Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Mar Environ Res ; 201: 106676, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142217

ABSTRACT

Coastal areas conservation strategies often left deeper habitats, such as mesophotic ones, unprotected and exposed to anthropogenic activities. In this context, an approach for including the mesophotic zone inside protection plans is proposed, considering 27 Italian Marine Protected Areas (MPAs) as a model. MPAs were classified considering their bathymetries, exposure to marine heat waves (MHWs), mass mortality events (MMEs) and, using a local ecological knowledge (LEK) approach, the estimated resilience of certain sessile species after MMEs. Only 8 MPAs contained considerable mesophotic areas, with stronger MHWs mainly occurring in shallower MPAs, and MMEs mostly affecting coralligenous assemblages. Even with only a 10% response rate, the LEK approach provided useful information on the resilience of certain species, allowing us to suggest that the presence of nearby mesophotic areas can help shallower habitats facing climate change, thus making the "deep refugia" hypothesis, usually related to tropical habitats, applicable also for the Mediterranean Sea.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Mediterranean Sea , Animals , Italy , Environmental Monitoring
2.
Int J Biometeorol ; 68(9): 1741-1755, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38850441

ABSTRACT

Riparian corridors often act as low-land climate refugia for temperate tree species in their southern distribution range. A plausible mechanism is the buffering of regional climate extremes by local physiographic and biotic factors. We tested this idea using a 3-year-long microclimate dataset collected along the Ciron river, a refugia for European beech (Fagus sylvatica) in southwestern France. Across the whole network, canopy gap fraction was the main predictor for spatial microclimatic variations, together with two other landscape features (elevation above the river and woodland fraction within a 300m radius). However, within the riparian forest only (canopy gap fraction < 25%, distance to the river < 150m), variations of up to -4°C and + 15% in summertime daily maximum air temperature and minimum relative humidity, respectively, were still found from the plateau to the cooler, moister river banks, only ~ 5-10m below. Elevation above the river was then identified as the main predictor, and explained the marked variations from the plateau to the banks much better than canopy gap fraction. The microclimate measured near the river is as cool but moister than the macroclimate encountered at 700-1000m asl further east in F. sylvatica's main distribution range. Indeed, at all locations, we found that air relative humidity was higher than expected from a temperature-only effect, suggesting that extra moisture is brought by the river. Our results explain well why beech trees in this climate refugium are restricted to the river gorges where microtopographic variations are the strongest and canopy gaps are rare.


Subject(s)
Fagus , Forests , Rivers , France , Microclimate , Temperature , Climate , Humidity , Refugium
3.
Proc Natl Acad Sci U S A ; 121(16): e2303336121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588432

ABSTRACT

Climate change projections for coral reefs are founded exclusively on sea surface temperatures (SST). While SST projections are relevant for the shallowest reefs, neglecting ocean stratification overlooks the striking differences in temperature experienced by deeper reefs for all or part of the year. Density stratification creates a buoyancy barrier partitioning the upper and lower parts of the water column. Here, we mechanistically downscale climate models and quantify patterns of thermal stratification above mesophotic corals (depth 30 to 50 m) of the Great Barrier Reef (GBR). Stratification insulates many offshore regions of the GBR from heatwaves at the surface. However, this protection is lost once global average temperatures exceed ~3 °C above preindustrial, after which mesophotic temperatures surpass a recognized threshold of 30 °C for coral mortality. Bottom temperatures on the GBR (30 to 50 m) from 2050 to 2060 are estimated to increase by ~0.5 to 1 °C under lower climate emissions (SSP1-1.9) and ~1.2 to 1.7 °C under higher climate emissions (SSP5-8.5). In short, mesophotic coral reefs are also threatened by climate change and research might prioritize the sensitivity of such corals to stress.


Subject(s)
Anthozoa , Climate Change , Animals , Coral Reefs , Temperature , Water , Ecosystem
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230012, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38583476

ABSTRACT

The Atlantic meridional overturning circulation (AMOC) has caused significant climate changes over the past 90 000 years. Prior work has hypothesized that these millennial-scale climate variations effected past and contemporary biodiversity, but the effects are understudied. Moreover, few biogeographic models have accounted for uncertainties in palaeoclimatic simulations of millennial-scale variability. We examine whether refuges from millennial-scale climate oscillations have left detectable legacies in the patterns of contemporary species richness in eastern North America. We analyse 13 palaeoclimate estimates from climate simulations and proxy-based reconstructions as predictors for the contemporary richness of amphibians, passerine birds, mammals, reptiles and trees. Results suggest that past climate changes owing to AMOC variations have left weak but detectable imprints on the contemporary richness of mammals and trees. High temperature stability, precipitation increase, and an apparent climate fulcrum in the southeastern United States across millennial-scale climate oscillations aligns with high biodiversity in the region. These findings support the hypothesis that the southeastern United States may have acted as a biodiversity refuge. However, for some taxa, the strength and direction of palaeoclimate-richness relationships varies among different palaeoclimate estimates, pointing to the importance of palaeoclimatic ensembles and the need for caution when basing biogeographic interpretations on individual palaeoclimate simulations. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Subject(s)
Biodiversity , Mammals , Animals , Trees , Amphibians , North America , Climate Change
5.
Ecology ; 105(4): e4257, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38426609

