutaneous [SC]) in 37 healthy East-Asian (Chinese, Japanese, and Korean) participants. RESULTS: Riliprubart was slowly absorbed after SC administration (median tmax: 7.01-10.48 days) and showed a long half-life after IV or SC administration (mean: 9.52-11.0 weeks), with a bioavailability of 74.6% after SC administration. The PD profiles, which are evaluated by classical complement pathway activity or CH50, were similar and largely overlapped across East-Asian participants after a single IV or SC dose. Riliprubart was safe and well tolerated in participants following a single IV or SC dose. CONCLUSIONS: Riliprubart was safe and well tolerated and demonstrated favorable PK and PD profiles in healthy East-Asian participants following a single IV or SC dose. These results are comparable to first-in-human study results from non-East-Asian participants and support the same dosing regimen of riliprubart for global simultaneous clinical development. CLINICAL TRIAL REGISTRATION: This trial is registered at https://cris.nih.go.kr (identifier: KCT0006571).

2.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891995

ABSTRACT

The renin-angiotensin system (RAS) is a complex homeostatic entity with multiorgan systemic and local effects. Traditionally, RAS works in conjunction with the kidney to control effective arterial circulation, systemic vascular resistance, and electrolyte balance. However, chronic hepatic injury and resulting splanchnic dilation may disrupt this delicate balance. The role of RAS in liver disease, however, is even more extensive, modulating hepatic fibrosis and portal hypertension. Recognition of an alternative RAS pathway in the past few decades has changed our understanding of RAS in liver disease, and the concept of opposing vs. "rebalanced" forces is an ongoing focus of research. Whether RAS inhibition is beneficial in patients with chronic liver disease appears to be context-dependent, but further study is needed to optimize clinical management and reduce organ-specific morbidity and mortality. This review presents the current understanding of RAS in liver disease, acknowledges areas of uncertainty, and describes potential areas of future investigation.


Subject(s)
Liver Diseases , Renin-Angiotensin System , Humans , Renin-Angiotensin System/physiology , Liver Diseases/metabolism , Liver Diseases/pathology , Animals , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
3.
Front Immunol ; 15: 1368852, 2024.
Article in English | MEDLINE | ID: mdl-38933264

ABSTRACT

The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.


Subject(s)
Blood Coagulation , Complement C1q , Complement Factor H , Complement Pathway, Classical , Fibrin , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Fibrin/metabolism , Complement C1q/metabolism , Complement C1q/immunology , Complement Pathway, Classical/immunology , Protein Binding , Complement Activation/immunology , Blood Platelets/immunology , Blood Platelets/metabolism
5.
Microvasc Res ; 154: 104692, 2024 07.
Article in English | MEDLINE | ID: mdl-38705254

ABSTRACT

OBJECTIVES: Systemic vasculitis is a heterogenous group of autoimmune diseases characterized by enhanced cardiovascular mortality. Endothelial dysfunction is associated with accelerated vascular damage, representing a core pathophysiologic mechanism contributing to excess CV risk. Recent studies have also shown that complement activation holds significant role in the pathogenesis of Anti-Neutrophilic Cytoplasmic Autoantibody (ANCA) -associated vasculitis (AAV). Given the potential crosstalk between the endothelium and complement, we aimed to assess, for the first time simultaneously, easily accessible biomarkers of endothelial dysfunction and complement activation in SV. METHODS: We measured circulating endothelial microvesicles (EMVs) and soluble complement components representative of alternative, classical and terminal activation (C5b-9, C1q, Bb fragments, respectively) in a meticulously selected group of patients with systemic vasculitis, but without cardiovascular disease. Individuals free from systemic diseases, who were matched with patients for cardiovascular risk factors(hypertension, diabetes, smoking, dyslipidemia), comprised the control group. RESULTS: We studied 60 individuals (30 in each group). Patients with systemic vasculitis had elevated EMVs, higher levels of C5b-9 [536.4(463.4) vs 1200.94457.3), p = 0.003] and C1q [136.2(146.5 vs 204.2(232.9), p = 0.0129], compared to controls [232.0 (243.5) vs 139.3(52.1), p < 0.001]. In multivariate analysis both EMVs and C5b-9 were independently associated with disease duration (p = 0.005 and p = 0.004 respectively), yet not with disease activity. CONCLUSION: Patients with systemic vasculitis exhibit impaired endothelial function and complement activation, both assessed by easily accessible biomarkers, even in the absence of cardiovascular disease manifestations. EMVs and soluble complement components such as C5b-9 and C1q could be used as early biomarkers of endothelial dysfunction and complement activation, respectively, in clinical practice during the course of SV, yet their predictive value in terms of future cardiovascular disease warrants further verification in appropriately designed studies.


