Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
Add more filters











Publication year range
1.
Nanomaterials (Basel) ; 14(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39120410

ABSTRACT

Currently, the number of patients with cancer is expanding consistently because of a low quality of life. For this reason, the therapies used to treat cancer have received a lot of consideration from specialists. Numerous anticancer medications have been utilized to treat patients with cancer. However, the immediate utilization of anticancer medicines leads to unpleasant side effects for patients and there are many restrictions to applying these treatments. A number of polymers like cellulose, chitosan, Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), peptides and Poly (hydroxy alkanoate) have good properties for the treatment of cancer, but the nanofibers-based target and controlled drug delivery system produced by the co-axial electrospinning technique have extraordinary properties like favorable mechanical characteristics, an excellent release profile, a high surface area, and a high sponginess and are harmless, bio-renewable, biofriendly, highly degradable, and can be produced very conveniently on an industrial scale. Thus, nanofibers produced through coaxial electrospinning can be designed to target specific cancer cells or tissues. By modifying the composition and properties of the nanofibers, researchers can control the release kinetics of the therapeutic agent and enhance its accumulation at the tumor site while minimizing systemic toxicity. The core-shell structure of coaxial electrospun nanofibers allows for a controlled and sustained release of therapeutic agents over time. This controlled release profile can improve the efficacy of cancer treatment by maintaining therapeutic drug concentrations within the tumor microenvironment for an extended period.

2.
Small ; : e2402564, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087370

ABSTRACT

For materials with coexisting phases, the transition from a random to an ordered distribution of materials often generates new mechanisms. Although the magnetic confinement effect has improved the electromagnetic (EM) performance, the transition from random to ordered magnetic confinement positions remains a synthetic challenge, and the underlying mechanisms are still unclear. Herein, precise control of magnetic nanoparticles is achieved through a spatial confinement growth strategy, preparing five different modalities of magnetic confined carbon fiber materials, effectively inhibiting magnetic agglomeration. Systematic studies have shown that the magnetic confinement network can refine CoNi NPs size and enhance strong magnetic coupling interactions. Compared to CoNi@HCNFs on the hollow carbon fibers (HCNFs) outer surface, HCNFs@CoNi constructed on the inner surface induce stronger spatial charge polarization relaxation at the interface and exhibit stronger magnetic coupling interactions at the inner surface due to the high-density magnetic coupling units at the micro/nanoscale, thereby respectively enhancing dielectric and magnetic losses. Remarkably, they achieve a minimum reflection loss (RLmin) of -64.54 dB and an absorption bandwidth of 5.60 GHz at a thickness of 1.77 mm. This work reveals the microscale mechanism of magnetic confinement-induced different polarization relaxation and magnetic response, providing a new strategy for designing magnetic materials.

3.
Int J Biol Macromol ; 279(Pt 1): 135100, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197632

ABSTRACT

Bacterial infection is the primary cause of delayed wound healing. Infected wounds suffer from a series of harmful factors in the harsh wound microenvironment (WME), greatly damaging their potential for tissue regeneration. Herein, a novel probiotic biofilm-based antibacterial strategy is proposed through experimentation. Firstly, a series of coaxial polycaprolactone (PCL) / silk fibroin (SF) nanofiber films (termed as PSN-n, n = 0.5, 1.0, 1.5, and 2.0, respectively) are prepared by coaxial electrospinning and their physiochemical properties are comprehensively characterized. Afterward, the PSN-1.5 is selected and co-cultured with L. paracasei to allow the formation of probiotic biofilm. The probiotic biofilm-loaded PSN-1.5 nanofiber film (termed as PSNL-1.5) exhibits relatively good broad-spectrum antibacterial activity, biocompatibility, and enhanced pro-regenerative capability by immunoregulation of M2 macrophage. A wound healing assay is performed using an S. aureus-infected skin defect model. The application effect of PSNL-1.5 is significantly better than that of a commercial nano­silver burn & scald dressing (Anson®), revealing huge potential for clinical translation. This study is of significant novelty in demonstrating the antibacterial and pro-regenerative abilities of probiotic biofilms. The product of this study will be extensively used for treating infected wounds or other wounds.

