Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Curr Top Membr ; 93: 1-25, 2024.
Article in English | MEDLINE | ID: mdl-39181576

ABSTRACT

Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.


Subject(s)
Endocytosis , Humans , Animals , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/metabolism , Kidney/pathology , Receptors, Cell Surface/metabolism
2.
Arch Insect Biochem Physiol ; 116(1): e22120, 2024 May.
Article in English | MEDLINE | ID: mdl-38739744

ABSTRACT

The vitellogenin receptor (VgR) is essential for the uptake and transport of the yolk precursor, vitellogenin (Vg). Vg is synthesized in the fat body, released in the hemolymph, and absorbed in the ovaries, via receptor-mediated endocytosis. Besides its important role in the reproductive pathway, Vg occurs in nonreproductive worker honey bee, suggesting its participation in other pathways. The objective was to verify if the VgR occurs in the hypopharyngeal glands of Apis mellifera workers and how Vg is internalized by these cells. VgR occurrence in the hypopharyngeal glands was evaluated by qPCR analyses of VgR and immunohistochemistry in workers with different tasks. The VgR gene is expressed in the hypopharyngeal glands of workers with higher transcript levels in nurse honey bees. VgR is more expressed in 11-day-old workers from queenright colonies, compared to orphan ones. Nurse workers with developed hypopharyngeal glands present higher VgR transcripts than those with poorly developed glands. The immunohistochemistry results showed the co-localization of Vg, VgR and clathrin (protein that plays a major role in the formation of coated vesicles in endocytosis) in the hypopharyngeal glands, suggesting receptor-mediated endocytosis. The results demonstrate that VgR performs the transport of Vg to the hypopharyngeal glands, supporting the Ovary Ground Plan Hypothesis and contributing to the understanding of the role of this gland in the social context of honey bees.


Subject(s)
Egg Proteins , Hypopharynx , Insect Proteins , Receptors, Cell Surface , Animals , Bees/metabolism , Bees/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Egg Proteins/metabolism , Egg Proteins/genetics , Hypopharynx/metabolism , Female , Vitellogenins/metabolism , Vitellogenins/genetics , Clathrin/metabolism
3.
J Biol Chem ; 300(3): 105700, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307383

ABSTRACT

Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.


Subject(s)
Adaptor Protein Complex 1 , Copper-Transporting ATPases , Endosomes , Protein Transport , Receptor, IGF Type 2 , trans-Golgi Network , Humans , Endosomes/metabolism , HeLa Cells , Protein Transport/genetics , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , trans-Golgi Network/genetics , trans-Golgi Network/metabolism , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Adaptor Protein Complex 1/genetics , Adaptor Protein Complex 1/metabolism , Adaptor Protein Complex gamma Subunits/metabolism
4.
Neurosci Lett ; 808: 137282, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37127089

ABSTRACT

Two subtypes of alpha (α)subunits, α1and α2, belonging to AP-2 complex have been described in the central nervous system (CNS). The specific role of each subtype is still unclear. In this study, we evaluated the expression and interaction with cell membranes of both subtypes in the postnatal developing cerebral cortex and cerebellum in two rat strains that display distinct developmental features. We observed that α2 displays higher variations than α1 during development, and at lesser extent in the rats with delayed rate of development. Additionally, by in vitro binding assays we evaluated the interaction of α subunits with bovine brain membranes. Both subtypes displayed clear differences in their performance, maximum binding of α1 was higher and α2 reached it faster than α1. In addition, both subtypes displayed different binding to membranes when bivalent cations or nucleotides were added. We conclude that both subtypes interact differently with membranes and that they may play different roles in clathrin-mediated endocytosis in the CNS.


Subject(s)
Adaptor Protein Complex alpha Subunits , Endocytosis , Membrane Proteins , Animals , Cattle , Rats , Cell Membrane/metabolism , Central Nervous System/metabolism , Clathrin/metabolism , Endocytosis/physiology , Membrane Proteins/metabolism , Adaptor Protein Complex alpha Subunits/metabolism
5.
Biol Res ; 56(1): 7, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36843032