ABSTRACT

Climate refugia are areas where species can persist through climate change with little to no movement. Among the factors associated with climate refugia are high spatial heterogeneity, such that there is only a short distance between current and future optimal climates, as well as biotic or abiotic environmental factors that buffer against variability in time. However, these types of climate refugia may be declining due to anthropogenic homogenization of environments and degradation of environmental buffers. To quantify the potential for restoration of refugia-like environmental conditions to increase population persistence under climate change, we simulated a population's capacity to track their temperature over space and time given different levels of spatial and temporal variability in temperature. To determine how species traits affected the efficacy of restoring heterogeneity, we explored an array of values for species' dispersal ability, thermal tolerance, and fecundity. We found that species were more likely to persist in environments with higher spatial heterogeneity and lower environmental stochasticity. When simulating a management action that increased the spatial heterogeneity of a previously homogenized environment, species were more likely to persist through climate change, and population sizes were generally higher, but there was little effect with mild temperature change. The benefits of heterogeneity restoration were greatest for species with limited dispersal ability. In contrast, species with longer dispersal but lower fecundity were more likely to benefit from a reduction in environmental stochasticity than an increase in spatial heterogeneity. Our results suggest that restoring environments to refugia-like conditions could promote species' persistence under the influence of climate change in addition to conservation strategies such as assisted migration, corridors, and increased protection.


Subject(s)
Climate Change , Refugium , Population Density , Temperature , Ecosystem
6.
Conserv Biol ; 38(4): e14246, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38445689

ABSTRACT

Climate refugia, areas where climate is expected to remain relatively stable, can offer a near-term safe haven for species sensitive to warming temperatures and drought. Understanding the influence of temperature, moisture, and disturbance on sensitive species is critical during this time of rapid climate change. Coastal habitats can serve as important refugia. Many of these areas consist of working forestlands, and there is a growing recognition that conservation efforts worldwide must consider the habitat value of working lands, in addition to protected areas, to effectively manage large landscapes that support biodiversity. The sensitivity of forest bats to climate and habitat disturbance makes them a useful indicator taxon. We tested how microclimate and forest management influence habitat use for 13 species of insectivorous bats in a large climate refugium in a global biodiversity hotspot. We examined whether bat activity during the summer dry season is greater in forests where coastal fog provides moisture and more stable temperatures across both protected mature stands and those regularly logged. Acoustic monitoring was conducted at a landscape scale with 20 study sites, and generalized linear mixed models were used to examine the influence of habitat variables. Six species were positively associated with warmer nighttime temperature, and 5 species had a negative relationship with humidity or a positive relationship with climatic moisture deficit. Our results suggest that these mammals may have greater climate adaptive capacity than expected, and, for now, that habitat use may be more related to optimal foraging conditions than to avoidance of warming temperatures and drought. We also determined that 12 of the 13 regionally present bat species were regularly detected in commercial timberland stands. Because forest bats are highly mobile, forage over long distances, and frequently change roosts, the stewardship of working forests must be addressed to protect these species.