4.
Regen Biomater ; 11: rbae080, 2024.
Article in English | MEDLINE | ID: mdl-39055302

ABSTRACT

Osteoinductive supplements without side effects stand out from the growth factors and drugs widely used in bone tissue engineering. Lithium magnesium sodium silicate hydrate (laponite) nanoflake is a promising bioactive component for bone regeneration, attributed to its inherent biosafety and effective osteoinductivity. Up to now, the in vivo osteogenic potential and mechanisms of laponite-encapsulated fibrous membranes remain largely unexplored. This study presents a unique method for homogeneously integrating high concentrations of laponite RDS into a polycaprolactone (PCL) matrix by dispersing laponite RDS sol into the polymer solution. Subsequently, a core-shell fibrous membrane (10RP-PG), embedding laponite-loaded PCL in its core, was crafted using coaxial electrospinning. The PCL core's slow degradation and the shell's gradient degradation enabled the sustained release of bioactive ions (Si and Mg) from laponite. In vivo studies on a critical-sized calvarial bone defect model demonstrated that the 10RP-PG membrane markedly enhanced bone formation and remodeling by accelerating the process of endochondral ossification. Further transcriptome analysis suggested that osteogenesis in the 10RP-PG membrane is driven by Mg and Si from endocytosed laponite, activating pathways related to ossification and endochondral ossification, including Hippo, Wnt and Notch. The fabricated nanocomposite fibrous membranes hold great promise in the fields of critical-sized bone defect repair.

5.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Article in English | MEDLINE | ID: mdl-38957181

ABSTRACT

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Subject(s)
Gelatin , Glucosides , Human Umbilical Vein Endothelial Cells , Mesenchymal Stem Cells , Nanofibers , Neovascularization, Physiologic , Osteogenesis , Phenanthrenes , Phenols , Polyesters , Rats, Sprague-Dawley , Osteogenesis/drug effects , Animals , Nanofibers/chemistry , Gelatin/chemistry , Polyesters/chemistry , Glucosides/chemistry , Glucosides/pharmacology , Phenols/chemistry , Phenols/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/pharmacokinetics , Phenanthrenes/administration & dosage , Humans , Neovascularization, Physiologic/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Rats , Male , Bone Regeneration/drug effects , Membranes, Artificial , Coculture Techniques , Drug Liberation , Cell Differentiation/drug effects
6.
Int J Biol Macromol ; 277(Pt 2): 134204, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39069044

ABSTRACT

Quercetin possesses multiple biological activities. To achieve efficient colon-specific release of quercetin, new composite nanofibers were developed by coating pH-responsive shellac on hydrophilic gelatin through coaxial electrospinning. These composite nanofibers contained bead-like structures. The encapsulation efficiency (87.6-98.5 %) and loading capacity (1.4-4.1 %) varied with increasing the initial quercetin addition amount (2.5-7.5 %). FTIR, XRD, and TGA results showed that the quercetin was successfully encapsulated in composite nanofibers in an amorphous state, with interactions occurring among quercetin, gelatin, and shellac. Composite nanofibers had pH-responsive surface wettability due to the shellac coating. In vitro digestion experiments showed that these composite nanofibers were highly stable in the upper gastrointestinal tract, with quercetin release ranging from 4.75 % to 12.54 %. In vivo organ distribution and pharmacokinetic studies demonstrated that quercetin could be sustainably released in the colon after oral administration of composite nanofibers. Besides, the enhanced anticancer activity of composite nanofibers was confirmed against HCT-116 cells by analyzing their effect on cell viability, cell cycle, and apoptosis. Overall, these novel composite nanofibers could deliver efficiently quercetin to the colon and achieve its sustained release, thus potential to regulate colon health. This system is also helpful in delivering other bioactives to the colon and exerting their functional effects.