ABSTRACT

BACKGROUND: The distinct arterial and venous cell fates are dictated by a combination of various genetic factors which form diverse types of blood vessels such as arteries, veins, and capillaries. We report here that YULINK protein is involved in vasculogenesis, especially venous formation. METHODS: In this manuscript, we employed gene knockdown, yeast two-hybrid, FLIM-FRET, immunoprecipitation, and various imaging technologies to investigate the role of YULINK gene in zebrafish and human umbilical vein endothelial cells (HUVECs). RESULTS: Knockdown of YULINK during the arterial-venous developmental stage of zebrafish embryos led to the defective venous formation and abnormal vascular plexus formation. Knockdown of YULINK in HUVECs impaired their ability to undergo cell migration and differentiation into a capillary-like tube formation. In addition, the phosphorylated EPHB4 was decreased in YULINK knockdown HUVECs. Yeast two-hybrid, FLIM-FRET, immunoprecipitation, as well as imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B or TICAM2) and markers (Clathrin and RHOB). VEGF-induced VEGFR2 internalization was also compromised in YULINK knockdown HUVECs, demonstrating to the involvement of YULINK. CONCLUSION: This study suggests that YULINK regulates vasculogenesis, possibly through endocytosis in zebrafish and HUVECs.


Subject(s)
Saccharomyces cerevisiae , Zebrafish , Animals , Humans , Human Umbilical Vein Endothelial Cells , Zebrafish/genetics , Cell Movement , Cell Differentiation , Neovascularization, Physiologic
6.
Biol. Res ; 56: 7-7, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429908

ABSTRACT

BACKGROUND: The distinct arterial and venous cell fates are dictated by a combination of various genetic factors which form diverse types of blood vessels such as arteries, veins, and capillaries. We report here that YULINK protein is involved in vasculogenesis, especially venous formation. METHODS: In this manuscript, we employed gene knockdown, yeast two-hybrid, FLIM-FRET, immunoprecipitation, and various imaging technologies to investigate the role of YULINK gene in zebrafish and human umbilical vein endothelial cells (HUVECs). RESULTS: Knockdown of YULINK during the arterial-venous developmental stage of zebrafish embryos led to the defective venous formation and abnormal vascular plexus formation. Knockdown of YULINK in HUVECs impaired their ability to undergo cell migration and differentiation into a capillary-like tube formation. In addition, the phosphorylated EPHB4 was decreased in YULINK knockdown HUVECs. Yeast two-hybrid, FLIM-FRET, immunoprecipitation, as well as imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B or TICAM2) and markers (Clathrin and RHOB). VEGF-induced VEGFR2 internalization was also compromised in YULINK knockdown HUVECs, demonstrating to the involvement of YULINK. CONCLUSION: This study suggests that YULINK regulates vasculogenesis, possibly through endocytosis in zebrafish and HUVECs. Key points Knockdown of YULINK with morpholino in embryos of double transgenic zebrafish exhibited abnormal venous formation. Tube formation and phosphorylated EPHB4 were decreased in YULINK knockdown HUVECs. FLIM-FRET, immunoprecipitation, as well as other imaging technologies showed that YULINK colocalized with endosome related proteins (EPS15, RAB33B and TICAM2) and endosome markers (Clathrin and RHOB). Knockdown of YULINK decreased the internalization of VEGF and VEGFR2 in HUVECs.


Subject(s)
Humans , Animals , Saccharomyces cerevisiae , Zebrafish/genetics , Cell Differentiation , Cell Movement , Neovascularization, Physiologic , Human Umbilical Vein Endothelial Cells
7.
Front Plant Sci ; 13: 987191, 2022.
Article in English | MEDLINE | ID: mdl-36330253

ABSTRACT

Sucrose is a central regulator of plant growth and development, coordinating cell division and cell elongation according to the energy status of plants. Sucrose is known to stimulate bulk endocytosis in cultured cells; however, its physiological role has not been described to date. Our work shows that sucrose supplementation induces root cell elongation and endocytosis. Sucrose targets clathrin-mediated endocytosis (CME) in epidermal cells. Its presence decreases the abundance of both the clathrin coating complex and phosphatidylinositol 4,5-biphosphate at the plasma membrane, while increasing clathrin complex abundance in intracellular spaces. Sucrose decreases the plasma membrane residence time of the clathrin complex, indicating that it controls the kinetics of endocytic vesicle formation and internalization. CME regulation by sucrose is inducible and reversible; this on/off mechanism reveals an endocytosis-mediated mechanism for sensing plant energy status and signaling root elongation. The sucrose monosaccharide fructose also induces CME, while glucose and mannitol have no effect, demonstrating the specificity of the process. Overall, our data show that sucrose can mediate CME, which demonstrates that sucrose signaling for plant growth and development is dependent on endomembrane trafficking.

