Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.936
Filter
1.
Rev. biol. trop ; 72(1): e53860, ene.-dic. 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1559318

ABSTRACT

Abstract Introduction: Leptodactylus latinasus and Physalaemus cuqui are sympatric anuran species with similar environmental requirements and contrasting reproductive modes. Climatic configuration determines distribution patterns and promotes sympatry of environmental niches, but specificity/selectivity determines the success of reproductive modes. Species distribution models (SDM) are a valuable tool to predict spatio-temporal distributions based on the extrapolation of environmental predictors. Objectives: To determine the spatio-temporal distribution of environmental niches and assess whether the protected areas of the World Database of Protected Areas (WDPA) allow the conservation of these species in the current scenario and future. Methods: We applied different algorithms to predict the distribution and spatio-temporal overlap of environmental niches of L. latinasus and P. cuqui within South America in the last glacial maximum (LGM), middle-Holocene, current and future scenarios. We assess the conservation status of both species with the WDPA conservation units. Results: All applied algorithms showed high performance for both species (TSS = 0.87, AUC = 0.95). The L. latinasus predictions showed wide environmental niches from LGM to the current scenario (49 % stable niches, 37 % gained niches, and 13 % lost niches), suggesting historical fidelity to stable climatic-environmental regions. In the current-future transition, L. latinasus would increase the number of stable (70 %) and lost (20 %) niches, suggesting fidelity to lowland regions and a possible trend toward microendemism. P. cuqui loses environmental niches from the LGM to the current scenario (25 %) and in the current-future transition (63 %), increasing the environmental sympathy between both species; 31 % spatial overlap in the current scenario and 70 % in the future. Conclusion: Extreme drought events and rainfall variations, derived from climate change, suggest the loss of environmental niches for these species that are not currently threatened but are not adequately protected by conservation units. The loss of environmental niches increases spatial sympatry which represents a new challenge for anurans and the conservation of their populations.


Resumen Introducción: Leptodactylus latinasus y Physalaemus cuqui son especies de anuros simpátricos con requerimientos ambientales similares y modos reproductivos contrastantes. La configuración climática determina los patrones de distribución y promueve la simpatría de los nichos ambientales, pero la especificidad/selectividad determina el éxito de los modos reproductivos. Los modelos de distribución de especies (MDE) son una herramienta valiosa para predecir distribuciones espacio-temporales basadas en la extrapolación de predictores ambientales. Objetivos: Determinar la distribución espacio-temporal de los nichos ambientales y evaluar si las áreas protegidas de la base de Datos Mundial de Áreas Protegidas (DMAP) permiten la conservación de estas especies en el escenario actual y futuro. Métodos: Aplicamos diferentes algoritmos para predecir la distribución y superposición espacio-temporal de nichos ambientales de L. latinasus y P. cuqui dentro de América del Sur en el último máximo glacial (UGM), Holoceno medio, actual y futuro. Evaluamos el estado de conservación de ambas especies con las unidades de conservación de la DMAP. Resultados: Todos los algoritmos aplicados mostraron un alto rendimiento para ambas especies (TSS = 0.87, AUC = 0.95). Las predicciones de L. latinasus mostraron amplios nichos ambientales desde LGM hasta el escenario actual (49 % de nichos estables, 37 % de nichos ganados y 13 % de nichos perdidos), sugiriendo fidelidad histórica por regiones climático-ambientales estables. En la transición actual-futura L. latinasus incrementaría la cantidad de nichos estables (70 %) y perdidos (20 %), sugiriendo fidelidad por regiones de tierras bajas y la posible tendencia hacia el microendemismo. P. cuqui pierde nichos ambientales desde el LGM al escenario actual (25 %) y en la transición actual-futura (63 %), incrementando la simpatría ambiental entre ambas especies; 31 % de superposición espacial en el escenario actual y 70 % en el futuro. Conclusión: Los eventos de sequía extrema y las variaciones de precipitaciones, derivados del cambio climático, sugieren la pérdida de nichos ambientales para estas especies, actualmente no se encuentran amenazadas, pero no están adecuadamente protegidas por las unidades de conservación. La pérdida de nichos ambientales aumenta la simpatría espacial que representa un nuevo desafío para estos anuros y la conservación de sus poblaciones.