Subject(s)
Biomarkers , Complement Activation , Endothelium, Vascular , Humans , Male , Female , Middle Aged , Biomarkers/blood , Time Factors , Endothelium, Vascular/physiopathology , Endothelium, Vascular/immunology , Adult , Aged , Case-Control Studies , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/pathology , Cell-Derived Microparticles/immunology , Complement Membrane Attack Complex/metabolism , Complement Membrane Attack Complex/immunology , Complement C1q/metabolism , Complement C1q/immunology , Endothelial Cells/pathology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Systemic Vasculitis/immunology , Systemic Vasculitis/blood , Systemic Vasculitis/physiopathology , Systemic Vasculitis/diagnosis
6.
J Vet Intern Med ; 38(2): 1074-1082, 2024.
Article in English | MEDLINE | ID: mdl-38329151

ABSTRACT

BACKGROUND: High concentrations of complement factors are presented in serum of animal epilepsy models and human patients with epilepsy. OBJECTIVES: To determine whether complement dysregulation occurs in dogs with idiopathic epilepsy (IE). ANIMALS: The study included 49 dogs with IE subgrouped into treatment (n = 19), and nontreatment (n = 30), and 29 healthy dogs. METHODS: In this case-control study, the serum concentrations of the third (C3) and fourth (C4) components of the complement system were measured using a canine-specific ELISA kit. RESULTS: Serum C3 and C4 concentrations were significantly higher in dogs with IE (C3, median; 4.901 [IQR; 3.915-6.673] mg/mL, P < .001; C4, 0.327 [0.134-0.557] mg/mL, P = .03) than in healthy control dogs (C3, 3.550 [3.075-4.191] mg/mL; C4, 0.267 [0.131-0.427] mg/mL). No significant differences were observed in serum C3 and C4 concentrations between dogs in the treatment (C3, median; 4.894 [IQR; 4.192-5.715] mg/mL; C4, 0.427 [0.143-0.586] mg/mL) and nontreatment groups (C3, 5.051 [3.702-7.132] mg/mL; C4, 0.258 [0.130-0.489] mg/mL). Dogs with a seizure frequency >3 times/month had significantly higher serum C3 (6.461 [4.695-8.735] mg/mL; P < .01) and C4 (0.451 [0.163-0.675] mg/mL; P = .01) concentrations than those with a seizure frequency ≤3 times/month (C3, 3.859 [3.464-5.142] mg/mL; C4, 0.161 [0.100-0.325] mg/mL). CONCLUSIONS AND CLINICAL IMPORTANCE: Dysregulation of classical complement pathway was identified in IE dogs. Serum C3 and C4 concentrations could be diagnostic biomarkers for IE in dogs with higher seizure frequency.