Influencia del microclima y el manejo forestal sobre especies de murciélagos ante el cambio global Resumen Los refugios climáticos, áreas en donde se espera que el clima permanezca relativamente estable, pueden ofrecer un santuario a corto plazo para las especies sensibles al aumento de temperaturas y la sequía. Es muy importante entender la influencia de la temperatura, la humedad y las perturbaciones sobre las especies sensibles durante estos tiempos de cambio climático repentino. Los hábitats costeros pueden funcionar como refugios importantes. Muchas de estas áreas consisten en bosques funcionales y cada vez hay más reconocimiento de que los esfuerzos mundiales de conservación deben considerar el valor del hábitat de los suelos funcionales, además de las áreas protegidas, para manejar de manera efectiva los extensos paisajes que mantienen a la biodiversidad. La sensibilidad de los murciélagos de los bosques ante las perturbaciones climáticas y de hábitat hace que sean un taxón indicador útil. Analizamos cómo los microclimas y el manejo forestal influyen sobre el uso de hábitat de 13 especies de murciélagos insectívoros en un refugio climático amplio dentro de un punto caliente de biodiversidad mundial. Examinamos si la actividad de los murciélagos durante la temporada seca de verano es mayor en los bosques en donde la niebla costera proporciona humedad y temperaturas más estables tanto en los árboles maduros como aquellos que son talados con regularidad. Realizamos el monitoreo acústico a escala de paisaje en 20 estudios de sitio y usamos modelos lineales mixtos generalizados para examinar la influencia de las variables del hábitat. Seis especies estuvieron asociadas positivamente con la temperatura nocturna más cálida y cinco especies tuvieron una relación negativa con la humedad o una relación positiva con el déficit climático de humedad. Nuestros resultados sugieren que estos mamíferos pueden tener una mayor capacidad de adaptación climática de lo que se pensaba y, por ahora, que el uso de hábitat puede estar más relacionado con las condiciones óptimas de forrajeo que con la evasión de las temperaturas elevadas y la sequía. También determinamos que 12 de las 13 especies con presencia regional fueron detectadas con regularidad en los puntos de tala comercial. Ya que los murciélagos del bosque tienden a moverse mucho, forrajear a lo largo de grandes distancias y con frecuencia cambiar de nido, debemos abordar la administración de los bosques funcionales para proteger a estas especies.


Subject(s)
Chiroptera , Climate Change , Conservation of Natural Resources , Forestry , Forests , Microclimate , Animals , Chiroptera/physiology , Conservation of Natural Resources/methods , Biodiversity , Refugium
7.
Ecol Evol ; 13(12): e10833, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38155816

ABSTRACT

Climate refugia can serve as remnant habitat for cold-adapted species and delay forest transitions. The world's largest freshwater lake by surface area, Lake Superior, serves as a model system for understanding cooling-mediated refugia effects, as its cool summer water temperatures have maintained disjunct populations of arctic-alpine plants on its shoreline since deglaciation. It is known to affect local inland climates by providing a summer cooling effect; however, the inland temperature gradient and spatial patterns of cooling have not been well quantified. Here, we describe the extent, degree, and patterns of temperature buffering and examine drivers of buffering and disjunct plant occurrence for Lake Superior's north shore over a 3-year period at distances of 10, 100 m, 1, 10, and 100 km inland. We analyzed temperature data by year, month, summer maximum (July), and growing degree days (GDD0) for each site. Average summertime cooling at shore sites (10 m) was ~5°C cooler than reference sites (100 km inland), with a maximum difference of -19.2°C. The magnitude of cooling varied geographically, with sites further west and southeast showing little to no cooling effect, while the exposed north-central shore showed the highest degree of buffering (5.8°C cooler) and had a shorter growing season than reference sites. Finally, north-central shorelines had fewer days above 16°C, a threshold above which disjunct plants are unlikely to grow. These sites also showed the highest proportion of disjunct arctic-alpine species, reflecting the highest buffering from inland sites. On north-central shores, sites up to 10 km inland had less than 10 days per year warmer than 20°C, a threshold identified for boreal forest transition. An understanding of the extent of lake-mediated cooling on adjacent forests can better inform the risk to disjunct species, inland forests, and vegetation transition models on Lake Superior's north shore.

8.
J Struct Biol ; 215(4): 108036, 2023 12.
Article in English | MEDLINE | ID: mdl-37832837

ABSTRACT

The widespread decline of shallow-water coral reefs has fueled interest in assessing whether mesophotic reefs can act as refugia replenishing deteriorated shallower reefs through larval exchange. Here we explore the morphological and molecular basis facilitating survival of planulae and adults of the coral Porites astreoides (Lamarck, 1816; Hexacorallia: Poritidae) along the vertical depth gradient in Bermuda. We found differences in micro-skeletal features such as bigger calyxes and coarser surface of the skeletal spines in shallow corals. Yet, tomographic reconstructions reveal an analogous mineral distribution between shallow and mesophotic adults, pointing to similar skeleton growth dynamics. Our study reveals patterns of host genetic connectivity and minimal symbiont depth-zonation across a broader depth range than previously known for this species in Bermuda. Transcriptional variations across life stages showed different regulation of metabolism and stress response functions, unraveling molecular responses to environmental conditions at different depths. Overall, these findings increase our understanding of coral acclimatory capability across broad vertical gradients, ultimately allowing better evaluation of the refugia potential of mesophotic reefs.