2.
Sci Total Environ ; : 174389, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960170

ABSTRACT

Climate change leads to more frequent and intense heavy rainfall events, posing significant challenges for urban stormwater management, particularly in rapidly urbanizing cities of developing countries with constrained infrastructure. However, the quantitative assessment of urban stormwater, encompassing both its volume and quality, in these regions is impeded due to the scarcity of observational data and resulting limited understanding of drainage system dynamics. This study aims to elucidate the present and projected states of urban flooding, with a specific emphasis on fecal and organic contamination caused by combined sewer overflow (CSO). Leveraging a hydrological model incorporating physical and biochemical processes validated against invaluable observational data, we undertake simulations to estimate discharge, flood volume, and concentrations of suspended solids (SS), Escherichia coli (E. coli), and chemical oxygen demand (COD) within the drainage channel network of Phnom Penh City, Cambodia. Alterations in flood volumes, and pollutant concentrations and loads in overflow under two representative concentration pathways (RCPs 4.5 and 8.5) for extreme rainfall events are projected. Furthermore, we employ a multi-criteria decision analysis (MCDA) framework to evaluate flood risk, incorporating diverse indicators encompassing physical, social, and ecological dimensions. Our results demonstrate the exacerbating effects of climate change on flood volumes, expansion of flooded areas, prolonged durations of inundation, elevated vulnerability index, and heightened susceptibility to pollutant contamination under both scenarios, underscoring increased risks of flooding and fecal contamination. Spatial analysis identifies specific zones exhibiting heightened vulnerability to flooding and climate change, suggesting priority zones for investment in flood mitigation measures. These findings provide crucial insights for urban planning and stormwater management in regions with limited drainage infrastructure, offering essential guidance for decision-making in locales facing similar challenges.

3.
Sci Total Environ ; : 174292, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960192

ABSTRACT

Droughts are increasingly frequent as the Earth warms, presenting adaptation challenges for ecosystems and human communities worldwide. A strategic environmental assessment (SEA) and the integration of adaptation strategies into policies, plans, and programs (PPP) are two important approaches for enhancing climate resilience and fostering sustainable development. This study developed an innovative approach to strengthen the SEA of droughts by quantifying the impacts of future temperature increases. A novel method for projecting drought events was integrated into the SEA process by leveraging multiple data sources, including atmospheric reanalysis, reconstructions, satellite-based observations, and model simulations. We identified drought conditions using terrestrial water storage (TWS) anomalies and applied a random forest (RF) model for disentangling the drivers behind drought events. We then set two global warming targets (2.0 °C and 2.5 °C) and analyzed drought changes under three shared socioeconomic pathways (SSP126, SSP370, SSP585). In a 2.0 °C warming world, over 50 % of the global surface will face increased drought risk. With an additional 0.5 °C increase, >60 % of the land will be prone to further drought escalation. We utilized copulas to build the joint distribution for drought duration and severity, estimating the joint return periods (JRP) for bivariate drought hazard. In tropical and subtropical regions, JRP reductions exceeding half are projected for >33 % of the regional land surface under 2.0 °C warming and for >50 % under 2.5 °C warming. Finally, we projected the impacts of drought events on population and gross domestic product (GDP). Among the three SSPs, under SSP370, population exposure is highest and GDP exposure is minimal under 2.0 °C warming. Global GDP and population risks from drought are projected to increase by 37 % and 24 %, respectively, as warming continues. This study enhances the accuracy of SEA in addressing drought risks and vulnerabilities, supporting climate-resilient planning and adaptive strategies.