Subject(s)
Dog Diseases , Epilepsy , Humans , Dogs , Animals , Complement C3/analysis , Complement C3/metabolism , Complement C4/analysis , Complement C4/metabolism , Case-Control Studies , Epilepsy/veterinary , Seizures/veterinary , Dog Diseases/drug therapy
7.
Cancers (Basel) ; 16(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38339243

ABSTRACT

In recent years, the first-line available therapeutic options for metastatic renal cell carcinoma (mRCC) have radically changed with the introduction into clinical practice of new immune checkpoint inhibitor (ICI)-based combinations. Many efforts are focusing on identifying novel prognostic and predictive markers in this setting. The complement system (CS) plays a central role in promoting the growth and progression of mRCC. In particular, mRCC has been defined as an "aggressive complement tumor", which encompasses a group of malignancies with poor prognosie and highly expressed complement components. Several preclinical and retrospective studies have demonstrated the negative prognostic role of the complement in mRCC; however, there is little evidence on its possible role as a predictor of the response to ICIs. The purpose of this review is to explore more deeply the physio-pathological role of the complement in the development of RCC and its possible future use in clinical practice as a prognostic and predictive factor.

8.
Eur Arch Psychiatry Clin Neurosci ; 274(5): 1215-1222, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38243017

ABSTRACT

The role of the complement system in schizophrenia (Sz) is inconclusive due to heterogeneity of the disease and study designs. Here, we assessed the levels of complement activation products and functionality of the classical pathway in acutely ill unmedicated Sz patients at baseline and after 6 weeks of treatment versus matched controls. The study included analyses of the terminal complement complex (sTCC) and C5a in plasma from 96 patients and 96 controls by enzyme-linked immunosorbent assay. Sub-group analysis of serum was conducted for measurement of C4 component and activity of the classical pathway (28 and 24 cases per cohort, respectively). We found no differences in levels of C5a, C4 and classical pathway function in patients versus controls. Plasma sTCC was significantly higher in patients [486 (392-659) ng/mL, n = 96] compared to controls [389 (304-612) ng/mL, n = 96] (p = 0.027, δ = 0.185), but not associated with clinical symptom ratings or treatment. The differences in sTCC between Sz and controls were confirmed using an Aligned Rank Transformation model considering the covariates age and sex (p = 0.040). Additional analysis showed that sTCC was significantly associated with C-reactive protein (CRP; p = 0.006). These findings suggest that sTCC plays a role in Sz as a trait marker of non-specific chronic immune activation, as previously described for CRP. Future longitudinal analyses with more sampling time points from early recognition centres for psychoses may be helpful to better understand the temporal dynamics of innate immune system changes during psychosis development.


Subject(s)
Schizophrenia , Humans , Schizophrenia/blood , Male , Female , Adult , Middle Aged , Complement C4/analysis , Complement C4/metabolism , Complement C5a , Young Adult , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Complement Membrane Attack Complex/metabolism
9.
Insect Sci ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38246860

ABSTRACT

In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.

10.
Cell Rep ; 43(1): 113611, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38159276

ABSTRACT

Complement is a fundamental innate immune response component. Its alterations are associated with severe systemic diseases. To illuminate the complement's genetic underpinnings, we conduct genome-wide association studies of the functional activity of the classical (CP), lectin (LP), and alternative (AP) complement pathways in the Cooperative Health Research in South Tyrol study (n = 4,990). We identify seven loci, encompassing 13 independent, pathway-specific variants located in or near complement genes (CFHR4, C7, C2, MBL2) and non-complement genes (PDE3A, TNXB, ABO), explaining up to 74% of complement pathways' genetic heritability and implicating long-range haplotypes associated with LP at MBL2. Two-sample Mendelian randomization analyses, supported by transcriptome- and proteome-wide colocalization, confirm known causal pathways, establish within-complement feedback loops, and implicate causality of ABO on LP and of CFHR2 and C7 on AP. LP causally influences collectin-11 and KAAG1 levels and the risk of mouth ulcers. These results build a comprehensive resource to investigate the role of complement in human health.