8.
Microorganisms ; 10(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35744660

ABSTRACT

Mutualistic bacteria have different forms of interaction with the host. In contrast to the invasion of pathogenic bacteria, naturally occurring internalization of commensal bacteria has not been studied in depth. Three in vitro methods, gentamicin protection, flow cytometry and confocal laser scanning microscopy, have been implemented to accurately assess the internalization of two lactobacillus strains-Lacticaseibacillus paracasei BL23 and Lacticaseibacillus rhamnosus GG-in Caco-2 and T84 intestinal epithelial cells (IECs) under a variety of physiological conditions and with specific inhibitors. First and most interesting, internalization occurred at a variable rate that depends on the bacterial strain and IEC line, and the most efficient was BL23 internalization by T84 and, second, efficient internalization required active IEC proliferation, as it improved naturally at the early confluence stages and by stimulation with epidermal growth factor (EGF). IFN-γ is bound to innate immune responses and autolysis; this cytokine had a significant effect on internalization, as shown by flow cytometry, but increased internalization was not perceived in all conditions, possibly because it was also stimulating autolysis and, as a consequence, the viability of bacteria after uptake could be affected. Bacterial uptake required actin polymerization, as shown by cytochalasin D inhibition, and it was partially bound to clathrin and caveolin dependent endocytosis. It also showed partial inhibition by ML7 indicating the involvement of cholesterol lipid rafts and myosin light chain kinase (MLCK) activation, at least in the LGG uptake by Caco-2. Most interestingly, bacteria remained viable inside the IEC for as long as 72 h without damaging the epithelial cells, and paracellular transcytosis was observed. These results stressed the fact that internalization of commensal and mutualistic bacteria is a natural, nonpathogenic process that may be relevant in crosstalk processes between the intestinal populations and the host, and future studies could determine its connection to processes such as commensal tolerance, resilience of microbial populations or transorganic bacterial migration.

9.
Int J Parasitol ; 52(7): 399-406, 2022 06.
Article in English | MEDLINE | ID: mdl-35367214

ABSTRACT

The protozoan parasite Giardia lamblia acquires cholesterol from the environment since it is unable to synthesise cholesterol de novo and this is vital for trophozoite growth. Conversely, the lack of cholesterol was described as an essential event to trigger encystation, the differentiation of trophozoites to mature cysts. During the G. lamblia cell cycle, cholesterol is acquired as a free molecule as well as through receptor-mediated endocytosis (RME) of lipoproteins. In this work, we describe the involvement of RME in the cell differentiation process of G. lamblia. We found that a reduction in the expression of the medium subunit (Glµ2) of the giardial adaptin protein GlAP2 impaired RME, triggering the process of encystation in growing cells. Contrary to expectations, decreasing Glµ2 expression produced a cohort of trophozoites that yielded significantly less mature cysts when cells were induced to encyst. Analysis of the subcellular localization of Glµ2 and the cyst wall protein 1 (CWP1) during encystation was later performed, to dissect the process. Our results showed, on one hand, that blocking RME by inhibiting Glµ2 expression, and probably cholesterol entry, is sufficient to induce cell differentiation but not to complete the process of encystation. On the other hand, we observed that GlAP2 is necessary to accomplish the final steps of encystation by sorting CWP1 to the plasma membrane for cyst wall formation. The understanding of the mechanisms involved in cyst formation should provide novel insights into the control of giardiasis, an endemic worldwide neglected disease.


Subject(s)
Adaptor Proteins, Vesicular Transport , Giardia lamblia , Giardiasis , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cholesterol , Giardia lamblia/genetics , Giardia lamblia/metabolism , Giardiasis/parasitology , Humans , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trophozoites/metabolism
10.
Front Cell Neurosci ; 15: 803302, 2021.
Article in English | MEDLINE | ID: mdl-35095425