Subject(s)
Anthozoa , Porifera , Animals , Anthozoa/genetics , Bermuda , Coral Reefs , Water , Ecosystem
9.
Animals (Basel) ; 13(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37889742

ABSTRACT

Climate change and biodiversity loss are two severe challenges that the world is facing. Studying the distribution shifts of species in response to climate change could provide insights into long-term conservation and biodiversity maintenance. Myotis pilosus is the only known fishing bat in East Asia, whereas its population has been decreasing in recent years and it is listed as a "Vulnerable" species. To assess the impact of climate change on the distribution of M. pilosus, we obtained 33 M. pilosus occurrence records within China where they are mainly distributed, and extracted 30 environmental variables. MaxEnt was applied to assess the habitat suitability, recognize the important environmental variables, predict future distribution changes, and identify the potential future climate refugia. The prediction result based on eleven dominant environmental variables was excellent. The Jackknife test showed that the "minimum temperature of coldest month", "precipitation of wettest quarter", "percent tree cover", and "precipitation of driest month" were the main factors affecting the distribution of M. pilosus. The current suitable areas were predicted to be mainly located in southwest and southeast China with a total area of about 160.54 × 104 km2, accounting for 16.72% of China's land area. Based on the CCSM4, it was predicted that the future (2050 and 2070) suitable areas of M. pilosus will expand and shift to high latitudes and altitudes with global warming, but the area of moderately and highly suitable habitats will be small. Considering the dispersal capacity of M. pilosus, the area of colonized suitable habitats in 2050 and 2070 was predicted to be only ca. 94 × 104 km2 and 155 × 104 km2, respectively. The central and southern parts of Hainan, southern Guangdong, central Guizhou, and southern Beijing were identified as potential climate refugia and could be considered as priority conservation areas for M. pilosus. Thus, we suggest long-term monitoring of the priority conservation areas, especially the areas at high latitudes and altitudes. These results contribute to our knowledge of the possible spatial distribution pattern of M. pilosus under current and future climate scenarios, which is important for the population protection and habitat management of this special piscivorous bat species.

10.
Ecol Evol ; 13(6): e10222, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37384242

ABSTRACT

Climate and land use changes are increasingly recognized as major threats to global biodiversity, with significant impacts on wildlife populations and ecosystems worldwide. The study of how climate and land use changes impact wildlife is of paramount importance for advancing our understanding of ecological processes in the face of global environmental change, informing conservation planning and management, and identifying the mechanisms and thresholds that underlie species' responses to shifting climatic conditions. The Asiatic black bear (Ursus thibetanus) is a prominent umbrella species in a biodiversity hotspot in Southwestern China, and its conservation is vital for safeguarding sympatric species. However, the extent to which this species' habitat may respond to global climate and land use changes is poorly understood, underscoring the need for further investigation. Our goal was to anticipate the potential impacts of upcoming climate and land use changes on the distribution and dispersal patterns of the Asiatic black bear in the Sichuan-Chongqing Region. We used MaxEnt modeling to evaluate habitat vulnerability using three General Circulation Models (GCMs) and three scenarios of climate and land use changes. Subsequently, we used Circuit Theory to identify prospective dispersal paths. Our results revealed that the current area of suitable habitat for the Asiatic black bear was 225,609.59 km2 (comprising 39.69% of the total study area), but was expected to decrease by -53.1%, -49.48%, and -28.55% under RCP2.6, RCP4.5, and RCP8.5 projection scenarios, respectively. Across all three GCMs, the distribution areas and dispersal paths of the Asiatic black bear were projected to shift to higher altitudes and constrict by the 2070s. Furthermore, the results indicated that the density of dispersal paths would decrease, while the resistance to dispersal would increase across the study area. In order to protect the Asiatic black bear, it is essential to prioritize the protection of climate refugia and dispersal paths. Our findings provide a sound scientific foundation for the allocation of such protected areas in the Sichuan-Chongqing Region that are both effective and adaptive in the face of ongoing global climate and land use changes.

11.
Mar Environ Res ; 188: 106006, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37182324

ABSTRACT

Global change is imposing significant losses in the functional traits of marine organisms. Although areas of climatic refugia ameliorate local conditions and help them to persist, the extent to which mesoscale effects contribute for intraregional variability on population traits and conservation is uncertain. Here we assess patterns of conservation status of Fucus guiryi, the main intertidal habitat-forming seaweed in the Strait of Gibraltar (southern Spain and northern Morocco). We investigated the demography, reproductive phenology, and morphology at northern and southern side populations. Population traits were compared seasonally within populations from each side, and at spatial scale in early summer 2019. In the last decade three populations became extinct; two marginal populations had dispersed individuals with a narrower fertility season and miniaturized individuals below 3 cm; and five populations showed variable density and cover with more than 20% of reproductive individuals over the seasons. Highest density, cover, morphology, and reproductive potential was detected at one population from each side, suggesting local-scale climatic refugia in upwelling areas located inside marine protected areas. Southern recruits were more warm-tolerant but grew less at colder conditions than northern ones, revealing a mesoscale heterogeneity in thermal affinities. This study evidenced functional losses and distinct reproductive strategies experienced by F. guiryi at peripheral locations and urges to prioritize its conservation and restoration at contemporary climatic refugia.