Subject(s)
Antineoplastic Agents , Colon , Gelatin , Nanofibers , Quercetin , Quercetin/chemistry , Quercetin/pharmacology , Quercetin/pharmacokinetics , Quercetin/administration & dosage , Nanofibers/chemistry , Gelatin/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Colon/metabolism , Colon/drug effects , Animals , Drug Delivery Systems , HCT116 Cells , Drug Carriers/chemistry , Drug Liberation , Cell Survival/drug effects , Apoptosis/drug effects , Male , Rats , Resins, Plant
7.
Adv Biol (Weinh) ; : e2300531, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935534

ABSTRACT

A spinal cord injury (SCI) compresses the spinal cord, killing neurons and glia at the injury site and resulting in prolonged inflammation and scarring that prevents regeneration. Astrocytes, the main glia in the spinal cord, become reactive following SCI and contribute to adverse outcomes. The anti-inflammatory cytokine transforming growth factor beta 3 (TGFß3) has been shown to mitigate astrocyte reactivity; however, the effects of prolonged TGFß3 exposure on reactive astrocyte phenotype have not yet been explored. This study investigates whether magnetic core-shell electrospun fibers can be used to alter the release rate of TGFß3 using externally applied magnetic fields, with the eventual application of tailored drug delivery based on SCI severity. Magnetic core-shell fibers are fabricated by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) into the shell and TGFß3 into the core solution for coaxial electrospinning. Magnetic field stimulation increased the release rate of TGFß3 from the fibers by 25% over 7 days and released TGFß3 reduced gene expression of key astrocyte reactivity markers by at least twofold. This is the first study to magnetically deliver bioactive proteins from magnetic fibers and to assess the effect of sustained release of TGFß3 on reactive astrocyte phenotype.

8.
J Colloid Interface Sci ; 674: 560-575, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38945024

ABSTRACT

The present paper reports the fabrication of novel types of hybrid fibrous photocatalysts by combining block copolymer (BCP) templating, sol-gel processing, and coaxial electrospinning techniques. Coaxial electrospinning produces core-shell nanofibers (NFs), which are converted into hollow porous TiO2 NFs using an oxidative calcination step. Hybrid BCP micelles comprising a single plasmonic nanoparticle (NP) in their core and thereof derived silica-coated core-shell particles are utilized as precursors to generate yolk-shell type particulate inclusions in photocatalytically active NFs. The catalytic and photocatalytic activity of calcined NFs comprising different types of yolk-shell particles is systematically investigated and compared. Interestingly, calcined NFs comprising silica-coated yolk-shells demonstrate enhanced catalytic and photocatalytic performance despite the presence of silica shell separating plasmonic NP from the TiO2 matrix. Electromagnetic simulations indicate that this enhancement is caused by a localized surface plasmon resonance and a confinement effect in silica-coated yolk-shells embedded in porous TiO2 NFs. Utilization of the coaxially electrospun TiO2 NFs in combination with yolk-shells comprising plasmonic NPs reveals to be a potent method for the photocatalytic decomposition of numerous pollutants. It is worth noting that this study stands as the first occurrence of combining yolk-shells (Au@void@SiO2) with porous electrospun NFs (TiO2) for photocatalytic purposes and gaining an understanding of plasmon and confinement effects for photocatalytic performance. This approach represents a promising route for fabricating highly active and up-scalable fibrous photocatalytic systems.

9.
Small ; : e2401335, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693088

ABSTRACT

Exploration of multifunctional integrated catalysts is of great significance for photocatalysis toward practical application. Herein, a 1D confined nanoreactor with a heterogeneous core-shell structure is designed for synergies of efficient catalysis and temperature monitoring by custom encapsulation of Z-scheme heterojunction CuS quantum dots/BiVO4 (CuS QDs/BiVO4) and Y2O2S-Er, Yb. The dispersed active sites created by the QDs with high surface energy improve the mass transfer efficiency, and the efficient electron transport channels at the heterogeneous interface extend the carrier lifetime, which endows the nanoreactor with excellent catalytic performance. Meanwhile, real-time temperature monitoring is realized based on the thermally coupled levels 2H11/2/4S3/2→4I15/2 of Er3+ using fluorescence intensity ratio, which enables the monitorable photocatalysis. Furthermore, the nanoreactor with a multidimensional structure increases effective intermolecular collisions to facilitate the catalytic process by restricting the reaction within distinct enclosed spaces and circumvents potential unknown interaction effects. The design of multi-space nanoconfined reactors opens up a new avenue to modulate catalyst function, providing a unique perspective for photocatalytic applications in the mineralization of organic pollutants, hydrogen production, and nitrogen fixation.