ABSTRACT

Biallelic pathogenic variants in TBCK cause encephaloneuropathy, infantile hypotonia with psychomotor retardation, and characteristic facies 3 (IHPRF3). The molecular mechanisms underlying its neuronal phenotype are largely unexplored. In this study, we reported two sisters, who harbored biallelic variants in TBCK and met diagnostic criteria for IHPRF3. We provided evidence that TBCK may play an important role in the early secretory pathway in neuroprogenitor cells (iNPC) differentiated from induced pluripotent stem cells (iPSC). Lack of functional TBCK protein in iNPC is associated with impaired endoplasmic reticulum-to-Golgi vesicle transport and autophagosome biogenesis, as well as altered cell cycle progression and severe impairment in the capacity of migration. Alteration in these processes, which are crucial for neurogenesis, neuronal migration, and cytoarchitecture organization, may represent an important causative mechanism of both neurodevelopmental and neurodegenerative phenotypes observed in IHPRF3. Whether reduced mechanistic target of rapamycin (mTOR) signaling is secondary to impaired TBCK function over other secretory transport regulators still needs further investigation.

11.
Article in English | MEDLINE | ID: mdl-32714877

ABSTRACT

Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite. Toxoplasma can invade and multiply inside any nucleated cell of a wide range of homeothermic hosts. The canonical process of internalization involves several steps: an initial recognition of the host cell surface and a sequential secretion of proteins from micronemes followed by rhoptries that assemble a macromolecular complex constituting a specialized and transient moving junction. The parasite is then internalized via an endocytic process with the establishment of a parasitophorous vacuole (PV), that does not fuse with lysosomes, where the parasites survive and multiply. This process of host cell invasion is usually referred to active penetration. Using different cell types and inhibitors of distinct endocytic pathways, we show that treatment of host cells with compounds that interfere with clathrin-mediated endocytosis (hypertonic sucrose medium, chlorpromazine hydrochloride, and pitstop 2 inhibited the internalization of tachyzoites). In addition, treatments that interfere with macropinocytosis, such as incubation with amiloride or IPA-3, increased parasite attachment to the host cell surface but significantly blocked parasite internalization. Immunofluorescence microscopy showed that markers of macropinocytosis, such as the Rab5 effector rabankyrin 5 and Pak1, are associated with parasite-containing cytoplasmic vacuoles. These results indicate that entrance of T. gondii into mammalian cells can take place both by the well-characterized interaction of parasite and host cell endocytic machinery and other processes, such as the clathrin-mediated endocytosis, and macropinocytosis.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Endocytosis , Host-Parasite Interactions , Pinocytosis , Vacuoles
12.
Protoplasma ; 255(6): 1703-1712, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29756169

ABSTRACT

Vitellogenin receptor (VgR) is a low-density lipoprotein receptor responsible for the mediated endocytosis of vitellogenin (Vg) during egg formation in insects. The maturing oocyte is enveloped by a follicular epithelium, which has large intercellular spaces during Vg accumulation (patency). However, Vg has been reported in the cytoplasm of follicular cells, indicating that there may be a transcellular route for its transport. This study verified the presence of VgR in the follicular cells of the ovaries of the honeybee Apis mellifera and the wasp Polistes simillimus in order to evaluate if Vg is transported via transcytosis in these insects. Antibodies specific for vitellogenin receptor (anti-VgR), vitellogenin (anti-Vg), and clathrin (anti-Clt) were used for immunolocalization. The results showed the presence of VgR on the apical and basal plasma membranes of follicular cells of the vitellogenic follicles in both species, indicating that VgR may have been transported from the basal to the apical cell domain, followed by its release into the perivitelline space, evidenced by the presence of apical plasma membrane projections containing VgR. Co-localization proved that Vg bind to VgR and that the transport of this protein is mediated by clathrin. These data suggest that, in these social insects, Vg is transported via clathrin-mediated VgR transcytosis in follicular cells.


Subject(s)
Bees/cytology , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , Transcytosis , Vitellogenins/metabolism , Wasps/cytology , Animals , Egg Proteins/metabolism , Female , Membrane Proteins/metabolism , Ovarian Follicle/ultrastructure , Receptors, Cell Surface/metabolism
13.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1072-1085, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29355600