Subject(s)
Genome-Wide Association Study , Mannose-Binding Lectin , Humans , Complement Activation , Complement System Proteins/metabolism , Lectins/metabolism , Haplotypes/genetics , Mannose-Binding Lectin/genetics
11.
12.
Clin Exp Immunol ; 214(1): 18-25, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37407023

ABSTRACT

Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Complement Pathway, Classical , Lectins , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Complement Activation , Lupus Nephritis/diagnosis
13.
Clin Immunol ; 253: 109678, 2023 08.
Article in English | MEDLINE | ID: mdl-37315680

ABSTRACT

C2 is an attractive therapeutic target for many complement-mediated diseases. We developed Nab1B10, a new anti-C2 nanobody that potently and selectively inhibits both the classical and lectin pathways of complement activation. Mechanistically, Nab1B10 binds to the C2a portion of C2 and inhibits the assembly of C3 convertase C4b2a. Nab1B10 cross-reacts with monkey but not rodent C2 and inhibits classical pathway-mediated hemolysis. Using a new complement humanized mouse model of autoimmune hemolytic anemia (AIHA), we demonstrated that Nab1B10 abolished classical pathway complement activation-mediated hemolysis in vivo. We also developed C2-neutralizing bi- and tetra-valent antibodies based on Nab1B10 and found these antibodies significantly more potent than the other anti-C2 monoclonal antibody that is already in clinical trials. These data suggest that these novel C2-neutralizing nanobodies could be further developed as new therapeutics for many complement-mediated diseases, in which pathogenesis is dependent on the classical and/or lectin pathway of complement activation.


Subject(s)
Anemia, Hemolytic, Autoimmune , Complement C2 , Mice , Animals , Complement C2/metabolism , Hemolysis , Complement Activation , Complement Inactivating Agents
14.
Nephron ; 147 Suppl 1: 80-88, 2023.
Article in English | MEDLINE | ID: mdl-37339606

ABSTRACT

INTRODUCTION: In kidney transplant recipients (KTRs) whose primary disease is IgA nephropathy (IgAN), IgAN recurrence occurs in approximately half of patients by 5 years postoperatively and is associated with graft survival. Although the alternative and lectin pathways are important in the primary pathogenesis of IgAN, the significance of mesangial C1q deposition, which triggers the classical pathway, is unknown. We investigated the clinicopathological significance of mesangial C1q deposition in both recurrent IgAN in KTRs and native IgAN. METHODS: Between 2000 and 2021, we conducted a 1:2 matched case-control study of 18 KTRs diagnosed with recurrent IgAN, with a group of native IgAN patients as the control. We evaluated the rate and presence/absence of mesangial C1q deposition in terms of pathological findings and kidney outcomes in each group. RESULTS: The rate of mesangial C1q deposition was significantly higher in the recurrent IgAN patients in KTRs than in native IgAN patients (11/18 [61.1%] vs. 5/36 [13.9%], p = 0.001). In the former group, the incidence of glomerular crescents was relatively higher in C1q-positive patients. There was no significant difference in the annual rate of estimated glomerular filtration rate decline between C1q-positive and C1q-negative patients in either group. CONCLUSION: Mesangial C1q deposition was more frequent in KTRs with recurrent IgAN than in patients with native IgAN, but we found no difference in kidney outcomes with respect to mesangial C1q deposition. Further large-scale investigations of the importance of mesangial C1q deposition are needed in both KTRs with recurrent IgAN and patients with native IgAN.


Subject(s)
Glomerulonephritis, IGA , Kidney Transplantation , Humans , Glomerulonephritis, IGA/complications , Complement C1q , Case-Control Studies , Glomerular Mesangium/metabolism
15.
Viruses ; 15(6)2023 05 29.
Article in English | MEDLINE | ID: mdl-37376569