4.
Sci Total Environ ; : 174378, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960201

ABSTRACT

Understanding the Amazon Rainforest's response to shifts in precipitation is paramount with regard to its sensitivity to climate change and deforestation. Studies using Dynamic Global Vegetation Models (DGVMs) typically only explore a range of socio-economically plausible pathways. In this study, we applied the state-of-the-art DGVM LPJmL to simulate the Amazon forest's response under idealized scenarios where precipitation is linearly decreased and subsequently increased between current levels and zero. Our results indicate a nonlinear but reversible relationship between vegetation Above Ground Biomass (AGB) and Mean Annual Precipitation (MAP), suggesting a threshold at a critical MAP value, below which vegetation biomass decline accelerates with decreasing MAP. We find that approaching this critical threshold is accompanied by critical slowing down, which can hence be expected to warn of accelerating biomass decline with decreasing rainfall. The critical precipitation threshold is lowest in the northwestern Amazon, whereas the eastern and southern regions may already be below their critical MAP thresholds. Overall, we identify the seasonality of precipitation and the potential evapotranspiration (PET) as the most important parameters determining the threshold value. While vegetation fires show little effect on the critical threshold and the biomass pattern in general, the ability of trees to adapt to water stress by investing in deep roots leads to increased biomass and a lower critical threshold in some areas in the eastern and southern Amazon where seasonality and PET are high. Our findings underscore the risk of Amazon forest degradation due to changes in the water cycle, and imply that regions that are currently characterized by higher water availability may exhibit heightened vulnerability to future drying.

5.
Nefrologia (Engl Ed) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960781

ABSTRACT

Chronic Kidney Disease is a serious public health problem and in clear relation to Climate Change and ecosystem maintenance. Renal health is particularly vulnerable to the impacts of climate change, and dialysis therapy (hemodialysis and PD) has a significant environmental footprint, conditioned by energy consumption and greenhouse gas production. In the last 50 years, people have changed ecosystems faster and more extensively than in any other period in human history. It is a consequence of ever-increasing demand for food, fresh water, fuel, industry, etc. and the result has been a substantial and largely irreversible loss of the diversity of life on Earth. Since 1979, human activities have caused the extinction of 60% of mammals, birds, fish and reptiles. There is an urgent need to adopt "Green Nephrology" measures by developing sustainable environmental solutions for the prevention and treatment of kidney diseases.

6.
Trop Med Int Health ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962808

ABSTRACT

OBJECTIVE: The objective of this study is to analyse the epidemiological profile of global climate-related disasters in terms of morbidity and mortality, as well as to examine their temporal trends. METHOD: This cross-sectional study analysed climate-related global disasters from 2000 to 2021, utilising definitions and criteria from the United Nations Strategy for Disaster Reduction and the Centre for Research on the Epidemiology of Disasters. Data were sourced from the EM-DAT database. The study assessed trends over the entire period and compared them with previous years (1978-2000). RESULTS: A total of 7398 climate-related disasters were recorded, with hydrological disasters being the most frequent, followed by meteorological and climatological disasters. Statistically significant differences were noted in the average rates of affected individuals and injuries per million inhabitants. No significant trends were found in mortality rates, but the frequency trends for the entire period (1978-2021) and the subperiod (1978-2000) were increasing and statistically significant. However, the trend from 2000 onwards showed a non-significant decrease, potentially reflecting better disaster preparedness and response strategies under the Hyogo and Sendai Framework. CONCLUSION: The study highlights hydrological disasters as the most frequent and deadliest climate-related events, with climatological disasters affecting and injuring the most people. The lack of standardised criteria for disaster inclusion in databases presents a significant challenge in comparing results and analysing trends. Establishing uniform inclusion criteria is crucial for effective data analysis and disaster management.

7.
Environ Monit Assess ; 196(8): 696, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963444

ABSTRACT

Salinity-induced desertification is a pressing environmental issue that poses a significant threat to the sustainability of oasis ecosystems worldwide. These ecosystems are vital to the livelihoods of millions of people living in hyper-arid, arid and semi-arid regions, providing essential resources such as food, water and other necessities. However, overexploitation of natural resources, changes in land use and climate change have led to the degradation of these ecosystems, resulting in soil salinisation, waterlogging and other adverse effects. Combating salinity-induced desertification requires a comprehensive approach that addresses both the underlying causes of ecosystem degradation and the direct consequences for local communities. The strategy may include measures for sustainable land use, reforestation and water conservation. It is also essential to involve local communities in these activities and to ensure that their perspectives are heard. The aim of this article is to examine the causes and processes of salinity-induced desertification in oasis ecosystems and the implications for their sustainability. It also examines strategies that are being used to prevent desertification and promote sustainable oasis management. This article aims to raise awareness of this critical issue and to promote action towards a more sustainable future.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Salinity , Environmental Monitoring , Soil/chemistry
8.
Sci Rep ; 14(1): 15193, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956145