ABSTRACT

Impaired canalicular secretion due to increased endocytosis and intracellular retention of canalicular transporters such as BSEP and MRP2 is a main, common pathomechanism of cholestasis. Nevertheless, the mechanisms governing this process are unknown. We characterized this process in estradiol 17 ß-d-glucuronide (E17G)-induced cholestasis, an experimental model which partially mimics pregnancy-induced cholestasis. Inhibitors of clathrin-mediated endocytosis (CME) such as monodansylcadaverine (MDC) or K+ depletion, but not the caveolin-mediated endocytosis inhibitors filipin and genistein, prevented E17G-induced endocytosis of BSEP and MRP2, and the associated impairment of activity of these transporters in isolated rat hepatocyte couplets (IRHC). Immunofluorescence and confocal microscopy studies showed that, in E17G-treated IRHC, there was a significant increase in the colocalization of MRP2 with clathrin, AP2, and Rab5, three essential members of the CME machinery. Knockdown of AP2 by siRNA in sandwich-cultured rat hepatocytes completely prevented E17G-induced endocytosis of BSEP and MRP2. MDC significantly prevented this endocytosis, and the impairment of bile flow and biliary secretion of BSEP and MRP2 substrates, in isolated and perfused livers. BSEP and MRP2, which were mostly present in raft (caveolin-enriched) microdomains in control rats, were largely found in non-raft (clathrin-enriched) microdomains in livers from E17G-treated animals, from where they can be readily recruited for CME. In conclusion, our findings show that CME is the mechanism responsible for the internalization of the canalicular transporters BSEP and MRP2 in E17G-induced cholestasis. The shift of these transporters from raft to non-raft microdomains could be a prerequisite for the transporters to be endocytosed under cholestatic conditions.


Subject(s)
Cholestasis/metabolism , Endocytosis , Hepatocytes/metabolism , Liver/metabolism , Membrane Microdomains/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP-Binding Cassette Transporters/metabolism , Animals , Cholestasis/chemically induced , Cholestasis/pathology , Disease Models, Animal , Female , Hepatocytes/pathology , Liver/pathology , Membrane Microdomains/pathology , Rats , Rats, Wistar
14.
Front Mol Neurosci ; 10: 296, 2017.
Article in English | MEDLINE | ID: mdl-28979185

ABSTRACT

Single point mutations or variations in the expression of the gene encoding the neuronal glycoprotein M6a have been associated with psychiatric disorders such as Alzheimer's disease, depression and schizophrenia. In cultured neurons, M6a positively contributes to neurite extension, axon guidance, filopodia/spine outgrowth, and synapse formation. The endocytic processes of neuronal membrane proteins are linked to the differentiation, growth, signaling and plasticity of neurons. However, the roles of M6a and the precise mechanisms through which M6a internalizes and recycles back to the neuronal membrane are unknown. Here, by using a controlled in vitro assay, we showed that if 30-40% of M6a is endocytosed, the number of synapses in hippocampal neurons decreases. When re-establishing the levels of M6a at the cell surface, the number of synapses returned to normal values. M6a internalization involves clathrin-coated pits, probably by association between the adaptor protein 2 and the 251YEDI254 "tyrosine-based" motif located within the C-tail of M6a. Upon endocytosis, M6a is sorted to early endosome antigen 1- and Rab5-positive endosomes and then sorted back to the cell surface via Rab11-positive endosomes or to degradation via Rab7 and, finally LAMP-1-positive endosomes. Our results demonstrated that the levels of M6a at the cell surface modified the formation/maintenance of synapses, without altering the protein levels of synaptophysin or N-methyl-D-aspartate receptor type-1. This novel mechanism might be relevant during neuronal development, pruning and/or many of the neurological disorders in which the number of synapses is affected.

15.
PeerJ ; 5: e3245, 2017.
Article in English | MEDLINE | ID: mdl-28462045

ABSTRACT

Mayaro virus (MAYV) is an emergent sylvatic alphavirus in South America, related to sporadic outbreaks of a chikungunya-like human febrile illness accompanied by severe arthralgia. Despite its high potential for urban emergence, MAYV is still an obscure virus with scarce information about its infection cycle, including the corresponding early events. Even for prototypical alphaviruses, the cell entry mechanism still has some rough edges to trim: although clathrin-mediated endocytosis is quoted as the putative route, alternative paths as distinct as direct virus genome injection through the cell plasma membrane seems to be possible. Our aim was to clarify crucial details on the entry route exploited by MAYV to gain access into the host cell. Tracking the virus since its first contact with the surface of Vero cells by fluorescence microscopy, we show that its entry occurs by a fast endocytic process and relies on fusion with acidic endosomal compartments. Moreover, blocking clathrin-mediated endocytosis or depleting cholesterol from the cell membrane leads to a strong inhibition of viral infection, as assessed by plaque assays. Following this clue, we found that early endosomes and caveolae-derived vesicles are both implicated as target membranes for MAYV fusion. Our findings unravel the very first events that culminate in a productive infection by MAYV and shed light on potential targets for a rational antiviral therapy, besides providing a better comprehension of the entry routes exploited by alphaviruses to get into the cell.