ABSTRACT

The complement system is a key component of the innate immune response to viruses and proinflammatory events. Exaggerated complement activation has been attributed to the induction of a cytokine storm in severe SARS-CoV-2 infection. However, there is also an argument for the protective role of complement proteins, given their local synthesis or activation at the site of viral infection. This study investigated the complement activation-independent role of C1q and C4b-binding protein (C4BP) against SARS-CoV-2 infection. The interactions of C1q, its recombinant globular heads, and C4BP with the SARS-CoV-2 spike and receptor binding domain (RBD) were examined using direct ELISA. In addition, RT-qPCR was used to evaluate the modulatory effect of these complement proteins on the SARS-CoV-2-mediated immune response. Cell binding and luciferase-based viral entry assays were utilised to assess the effects of C1q, its recombinant globular heads, and C4BP on SARS-CoV-2 cell entry. C1q and C4BP bound directly to SARS-CoV-2 pseudotype particles via the RBD domain of the spike protein. C1q via its globular heads and C4BP were found to reduce binding as well as viral transduction of SARS-CoV-2 spike protein expressing lentiviral pseudotypes into transfected A549 cells expressing human ACE2 and TMPRSS2. Furthermore, the treatment of the SARS-CoV-2 spike, envelope, nucleoprotein, and membrane protein expressing alphaviral pseudotypes with C1q, its recombinant globular heads, or C4BP triggered a reduction in mRNA levels of proinflammatory cytokines and chemokines such as IL-1ß, IL-8, IL-6, TNF-α, IFN-α, and RANTES (as well as NF-κB) in A549 cells expressing human ACE2 and TMPRSS2. In addition, C1q and C4BP treatment also reduced SARS-CoV-2 pseudotype infection-mediated NF-κB activation in A549 cells expressing human ACE2 and TMPRSS2. C1q and C4BP are synthesised primarily by hepatocytes; however, they are also produced by macrophages, and alveolar type II cells, respectively, locally at the pulmonary site. These findings support the notion that the locally produced C1q and C4BP can be protective against SARS-CoV-2 infection in a complement activation-independent manner, offering immune resistance by inhibiting virus binding to target host cells and attenuating the infection-associated inflammatory response.


Subject(s)
COVID-19 , Complement C4b-Binding Protein , Humans , Complement C4b-Binding Protein/chemistry , Complement C4b-Binding Protein/metabolism , Complement C1q/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Complement Activation , Complement System Proteins/metabolism , Protein Binding
16.
Clin Immunol ; 251: 109629, 2023 06.
Article in English | MEDLINE | ID: mdl-37149117

ABSTRACT

The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.


Subject(s)
Anemia, Hemolytic, Autoimmune , Complement C1s , Humans , Complement C1s/metabolism , Complement Activation , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Complement Inactivating Agents/therapeutic use , Complement Pathway, Classical
17.
J Peripher Nerv Syst ; 28(2): 276-285, 2023 06.
Article in English | MEDLINE | ID: mdl-37119056

ABSTRACT

BACKGROUND AND AIMS: Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare immune-mediated disease of the peripheral nerves, with significant unmet treatment needs. Clinical trials in CIDP are challenging; thus, new trial designs are needed. We present design of an open-label phase 2 study (NCT04658472) evaluating efficacy and safety of SAR445088, a monoclonal antibody targeting complement C1s, in CIDP. METHODS: This phase 2, proof-of-concept, multicenter, open-label trial will evaluate the efficacy, and safety of SAR445088 in 90 patients with CIDP across three groups: (1) currently treated with standard-of-care (SOC) therapies, including immunoglobulin or corticosteroids (SOC-Treated); (2) refractory to SOC (SOC-Refractory); and (3) naïve to SOC (SOC-Naïve). Enrolled participants undergo a 24-week treatment period (part A), followed by an optional treatment extension for up to an additional 52 weeks (part B). In part A, the primary endpoint for the SOC-Treated group is the percentage of participants with a relapse after switching from SOC to SAR445088. The primary endpoint for the SOC-Refractory and SOC-Naïve groups is the percentage of participants with a response, compared to baseline. Secondary endpoints include safety, tolerability, immunogenicity, and efficacy of SAR445088 during 12-week overlapping period (SOC-Treated). Part B evaluates long-term safety and durability of efficacy. Data analysis will be performed using Bayesian statistics (predefined efficacy thresholds) and historical data-based placebo assumptions to support program decision-making. INTERPRETATION: This innovative trial design based on patient groups and Bayesian statistics provides an efficient paradigm to evaluate new treatment candidates across the CIDP spectrum and can help accelerate development of new therapies.