Subject(s)
Refugium , Seaweed , Humans , Spain , Ecosystem , Gibraltar , Climate Change
12.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220016, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36744566

ABSTRACT

Eelgrass creates critical coastal habitats worldwide and fulfills essential ecosystem functions as a foundation seagrass. Climate warming and disease threaten eelgrass, causing mass mortalities and cascading ecological impacts. Subtidal meadows are deeper than intertidal and may also provide refuge from the temperature-sensitive seagrass wasting disease. From cross-boundary surveys of 5761 eelgrass leaves from Alaska to Washington and assisted with a machine-language algorithm, we measured outbreak conditions. Across summers 2017 and 2018, disease prevalence was 16% lower for subtidal than intertidal leaves; in both tidal zones, disease risk was lower for plants in cooler conditions. Even in subtidal meadows, which are more environmentally stable and sheltered from temperature and other stressors common for intertidal eelgrass, we observed high disease levels, with half of the sites exceeding 50% prevalence. Models predicted reduced disease prevalence and severity under cooler conditions, confirming a strong interaction between disease and temperature. At both tidal zones, prevalence was lower in more dense eelgrass meadows, suggesting disease is suppressed in healthy, higher density meadows. These results underscore the value of subtidal eelgrass and meadows in cooler locations as refugia, indicate that cooling can suppress disease, and have implications for eelgrass conservation and management under future climate change scenarios. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Subject(s)
Ecosystem , Zosteraceae , Temperature , Climate Change , Cold Temperature
13.
Curr Biol ; 32(22): 4890-4899.e4, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36323323

ABSTRACT

Earth's wilderness areas are reservoirs of genetic information and carbon storage systems, and are vital to reducing extinction risks. Retaining the conservation value of these areas is fundamental to achieving global biodiversity conservation goals; however, climate and land-use risk can undermine their ability to provide these functions. The extent to which wilderness areas are likely to be impacted by these drivers has not previously been quantified. Using climate and land-use change during baseline (1971-2005) and future (2016-2050) periods, we estimate that these stressors within wilderness areas will increase by ca. 60% and 39%, respectively, under a scenario of high emission and land-use change (SSP5-RCP8.5). Nearly half (49%) of all wilderness areas could experience substantial climate change by 2050 under this scenario, potentially limiting their capacity to shelter biodiversity. Notable climate (>5 km year-1) and land-use (>0.25 km year-1) changes are expected to occur more rapidly in the unprotected wilderness, including the edges of the Amazonian wilderness, Northern Russia, and Central Africa, which support unique assemblages of species and are critical for the preservation of biodiversity. However, an alternative scenario of sustainable development (SSP1-RCP2.6) would attenuate the projected climate velocity and land-use instability by 54% and 6%, respectively. Mitigating greenhouse gas emissions and preserving the remaining intact natural ecosystems can help fortify these bastions of biodiversity.


Subject(s)
Ecosystem , Wilderness , Conservation of Natural Resources , Biodiversity , Climate Change , Risk Assessment
14.
Glob Chang Biol ; 28(21): 6180-6193, 2022 11.
Article in English | MEDLINE | ID: mdl-36065828

ABSTRACT

Climate change is contributing to biodiversity redistributions and species declines. However, cooler microclimate conditions provided by old-growth forest structures compared with surrounding open or younger forests have been hypothesized to provide thermal refugia for species that are sensitive to climate warming and dampen the negative effects of warming on population trends of animals (i.e., the microclimate buffering hypothesis). In addition to thermal refugia, the compositional and structural diversity of old-growth forest vegetation itself may provide resources to species that are less available in forests with simpler structure (i.e., the insurance hypothesis). We used 8 years of breeding bird abundance data from a forested watershed, accompanied with sub-canopy temperature data, and ground- and LiDAR-based vegetation data to test these hypotheses and identify factors influencing bird population changes from 2011 to 2018. After accounting for imperfect detection, we found that for 5 of 20 bird species analyzed, abundance trends tended to be less negative or neutral at sites with cooler microclimates, which supports the microclimate buffering hypothesis. Negative effects of warming on two species were also reduced in locations with greater forest compositional diversity supporting the insurance hypothesis. We provide the first empirical evidence that complex forest structure and vegetation diversity confer microclimatic advantages to some animal populations in the face of climate change. Conservation of old-growth forests, or their characteristics in managed forests, could help slow the negative effects of climate warming on some breeding bird populations via microclimate buffering and possibly insurance effects.