16.
Am J Physiol Renal Physiol ; 313(2): F440-F449, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28468964

ABSTRACT

ANG II has many biological effects in renal physiology, particularly in Ca2+ handling in the regulation of fluid and solute reabsorption. It involves the systemic endocrine renin-angiotensin system (RAS), but tissue and intracrine ANG II are also known. We have shown that ANG II induces heterodimerization of its AT1 and AT2 receptors (AT1R and AT2R) to stimulate sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity. Thus, we investigated whether ANG II-AT1R/AT2R complex is formed and internalized, and also examined the intracellular localization of this complex to determine how its effect might be exerted on renal intracrine RAS. Living cell imaging of LLC-PK1 cells, quantification of extracellular ANG II, and use of the receptor antagonists, losartan and PD123319, showed that ANG II is internalized with AT1R/AT2R heterodimers as a complex in a microtubule-dependent and clathrin-independent manner, since colchicine-but not Pitstop2-blocked this process. This result was confirmed by an increase of ß-arrestin phosphorylation after ANG II treatment, clathrin-mediated endocytosis being dependent on dephosphorylation of ß-arrestin. Internalized ANG II colocalized with an endoplasmic reticulum (ER) marker and increased levels of AT1R, AT2R, and PKCα in ER-enriched membrane fractions. This novel evidence suggests the internalization of an ANG II-AT1/AT2 complex to target ER, where it might trigger intracellular Ca2+ responses.


Subject(s)
Angiotensin II/metabolism , Cell Membrane/metabolism , Endocytosis , Endoplasmic Reticulum/metabolism , Kidney/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 2 Receptor Blockers/pharmacology , Animals , Calcium/metabolism , Cell Membrane/drug effects , Endocytosis/drug effects , Endoplasmic Reticulum/drug effects , Kidney/drug effects , LLC-PK1 Cells , Microtubules/metabolism , Multiprotein Complexes , Phosphorylation , Protein Kinase C-alpha/metabolism , Protein Transport , Receptor, Angiotensin, Type 1/drug effects , Receptor, Angiotensin, Type 2/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Swine , beta-Arrestins/metabolism
17.
J Nanobiotechnology ; 15(1): 11, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28143572

ABSTRACT

BACKGROUND: Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. METHODS: We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. RESULTS: Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. CONCLUSIONS: These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies.


Subject(s)
Biocompatible Materials/chemistry , Caveolae/metabolism , Epithelial Cells/drug effects , Membrane Microdomains , Nanoparticles/chemistry , Polyesters/chemistry , A549 Cells , Cell Survival , Clathrin/chemistry , Drug Delivery Systems , Epithelial Cells/cytology , Humans , Interleukin-12/metabolism , MicroRNAs/metabolism , Particle Size , Pinocytosis , Proteome , Vascular Endothelial Growth Factor A/metabolism
18.
Proc Natl Acad Sci U S A ; 113(39): 11028-33, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27651494

ABSTRACT

The Arabidopsis thaliana endogenous elicitor peptides (AtPeps) are released into the apoplast after cellular damage caused by pathogens or wounding to induce innate immunity by direct binding to the membrane-localized leucine-rich repeat receptor kinases, PEP RECEPTOR1 (PEPR1) and PEPR2. Although the PEPR-mediated signaling components and responses have been studied extensively, the contributions of the subcellular localization and dynamics of the active PEPRs remain largely unknown. We used live-cell imaging of the fluorescently labeled and bioactive pep1 to visualize the intracellular behavior of the PEPRs in the Arabidopsis root meristem. We found that AtPep1 decorated the plasma membrane (PM) in a receptor-dependent manner and cointernalized with PEPRs. Trafficking of the AtPep1-PEPR1 complexes to the vacuole required neither the trans-Golgi network/early endosome (TGN/EE)-localized vacuolar H(+)-ATPase activity nor the function of the brefeldin A-sensitive ADP-ribosylation factor-guanine exchange factors (ARF-GEFs). In addition, AtPep1 and different TGN/EE markers colocalized only rarely, implying that the intracellular route of this receptor-ligand pair is largely independent of the TGN/EE. Inducible overexpression of the Arabidopsis clathrin coat disassembly factor, Auxilin2, which inhibits clathrin-mediated endocytosis (CME), impaired the AtPep1-PEPR1 internalization and compromised AtPep1-mediated responses. Our results show that clathrin function at the PM is required to induce plant defense responses, likely through CME of cell surface-located signaling components.