ABSTRACT

Birds maintain some of the highest body temperatures among endothermic animals. Often deemed a selective advantage for heat tolerance, high body temperatures also limits birds' thermal safety margin before reaching lethal levels. Recent modelling suggests that sustained effort in Arctic birds might be restricted at mild air temperatures, which may require reductions in activity to avoid overheating, with expected negative impacts on reproductive performance. We measured within-individual changes in body temperature in calm birds and then in response to an experimental increase in activity in an outdoor captive population of Arctic, cold-specialised snow buntings (Plectrophenax nivalis), exposed to naturally varying air temperatures (- 15 to 36 °C). Calm buntings exhibited a modal body temperature range from 39.9 to 42.6 °C. However, we detected a significant increase in body temperature within minutes of shifting calm birds to active flight, with strong evidence for a positive effect of air temperature on body temperature (slope = 0.04 °C/ °C). Importantly, by an ambient temperature of 9 °C, flying buntings were already generating body temperatures ≥ 45 °C, approaching the upper thermal limits of organismal performance (45-47 °C). With known limited evaporative heat dissipation capacities in these birds, our results support the recent prediction that free-living buntings operating at maximal sustainable rates will increasingly need to rely on behavioural thermoregulatory strategies to regulate body temperature, to the detriment of nestling growth and survival.


Subject(s)
Cold Temperature , Songbirds , Animals , Arctic Regions , Songbirds/physiology , Body Temperature Regulation/physiology , Body Temperature/physiology , Breeding , Reproduction/physiology , Female , Male , Temperature
9.
Ambio ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967897

ABSTRACT

We investigated trends in temperature, stratification, and hypolimnetic oxygen concentration of German lakes under climate change using observational data and hydrodynamic modelling. Observations from 46 lakes revealed that annually averaged surface temperatures increased by + 0.5 °C between 1990 and 2020 while bottom temperatures remained almost constant. Modelling of 12 lakes predicted further increases in surface temperatures by 0.3 °C/decade until the year 2099 in the most pessimistic emission scenario RCP 8.5 (RCP 4.5: + 0.18 °C/decade; RCP 2.6: + 0.04 °C/decade). Again, bottom temperatures increased much less while summer stratification extended by up to 38 days. Using a simplified oxygen model, we showed that hypolimnetic oxygen concentrations decreased by 0.7-1.9 mg L-1 in response to the extended stratification period. However, model runs assuming lower productivity (e. g. through nutrient reduction) resulted in increased oxygen concentrations even in the most pessimistic emission scenario. Our results suggest that the negative effects of climate change on the oxygen budget of lakes can be efficiently mitigated by nutrient control.

10.
Ecol Evol ; 14(7): e11673, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952656

ABSTRACT

The Arctic polar nights bring extreme environmental conditions characterised by cold and darkness, which challenge the survival of organisms in the Arctic. Additionally, multiple anthropogenic stressors can amplify the pressure on the fragile Arctic ecosystems during this period. Determining how multiple anthropogenic stressors may affect the survival of Arctic life is crucial for ecological risk assessments and management, but this topic is understudied. For the first time, our study investigates the complex interactions of multiple stressors, exploring stressor temporal dynamics and exposure duration on a key Arctic copepod Calanus glacialis during the polar nights. We conducted experiments with pulse (intermittent) and press (continuous) exposure scenarios, involving microplastics, pyrene and warming in a fully factorial design. We observed significant effects on copepod survival, with pronounced impacts during later stressor phases. We also detected two-way interactions between microplastics and pyrene, as well as pyrene and warming, further intensified with the presence of a third stressor. Continuous stressor exposure for 9 days (press-temporal scenario) led to greater reductions in copepod survival compared to the pulse-temporal scenario, characterised by two 3-day stressor exposure phases. Notably, the inclusion of recovery phases, free from stressor exposure, positively influenced copepod survival, highlighting the importance of temporal exposure dynamics. We did not find behaviour to be affected by the different treatments. Our findings underscore the intricate interactions amongst multiple stressors and their temporal patterns in shaping the vulnerability of overwintering Arctic copepods with crucial implications for managing Arctic aquatic ecosystems under the fastest rate of ongoing climate change on earth.