Subject(s)
Forests , Microclimate , Animals , Biodiversity , Birds , Climate Change , Ecosystem , Trees
15.
Sci Total Environ ; 835: 155478, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35472353

ABSTRACT

Analyses of long-term temperature records based on satellite data have revealed an increase in the frequency and intensity of marine heatwaves (MHWs) in the world oceans, a trend directly associated with global change according to climate model simulations. However, these analyses often target open ocean pelagic systems and rarely include local scale, field temperature records that are more adequate to assess the impact of MHWs close to the land-sea interface. Here, we compared the incidence and characteristics of open ocean MHWs detected by satellites with those observed in the field over two decades (1998-2019) at two temperate intertidal locations in the central Cantabrian Sea, southern Bay of Biscay. Satellite retrievals tended to smooth out cooling events associated with intermittent, alongshore upwelling, especially during summer. These biases propagated to the characterization of MHWs and resulted in an overestimation of their incidence and duration close to the coast. To reconcile satellite and field records, we developed a downscaling approach based on regression modeling that enabled the reconstruction of past temperatures and analyze MHW trends. Despite the cooling effect due to upwelling, the temperature reconstructions revealed a six-fold increase in the incidence of MHWs in the Cantabrian Sea over the last four decades. A comparison between static (no trend) vs. dynamic (featuring a linear warming trend) MHW detection thresholds allowed us to attribute over half of the increase in MHW incidence to the ocean warming trend. Our results highlight the importance of local processes to fully characterize the complexity and impacts of MHWs on marine coastal ecosystems and call for the conservation of climate refugia associated with coastal upwelling to counter the impacts of climate warming.


Subject(s)
Ecosystem , Refugium , Oceans and Seas , Seasons , Temperature
16.
Environ Sci Pollut Res Int ; 29(36): 54330-54347, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35297000

ABSTRACT

The rise in global temperature is one of the main threats of extinction to many vulnerable species by the twenty-first century. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest-dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha, and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current (average for 1960-1990) and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (ii) Across the provinces in the NHP, the species were predicted to average lose around one-third (35%) in 2050 and one-half (47%) by 2070 of the current suitable habitat. (iii) The maximum area of climate refugia was projected between the altitudinal range of 2000 to 4000 m and predicted to shift towards higher altitudes primarily > 3000 m in the future. Our results help inform management plans and conservation strategies for mitigating the impacts of climate change on three indicator Galliforms species in the NHP.


Subject(s)
Climate Change , Galliformes , Animals , Biodiversity , Carbon , Ecosystem , Pakistan , Temperature
17.
Int J Biometeorol ; 66(4): 669-677, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34981199

ABSTRACT

Climate refugia are anomalous "pockets" of spatially or temporally disjunct environmental conditions that buffer distinct flora and fauna against prevailing climatic conditions. Physiographic landscape features, such as large water bodies, can create these micro-to-macro-scale terrestrial habitats, such as the prevailing westerly winds across the Laurentian Great Lakes that create relatively cooler leeward conditions in spring and relatively warmer leeward conditions in autumn. The leeward Great Lakes climate effects create refugia (popularly known as a "fruit belt") favorable for fruit-bearing trees and shrubs. These fruit belt refugia owe their existence to seasonal inversions whereby spring cooling prevents early flower budding that leaves fruit trees susceptible to late spring killing frosts, and autumn warming prevents early killing frosts. With global climate change, however, warmer summers and milder winters, and corresponding warmer waters, might erode the leeward delaying effect on spring flowering, creating a paradoxical situation in which warming increases the risk of frost damage to plants. We evaluated the success of regional agriculture in the Great Lakes fruit belt to test our hypothesis that warmer spring climate (and concomitant warmer lake waters) correspond with degraded fruit production. We also examined long-term trends in Great Lakes climate conditions. We found that the cold-sensitive fruit tree (apple, grape, peach, and cherry) refugia were destabilized by relatively warmer springs. Moreover, we found several indicators that lake waters are warming across the Great Lakes, which portends negative consequences for agricultural and natural plant communities in the Great Lakes region and in similar "fruit belt" refugia worldwide.


