Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Microorganisms ; 10(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36144323

ABSTRACT

Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that allow the evaluation of fungal morphology and the identification of the etiologic agent of mycosis. Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that enable the examination of the fungi for further identification of the etiological agent of the mycosis. The isolation of fungi from pure cultures is typically recommended, as when more than one species is identified, the second agent is considered a contaminant. Fungi mostly survive in highly organized communities that provoke changes in phenotypic profile, increase resistance to antifungals and environmental stresses, and facilitate evasion from the immune system. Mixed fungal biofilms (MFB) harbor more than one fungal species, wherein exchange can occur that potentialize the effects of these virulence factors. However, little is known about MFB and their role in infectious processes, particularly in terms of how each species may synergistically contribute to the pathogenesis. Here, we review fungi present in MFB that are commensals of the human body, forming the mycobiota, and how their participation in MFB affects the maintenance of homeostasis. In addition, we discuss how MFB are formed on both biotic and abiotic surfaces, thus being a significant reservoir of microorganisms that have already been associated in infectious processes of high morbidity and mortality.

2.
Pathogens ; 9(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290340

ABSTRACT

Widespread use of pneumococcal conjugate vaccines (PCVs) has led to substitution of vaccine-type (VT) strains by non-vaccine type (NVT) strains in nasopharyngeal carriage. We compared the efficacy of PCV13 and a nasal protein formulation containing pneumococcal surface protein A (PspA) adjuvanted with the whole-cell pertussis vaccine (wP) in the protection against co-colonization challenge models in mice with VT and NVT strains expressing different PspAs. Immunized mice were challenged with two different mixtures: i. VT4 (PspA3) + NVT33 (PspA1) and ii. VT23F (PspA2) + NVT15B/C (PspA4). Results from the first mixture showed a reduction in loads of VT4 strain in the nasopharynx of mice immunized with PCV13. A statistical difference between the loads of the VT and NVT strains was observed, indicating a competitive advantage for the NVT strain in PCV13-immunized animals. In the second mixture, no reduction was observed for the VT23F strain, probably due to low levels of anti-23F polysaccharide IgG induced by PCV13. Interestingly, a combination of the PspA formulation containing wP with PCV13 led to a reduction in colonization with both strains of the two mixtures tested, similar to the groups immunized nasally with wP or PspA plus wP. These results indicate that a combination of vaccines may be a useful strategy to overcome pneumococcal serotype replacement.

3.
Pathogens, v. 9, n. 4, 278, abr. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3013

ABSTRACT

Widespread use of pneumococcal conjugate vaccines (PCVs) has led to substitution of vaccine-type (VT) strains by non-vaccine type (NVT) strains in nasopharyngeal carriage. We compared the efficacy of PCV13 and a nasal protein formulation containing pneumococcal surface protein A (PspA) adjuvanted with the whole-cell pertussis vaccine (wP) in the protection against co-colonization challenge models in mice with VT and NVT strains expressing different PspAs. Immunized mice were challenged with two different mixtures: i. VT4 (PspA3) + NVT33 (PspA1) and ii. VT23F (PspA2) + NVT15B/C (PspA4). Results from the first mixture showed a reduction in loads of VT4 strain in the nasopharynx of mice immunized with PCV13. A statistical difference between the loads of the VT and NVT strains was observed, indicating a competitive advantage for the NVT strain in PCV13-immunized animals. In the second mixture, no reduction was observed for the VT23F strain, probably due to low levels of anti-23F polysaccharide IgG induced by PCV13. Interestingly, a combination of the PspA formulation containing wP with PCV13 led to a reduction in colonization with both strains of the two mixtures tested, similar to the groups immunized nasally with wP or PspA plus wP. These results indicate that a combination of vaccines may be a useful strategy to overcome pneumococcal serotype replacement

SELECTION OF CITATIONS
SEARCH DETAIL