11.
Ecol Evol ; 14(7): e11652, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952658

ABSTRACT

Marine sponges are predicted to be winners in the future ocean due to their exemplary adaptive capacity. However, while many sponge groups exhibit tolerance to a wide range of environmental insults, calcifying sponges may be more susceptible to thermo-acidic stress. To describe the gene regulatory networks that govern the stress response of the calcareous sponge, Leucetta chagosensis (class Calcarea, order Clathrinida), individuals were subjected to warming and acidification conditions based on the climate models for 2100. Transcriptome analysis and gene co-expression network reconstruction revealed that the unfolded protein response (UPR) was activated under thermo-acidic stress. Among the upregulated genes were two lineage-specific homologs of X-box binding protein 1 (XBP1), a transcription factor that activates the UPR. Alternative dimerization between these XBP1 gene products suggests a clathrinid-specific mechanism to reversibly sequester the transcription factor into an inactive form, enabling the rapid regulation of pathways linked to the UPR in clathrinid calcareous sponges. Our findings support the idea that transcription factor duplication events may refine evolutionarily conserved molecular pathways and contribute to ecological success.

12.
Ecol Evol ; 14(7): e11657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952655

ABSTRACT

Ongoing climate change poses an increasing threat to biodiversity. To avoid decline or extinction, species need to either adjust or adapt to new environmental conditions or track their climatic niches across space. In sessile organisms such as plants, phenotypic plasticity can help maintain fitness in variable and even novel environmental conditions and is therefore likely to play an important role in allowing them to survive climate change, particularly in the short term. Understanding a species' response to rising temperature is crucial for planning well-targeted and cost-effective conservation measures. We sampled seeds of three Hypericum species (H. maculatum, H. montanum, and H. perforatum), from a total of 23 populations originating from different parts of their native distribution areas in Europe. We grew them under four different temperature regimes in a greenhouse to simulate current and predicted future climatic conditions in the distribution areas. We measured flowering start, flower count, and subsequent seed weight, allowing us to study variations in the thermal plasticity of flowering phenology and its relation to fitness. Our results show that individuals flowered earlier with increasing temperature, while the degree of phenological plasticity varied among species. More specifically, the plasticity of H. maculatum varied depending on population origin, with individuals from the leading range edge being less plastic. Importantly, we show a positive relationship between higher plasticity and increased flower production, indicating adaptive phenological plasticity. The observed connection between plasticity and fitness supports the idea that plasticity may be adaptive. This study underlines the need for information on plasticity for predicting species' potential to thrive under global change and the need for studies on whether higher phenotypic plasticity is currently being selected as natural populations experience a rapidly changing climate.

13.
Front Plant Sci ; 15: 1410388, 2024.
Article in English | MEDLINE | ID: mdl-38952841

ABSTRACT

The potential distribution of crops will be impacted by climate change, but there is limited research on potential wheat distributions under specific global warming targets. This study employed the Maxent model to predict the potential distribution of wheat under the 1.5°C and 2°C warming targets based on data from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) multimodel ensemble, and the effect of global warming on wheat planting suitability was analyzed. Our results indicated global warming would significantly change wheat planting suitability. Over half of the areas experienced changes in wheat planting suitability under two warming targets, and the effect became more pronounced with increasing temperatures. Additionally, global warming might promote wheat planting in more regions. The area with an increase in wheat planting suitability was observed to be 9% higher than those experiencing a decrease on average. Moreover, global warming could exacerbate the disparity between global wheat supply and demand in countries/regions. Traditional wheat-producing countries/regions are poised to benefit from the warming effects of climate change, while less developed and wheat import-dependent countries/regions may face greater challenges in achieving wheat self-sufficiency. To address this potential challenge, the promotion and inter-regional exchange of agronomic technologies, and the development of more rational trade standards are urgently needed. Since socioeconomic factors have a significant impact on wheat cultivation, further investigation is required to determine how the wheat planting distribution may change in the future under the combined impact of climate change, supply-demand relationship, and policy.