Subject(s)
Lakes , Refugium , Climate Change , Fruit , Seasons , Temperature , Trees
18.
PeerJ ; 10: e12795, 2022.
Article in English | MEDLINE | ID: mdl-35047240

ABSTRACT

Climate change has started impacting species, ecosystems, genetic diversity within species, and ecological interactions and is thus a serious threat to conserving biodiversity globally. In the absence of adequate adaptation measures, biodiversity may continue to decline, and many species will possibly become extinct. Given that global temperature continues to increase, climate change adaptation has emerged as an overarching framework for conservation planning. We identified both ongoing and probable climate change adaptation actions for greater one-horned rhinoceros conservation in Nepal through a combination of literature review, key informant surveys (n = 53), focus group discussions (n = 37) and expert consultation (n = 9), and prioritised the identified adaptation actions through stakeholder consultation (n = 17). The majority of key informants (>80%) reported that climate change has been impacting rhinoceros, and more than 65% of them believe that rhinoceros habitat suitability in Nepal has been shifting westwards. Despite these perceived risks, climate change impacts have not been incorporated well into formal conservation planning for rhinoceros. Out of 20 identified adaptation actions under nine adaptation strategies, identifying and protecting climate refugia, restoring the existing habitats through wetland and grassland management, creating artificial highlands in floodplains to provide rhinoceros with refuge during severe floods, and translocating them to other suitable habitats received higher priority. These adaptation actions may contribute to reducing the vulnerability of rhinoceros to the likely impacts of climate change. This study is the first of its kind in Nepal and is expected to provide a guideline to align ongoing conservation measures into climate change adaptation planning for rhinoceros. Further, we emphasise the need to integrating likely climate change impacts while planning for rhinoceros conservation and initiating experimental research and monitoring programs to better inform adaptation planning in the future.


Subject(s)
Biodiversity , Ecosystem , Animals , Conservation of Natural Resources , Climate Change , Nepal , Temperature , Perissodactyla
19.
Conserv Biol ; 36(3): e13847, 2022 06.
Article in English | MEDLINE | ID: mdl-34622491

ABSTRACT

Conservation of biodiversity in managed forest landscapes needs to be complemented with new approaches given the threat from rapid climate change. Most frameworks for adaptation of biodiversity conservation to climate change include two major strategies. The first is the resistance strategy, which focuses on actions to increase the capacity of species and communities to resist change. The second is the transformation strategy and includes actions that ease the transformation of communities to a set of species that are well adapted to the novel environmental conditions. We suggest a number of concrete actions policy makers and managers can take. Under the resistance strategy, five tools are introduced, including: identifying and protecting forest climate refugia with cold-favored species; reducing the effects of drought by protecting the hydrological network; and actively removing competitors when they threaten cold-favored species. Under the transformation strategy, we suggest three tools, including: enhancing conditions for forest species favored by the new climate, but currently disfavored by forest management, by planting them at suitable sites outside their main range; and increasing connectivity across the landscape to enhance the expansion of warm-favored species to sites that have become suitable. Finally, we suggest applying a landscape perspective and simultaneously managing for both retreating and expanding species. The two different strategies (resistance and transformation) should be seen as complementary ways to maintain a rich biodiversity in future forest ecosystems.


Adaptación Climática de la Conservación de la Biodiversidad en Paisajes Forestales Gestionados Resumen La conservación de la biodiversidad en los paisajes forestales gestionados necesita complementarse con estrategias nuevas debido a la amenaza del cambio climático acelerado. La mayoría de los marcos de trabajo para la adaptación de la conservación de la biodiversidad ante el cambio climático incluye dos estrategias principales. La primera es la estrategia de resistencia, la cual se enfoca en acciones para incrementar la capacidad de las especies y comunidades para resistir el cambio. La segunda es la estrategia de transformación e incluye acciones que facilitan la transformación de las comunidades a un conjunto de especies que están bien adaptadas a las nuevas condiciones ambientales. Sugerimos un número de acciones concretas que los gestores y los formuladores de políticas pueden tomar. Bajo la estrategia de resistencia, introducimos cinco herramientas, incluyendo: identificación y protección de los refugios climáticos forestales con especies favorecidas por el frío, reducción de los efectos de la sequía mediante la protección de la red hidrológica y extirpación activa de los competidores cuando amenacen a las especies favorecidas por el frío. Bajo la estrategia de transformación, sugerimos tres herramientas, incluyendo: mejorar las condiciones para las especies forestales favorecidas por el nuevo clima pero actualmente desfavorecidas por la gestión forestal, mediante su siembra en sitios adecuados fuera de su distribución principal e incrementando la conectividad en el paisaje para incrementar la expansión de las especies favorecidas por el calor hacia sitios que se han vuelto más adecuados. Finalmente, sugerimos aplicar una perspectiva de paisaje y gestionar simultáneamente tanto para las especies en retirada y en expansión. Las dos estrategias diferentes (resistencia y transformación) deberían considerarse como maneras complementarias para mantener una biodiversidad rica en los ecosistemas forestales del futuro.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Climate Change , Forests
20.
Conserv Biol ; 36(3): e13856, 2022 06.
Article in English | MEDLINE | ID: mdl-34729816