Subject(s)
Arabidopsis/metabolism , Clathrin/metabolism , Peptides/metabolism , Signal Transduction , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , Green Fluorescent Proteins/metabolism , Meristem/cytology , Meristem/metabolism , Mitogen-Activated Protein Kinases/metabolism , Models, Biological , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Rhodamines/metabolism , Subcellular Fractions/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , trans-Golgi Network/metabolism
19.
Traffic ; 17(9): 976-96, 2016 09.
Article in English | MEDLINE | ID: mdl-27161574

ABSTRACT

The Nef protein of the human immunodeficiency virus is a crucial determinant of viral pathogenesis and disease progression. Nef is abundantly expressed early in infection and is thought to optimize the cellular environment for viral replication. Nef controls expression levels of various cell surface molecules that play important roles in immunity and virus life cycle, by directly interfering with the itinerary of these proteins within the endocytic and late secretory pathways. To exert these functions, Nef physically interacts with host proteins that regulate protein trafficking. In recent years, considerable progress was made in identifying host-cell-interacting partners for Nef, and the molecular machinery used by Nef to interfere with protein trafficking has started to be unraveled. Here, we briefly review the knowledge gained and discuss new findings regarding the mechanisms by which Nef modifies the intracellular trafficking pathways to prevent antigen presentation, facilitate viral particle release and enhance the infectivity of HIV-1 virions.


Subject(s)
HIV Infections/virology , HIV-1/metabolism , Membrane Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Down-Regulation , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/pathogenicity , Humans , Lysosomes/virology , Membrane Proteins/genetics , Membrane Proteins/immunology , Protein Binding , Protein Transport , Virulence , Virus Replication
20.
Biochem J ; 470(1): 131-44, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26251452

ABSTRACT

Gangliosides are sialic acid-containing glycosphingolipids mainly expressed at the outer leaflet of the plasma membrane. Sialidase NEU3 is a key enzyme in the catabolism of gangliosides with its up-regulation having been observed in human cancer cells. In the case of CME (clathrin-mediated endocytosis), although this has been widely studied, the role of NEU3 and gangliosides in this cellular process has not yet been established. In the present study, we found an increased internalization of Tf (transferrin), the archetypical cargo for CME, in cells expressing complex gangliosides with high levels of sialylation. The ectopic expression of NEU3 led to a drastic decrease in Tf endocytosis, suggesting the participation of gangliosides in this process. However, the reduction in Tf endocytosis caused by NEU3 was still observed in glycosphingolipid-depleted cells, indicating that NEU3 could operate in a way that is independent of its action on gangliosides. Additionally, internalization of α2-macroglobulin and low-density lipoprotein, other typical ligands in CME, was also decreased in NEU3-expressing cells. In contrast, internalization of cholera toxin ß-subunit, which is endocytosed by both clathrin-dependent and clathrin-independent mechanisms, remained unaltered. Kinetic assays revealed that NEU3 caused a reduction in the sorting of endocytosed Tf to early and recycling endosomes, with the Tf binding at the cell surface being also reduced. NEU3-expressing cells showed an altered subcellular distribution of clathrin adaptor AP-2 (adaptor protein 2), but did not reveal any changes in the membrane distribution of clathrin, PtdIns(4,5)P2 or caveolin-1. Overall, these results suggest a specific and novel role of NEU3 in CME.


Subject(s)
Cell Membrane/metabolism , Clathrin/metabolism , Endocytosis/physiology , Neuraminidase/physiology , Animals , CHO Cells , COS Cells , Chickens , Chlorocebus aethiops , Cricetinae , Cricetulus , Humans , Protein Binding/physiology
SELECTION OF CITATIONS
SEARCH DETAIL