14.
Mol Ecol ; : e17448, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946210

ABSTRACT

Species with widespread distributions play a crucial role in our understanding of climate change impacts on population structure. In marine species, population structure is often governed by both high connectivity potential and selection across strong environmental gradients. Despite the complexity of factors influencing marine populations, studying species with broad distribution can provide valuable insights into the relative importance of these factors and the consequences of climate-induced alterations across environmental gradients. We used the northern shrimp Pandalus borealis and its wide latitudinal distribution to identify current drivers of population structure and predict the species' vulnerability to climate change. A total of 1514 individuals sampled across 24° latitude were genotyped at high geographic (54 stations) and genetic (14,331 SNPs) resolutions to assess genetic variation and environmental correlations. Four populations were identified in addition to finer substructure associated with local adaptation. Geographic patterns of neutral population structure reflected predominant oceanographic currents, while a significant proportion of the genetic variation was associated with gradients in salinity and temperature. Adaptive landscapes generated using climate projections suggest a larger genomic offset in the southern extent of the P. borealis range, where shrimp had the largest adaptive standing genetic variation. Our genomic results combined with recent observations point to further deterioration in southern regions and an impending vulnerable status in the regions at higher latitudes for P. borealis. They also provide rare insights into the drivers of population structure and climatic vulnerability of a widespread meroplanktonic species, which is crucial to understanding future challenges associated with invertebrates essential to ecosystem functioning.

15.
Conserv Biol ; : e14316, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946355

ABSTRACT

Assessing the extinction risk of species based on the International Union for Conservation of Nature (IUCN) Red List (RL) is key to guiding conservation policies and reducing biodiversity loss. This process is resource demanding, however, and requires continuous updating, which becomes increasingly difficult as new species are added to the RL. Automatic methods, such as comparative analyses used to predict species RL category, can be an efficient alternative to keep assessments up to date. Using amphibians as a study group, we predicted which species are more likely to change their RL category and thus should be prioritized for reassessment. We used species biological traits, environmental variables, and proxies of climate and land-use change as predictors of RL category. We produced an ensemble prediction of IUCN RL category for each species by combining 4 different model algorithms: cumulative link models, phylogenetic generalized least squares, random forests, and neural networks. By comparing RL categories with the ensemble prediction and accounting for uncertainty among model algorithms, we identified species that should be prioritized for future reassessment based on the mismatch between predicted and observed values. The most important predicting variables across models were species' range size and spatial configuration of the range, biological traits, climate change, and land-use change. We compared our proposed prioritization index and the predicted RL changes with independent IUCN RL reassessments and found high performance of both the prioritization and the predicted directionality of changes in RL categories. Ensemble modeling of RL category is a promising tool for prioritizing species for reassessment while accounting for models' uncertainty. This approach is broadly applicable to all taxa on the IUCN RL and to regional and national assessments and may improve allocation of the limited human and economic resources available to maintain an up-to-date IUCN RL.