ABSTRACT

Conserving coral reefs is critical for maintaining marine biodiversity, protecting coastlines, and supporting livelihoods in many coastal communities. Climate change threatens coral reefs globally, but researchers have identified a portfolio of coral reefs (bioclimatic units [BCUs]) that are relatively less exposed to climate impacts and strongly connected to other coral reef systems. These reefs provide a proactive opportunity to secure a long-term future for coral reefs under climate change. To help guide local management efforts, we quantified marine cumulative human impact (CHI) from climate, marine, and land pressures (2013 and from 2008 to 2013) in BCUs and across countries tasked with BCU management. Additionally, we created a management index based on common management measures and policies for each pressure source (climate, marine, and land) to identify a country's intent and commitment to effectively manage these pressures. Twenty-two countries (79%) had increases in CHI from 2008 to 2013. Climate change pressures had the highest proportional contribution to CHI across all reefs and in all but one country (Singapore), but 18 BCUs (35%) and nine countries containing BCUs (32%) had relatively high land and marine impacts. There was a significant positive relationship between climate impact and the climate management index across countries (R2 = 0.43, p = 0.02), potentially signifying that countries with greater climate impacts are more committed to managing them. However, this trend was driven by climate management intent in Fiji and Bangladesh. Our results can be used to guide future fine-scale analyses, national policies, and local management decisions, and our management indices reveal areas where management components can be improved. Cost-effectively managing local pressures (e.g., fishing and nutrients) in BCUs is essential for building a climate-ready future that benefits coral reefs and people.


Identificación de Oportunidades de Gestión para Combatir las Amenazas Climáticas, Marinas y Terrestres en los Arrecifes de Coral Menos Expuestos al Clima Resumen La conservación de los arrecifes de coral es de suma importancia para mantener la biodiversidad marina y para sostener el medio de vida en muchas comunidades costeras. El cambio climático es una amenaza mundial para los arrecifes de coral; aun así, los investigadores han identificado un portafolio de arrecifes de coral (unidades bioclimáticas[UBCs]) que se encuentran relativamente menos expuestos a los impactos climáticos y están conectados a otros sistemas arrecifales. Estos arrecifes proporcionan una oportunidad proactiva de asegurar un futuro a largo plazo para los arrecifes de coral frente al cambio climático. Para ayudar a guiar los esfuerzos locales de manejo, cuantificamos el impacto humano acumulativo (IHA) sobre los ambientes marinos a partir de las presiones climáticas, marinas y terrestres (del 2008 al 2013) en las UBCs y en los países encargados del manejo de estas. Además, creamos un índice de manejo con base en las medidas y políticas comunes de gestión para cada fuente de presión (clima, ambiente marino, suelo) para identificar la intención y el compromiso de cada país para manejar de manera efectiva estas presiones. Veintidós países (79%) tuvieron incrementos en el IHA entre 2008 y 2013. Las presiones por el cambio climático tuvieron la contribución proporcional más alta al IHA en todos los arrecifes y en todos los países excepto uno (Singapur), pero 18 UBCs (35%) y nueve países que cuentan con UBCs (32%) tuvieron impactos terrestres y marinos relativamente altos. Hubo una relación positiva significativa entre el impacto climático y el índice de manejo climático entre los países (R2 = 0.43, p = 0.02), lo que potencialmente significa que los países con un mayor impacto climático están más comprometidos con su manejo. Sin embargo, esta tendencia estuvo impulsada por las intenciones de manejo climático en Fiyi y en Bangladesh. Nuestros resultados pueden usarse para orientar los análisis a fina escala, las políticas nacionales y las decisiones locales de manejo en el futuro. Nuestros índices de manejo también revelan áreas en donde se pueden mejorar los componentes gestores. El manejo rentable de las presiones locales (p. ej.: la pesca, los nutrientes) dentro de las UBCs es esencial para construir un futuro preparado climáticamente que beneficie a los arrecifes y a las personas.


Subject(s)
Anthozoa , Coral Reefs , Animals , Climate Change , Conservation of Natural Resources , Ecosystem , Humans
SELECTION OF CITATIONS
SEARCH DETAIL