Subject(s)
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal , Bayes Theorem , Complement C1s , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/drug therapy , Treatment Outcome , Proof of Concept Study
18.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901824

ABSTRACT

Although only 0.8-1% of SARS-CoV-2 infections are in the 0-9 age-group, pneumonia is still the leading cause of infant mortality globally. Antibodies specifically directed against SARS-CoV-2 spike protein (S) are produced during severe COVID-19 manifestations. Following vaccination, specific antibodies are also detected in the milk of breastfeeding mothers. Since antibody binding to viral antigens can trigger activation of the complement classical - pathway, we investigated antibody-dependent complement activation by anti-S immunoglobulins (Igs) present in breast milk following SARS-CoV-2 vaccination. This was in view of the fact that complement could play a fundamentally protective role against SARS-CoV-2 infection in newborns. Thus, 22 vaccinated, lactating healthcare and school workers were enrolled, and a sample of serum and milk was collected from each woman. We first tested for the presence of anti-S IgG and IgA in serum and milk of breastfeeding women by ELISA. We then measured the concentration of the first subcomponents of the three complement pathways (i.e., C1q, MBL, and C3) and the ability of anti-S Igs detected in milk to activate the complement in vitro. The current study demonstrated that vaccinated mothers have anti-S IgG in serum as well as in breast milk, which is capable of activating complement and may confer a protective benefit to breastfed newborns.


Subject(s)
COVID-19 , SARS-CoV-2 , Infant, Newborn , Infant , Female , Humans , COVID-19 Vaccines , Lactation , Milk, Human , Complement System Proteins , Immunoglobulin G , Antibodies, Viral
19.
Orphanet J Rare Dis ; 18(1): 24, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36726161

ABSTRACT

BACKGROUND: Autoantibodies against C1-inhibitor (C1-INH-Ab) have a diagnostic value in acquired angioedema due to C1-inhibitor deficiency (C1-INH-AAE), even though antibodies can circulate in complexes, which can be undetectable by proven methods. Our aim was to measure C1-INH/C1-INH-Ab complexes (CAC) and investigate their connection to C1-INH-Ab and the changes in their titer over time. RESULTS: 19 patients were diagnosed with C1-INH-AAE in the Hungarian Angioedema Center of Reference and Excellence; 79% of them had an underlying disease. Samples were examined with a newly developed in-house complex ELISA method. Patients with high C1-INH-Ab titer had a CAC titer which did not exceed the normal level and the ones with high CAC titer had a C1-INH-Ab titer which did not exceed the normal level. In case of those patients who had C1-INH-Ab and CAC of the same type of immunoglobulin, the increasing titer of C1-INH-Ab went together with the decreasing level of CAC and vice versa. CAC titer was already increased before the diagnosis of the underlying disease. CONCLUSIONS: Free circulating and complex antibodies are in a dynamically changing equilibrium. CAC measurements can help to predict the development of an underlying disease. The efficiency of the treatment for underlying disease can be monitored by the decreasing CAC titers. Our results show that the CAC can be of important additional information besides the complement panel examination in case of C1-INH-AAE. Measurement of CAC is recommended to be done parallelly with C1-INH-Ab, so as to detect both free and bound antibodies.


Subject(s)
Angioedema , Angioedemas, Hereditary , Humans , Angioedema/diagnosis , Angioedemas, Hereditary/diagnosis , Complement C1 Inhibitor Protein , Autoantibodies , Enzyme-Linked Immunosorbent Assay
20.
Clin Transl Immunology ; 12(1): e1436, 2023.
Article in English | MEDLINE | ID: mdl-36721662

ABSTRACT

Objectives: The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods: We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D. Results: We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases. Conclusion: The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.

SELECTION OF CITATIONS
SEARCH DETAIL