Uso del análisis comparativo del riesgo de extinción para priorizar la reevaluación de los anfibios en la Lista Roja de la UICN Resumen El análisis del riesgo de extinción de una especie con base en la Lista Roja (LR) de la Unión Internacional para la Conservación de la Naturaleza (UICN) es clave para guiar las políticas de conservación y reducir la pérdida de la biodiversidad. Sin embargo, este proceso demanda recursos y requiere de actualizaciones continuas, lo que se complica conforme se añaden especies nuevas a la LR. Los métodos automáticos, como los análisis comparativos usados para predecir la categoría de la especie en la LR, pueden ser una alternativa eficiente para mantener actualizados los análisis. Usamos a los anfibios como grupo de estudio para predecir cuáles especies tienen mayor probabilidad de cambiar de categoría en la LR y que, por lo tanto, se debería priorizar su reevaluación. Usamos las características biológicas de la especie, las variables ambientales e indicadores climáticos y del cambio de uso de suelo como predictores de la categoría en la LR. Elaboramos una predicción de ensamble de la categoría en la LR de la UICN para cada especie mediante la combinación de cuatro algoritmos diferentes: modelos de vínculo acumulativo, menor número de cuadros filogenéticos generalizados, bosques aleatorios y redes neurales. Con la comparación entre las categorías de la LR y la predicción de ensamble y con considerar la incertidumbre entre los algoritmos identificamos especies que deberían ser prioridad para futuras reevaluaciones con base en el desfase entre los valores predichos y los observados. Las variables de predicción más importantes entre los modelos fueron el tamaño de la distribución de la especie y su configuración espacial, las características biológicas, el cambio climático y el cambio de uso de suelo. Comparamos nuestra propuesta de índice de priorización y los cambios predichos en la LR con las reevaluaciones independientes de la LR de la UICN y descubrimos un buen desempeño tanto para la priorización como para la direccionalidad predicha de los cambios en las categorías de la LR. El modelo de ensamble de la categoría de la LR esa una herramienta prometedora para priorizar la reevaluación de las especies a la vez que considera la incertidumbre del modelo. Esta estrategia puede generalizarse para aplicarse a todos los taxones de la LR de la UICN y a los análisis regionales y nacionales. También podría mejorar la asignación de los recursos humanos y económicos limitados disponibles para mantener actualizada la LR de la UICN.

16.
Chemosphere ; 362: 142714, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950751

ABSTRACT

Marine ecosystems are under escalating threats from myriad environmental stressors, necessitating a deeper understanding of their impact on biodiversity and the health of sentinel organisms. In this study, we carried out a spatiotemporal multi-omic analysis of liquid biopsies collected from mussels (Mytilus spp.) in marine ecosystems of a national park. We delved into the epigenomic, transcriptomic, glycomic, proteomic, and microbiomic profiles to unravel the intricate interplay between ecosystem biodiversity and mussels' biological response to their environments. Our analysis revealed temporal fluctuations in the alpha diversity of the circulating microbiome associated with human activities. Analysis of the hemolymphatic circulating cell-free DNA (ccfDNA) provided information on the biodiversity and the presence of potential pathogens. Epigenomic analysis revealed widespread hypomethylation sites within the mitochondrial (mtDNA). Comparative transcriptomic and glycomic analyses highlighted differences in metabolic pathways and genes associated with immune and wound healing functions. This study demonstrates the potential of multi-omic analysis of liquid biopsy in sentinel to provide a holistic view of human activities' environmental impacts on marine coastal ecosystems. Overall, this approach has the potential to enhance the effectiveness and efficiency of various conservation efforts, leading to more informed decision-making and better outcomes for biodiversity and ecosystem conservation.

17.
Sci Rep ; 14(1): 14992, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951540

ABSTRACT

This study investigates methane emissions from the livestock sector, representing by enteric fermentation and manure management, in Egypt from 1989 to 2021, focusing on spatial and temporal variations at the governorate level. Utilizing IPCC guidelines and emission factors, methane emissions were estimated for dairy and non-dairy cattle, buffalo, sheep and goat, poultry, and other livestock categories. Results reveal fluctuating emission patterns over the study period, with notable declines in certain governorates such as Kafr El-Sheikh and Red Sea, attributed to reductions in livestock populations. However, increasing trends were observed overall, driven by population growth in other regions. Hotspots of methane emissions were identified in delta governorates like Behera and Sharkia, as well as agriculturally rich regions including Menia and Suhag. While livestock populations varied between regions, factors such as water availability, climatic conditions, and farming practices influenced distribution. Notably, cluster analysis did not reveal regional clustering among governorates, suggesting emissions changes were not dependent on specific geographic or climatic boundaries. Manure management accounted for only 5-6% of total emissions, with emissions at their lowest in the last three years due to population declines. Despite the highest livestock populations being sheep and goats, emissions from enteric fermentation and manure management were highest from buffalo and cattle. This study underscores the importance of accurate data collection and adherence to IPCC recommendations for estimating GHG emissions, enabling the development of targeted mitigation strategies to address climate change challenges in the livestock sector.


Subject(s)
Greenhouse Gases , Livestock , Methane , Animals , Egypt , Methane/analysis , Methane/metabolism , Greenhouse Gases/analysis , Manure/analysis , Cattle , Sheep , Environmental Monitoring/methods
18.
Parasit Vectors ; 17(1): 281, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951858

ABSTRACT

BACKGROUND: Abiotic factors play a significant role in the evolution of Leishmania infantum infection due to its vectorial nature. This study aims to assess the evolution in the detection of new L. infantum infection cases in Valdeorras (Ourense, Northwestern Spain) over a 20-year period and how different climatic variables and preventive measures may have affected it. METHODS: Indirect immunofluorescence antibody tests (IFAT) were performed on serum samples collected from dogs attending the 'Servicios Veterinarios de Sil' veterinary clinic (Valdeorras, Northwestern Spain) between May 2003 and April 2023 to detect L. infantum exposure. The percentage of new cases of L. infantum infection was calculated from May of one year to April of the following year. Climatic conditions in the region, global sales of ectoparasiticides and the number of vaccines against L. infantum delivered in the veterinary clinic from 2003 to 2022 were recorded. Statistical analyses were conducted to determine the associations between these factors and the percentage of new cases of L. infantum infection. RESULTS: A total of 2909 dogs were assessed, and 3785 IFAT tests were performed between May 2003 and April 2023. The mean percentage of new seropositive cases over the 20-year period studied was 21.65 ± 10.8%, with a decline from the beginning to the end of the period studied. The percentage was significantly higher between May 2003 and April 2008 compared with the other periods (May 2008 to April 2013, May 2013 to April 2018 and May 2018 to April 2023). There was a positive correlation between the percentage of new cases of L. infantum infection and the maximum relative humidity in winter. Conversely, there was a negative correlation between the percentage of new cases and sales of ectoparasiticides and vaccination against L. infantum. CONCLUSIONS: This study is one of the longest evaluations of the evolution of L. infantum infection in a fixed location and its association with external factors including climatic conditions and preventive measures. The results confirm that Valdeorras is a high-risk area for L. infantum infection. The use of ectoparasiticides and vaccines against L. infantum has been shown to play a significant role in preventing L. infantum infection, highlighting the crucial role of veterinarians in the fight against this disease.


Subject(s)
Climate , Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Dogs , Animals , Spain/epidemiology , Dog Diseases/parasitology , Dog Diseases/epidemiology , Dog Diseases/prevention & control , Leishmania infantum/immunology , Leishmania infantum/isolation & purification , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/prevention & control , Leishmaniasis, Visceral/parasitology , Antibodies, Protozoan/blood , Male , Fluorescent Antibody Technique, Indirect , Female
19.
J Asthma ; : 1-10, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38953539

ABSTRACT

OBJECTIVE: This systematic review aimed to investigate the epidemiological data about meteorological factors and climate change (CC) impact on asthma. DATA SOURCES: A search was performed using three databases (Web of Science, Science Direct, and MEDLINE) for all relevant studies published from January 1, 2018, to December 31, 2022. STUDY SELECTIONS: This systematic review complied with the PRISMA document's requirements, including studies related to meteorological factors and CC impact on asthma. The search included studies published in English or French language, and was based on title, abstract, and complete text. Documents not meeting inclusion requirements were excluded. RESULTS: We identified 18 studies published in the last five years that were eligible for inclusion in this review. We found that these studies concerned European, Asian, American, and Oceanic cities. Extreme variations in temperature, humidity, wind speed, exceptional incidents like hurricanes, cold and heat waves, and seasonal shifts were strongly correlated with the worsening of asthmatic symptoms, particularly in childhood. In addition, excessive concentrations of air pollutants and aeroallergens were linked to pediatric asthma emergency hospital admissions. CONCLUSIONS: A significant association between the consequences of CC and asthma in adults particularly in children has been demonstrated. Future research should quantify the impact of global change in climate regarding the aeroallergens' distribution in terms of geography and time. It is also necessary to research the impact of air pollution on asthmatic health, like sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and particles having an aerodynamic diameter lower than 2.5 µm (PM2.5).

SELECTION OF CITATIONS
SEARCH DETAIL
...