10.
Int J Biol Macromol ; 271(Pt 2): 132461, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777024

ABSTRACT

In this study, a novel one-step coaxial electrospinning process is employed to fabricate shell-core structure fibers choosing Chlorella pyrenoidosa proteins (CP) as the core material. These nanofibers, serving as the wall material for probiotic encapsulation, aimed to enhance the stability and antioxidant activity of probiotics in food processing, storage, and gastrointestinal environments under sensitive conditions. Morphological analysis was used to explore the beads-on-a-string morphology and core-shell structure of the electrospun fibers. Probiotics were successfully encapsulated within the fibers (7.97 log CFU/g), exhibiting a well-oriented structure along the distributed fibers. Compared to free probiotics and uniaxial fibers loaded with probiotics, encapsulation within microalgae proteins/alginate core-shell structure nanofibers significantly enhanced the probiotic cells' tolerance to simulated gastrointestinal conditions (p < 0.05). Thermal analysis indicated that microalgae proteins/alginate core-shell structure nanofibers displayed superior thermal stability compared to uniaxial fibers. The introduction of CP resulted in a 50 % increase in the antioxidant capacity of probiotics-loaded microalgae proteins/alginate nanofibers compared to uniaxial alginate nanofibers, with minimal loss of viability (0.8 log CFU/g) after 28 days of storage at 4 °C. In summary, this dual-layer carrier holds immense potential in probiotic encapsulation and enhancing their resistance to harsh conditions.


Subject(s)
Alginates , Microalgae , Nanofibers , Probiotics , Alginates/chemistry , Nanofibers/chemistry , Probiotics/chemistry , Microalgae/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Chlorella/chemistry , Microbial Viability/drug effects
11.
ACS Nano ; 18(21): 13538-13550, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717374

ABSTRACT

Electrospinning has been applied to produce ceramic fibers using sol gel-based spinning solutions consisting of ceramic precursors, a solvent, and a polymer to control the viscosity of the solution. However, the addition of polymers to the spinning solution makes the process more complex, increases the processing time, and results in porous mechanically weak ceramic fibers. Herein, we develop a coelectrospinning technique, where a nonspinnable sol (<10 mPa s) consisting of only the ceramic precursor(s) and solvent(s) is encapsulated inside a polymeric shell, forming core-shell precursor fibers that are further calcined into ceramic fibers with reduced porosity, decreased surface defects, uniform crystal packing, and controlled diameters. We demonstrate the versatility of this method by applying it to a series of nonspinnable sols and creating high-quality ceramic fibers containing TiO2, ZrO2, SiO2, and Al2O3. The polycrystalline TiO2 fibers possess excellent flexibility and a high Young's modulus reaching 54.3 MPa, solving the extreme brittleness problem of the previously reported TiO2 fibers. The single-component ZrO2 fibers exhibit a Young's modulus and toughness of 130.5 MPa and 11.9 KJ/m3, respectively, significantly superior to the counterparts prepared by conventional sol-gel electrospinning. We also report the creation of ceramic fibers in micro- and nanospring morphologies and examine the formation mechanisms using thermomechanical simulations. The fiber assemblies constructed by the helical fibers exhibit a density-normalized toughness of 3.5-5 times that of the straight fibers due to improved fracture strain. This work expands the selection of the electrospinning solution and enables the development of ceramic fibers with more attractive properties.

12.
Nanomaterials (Basel) ; 14(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38607180

ABSTRACT

Dressings with multiple functional performances (such as hemostasis, promoting regeneration, analgesia, and anti-inflammatory effects) are highly desired in orthopedic surgery. Herein, several new kinds of medicated nanofibers loaded with several active ingredients for providing multiple functions were prepared using the modified coaxial electrospinning processes. With an electrospinnable solution composed of polycaprolactone and fenoprofen as the core working fluid, several different types of unspinnable fluids (including pure solvent, nanosuspension containing tranexamic acid and hydroxyapatite, and dilute polymeric solution comprising tranexamic acid, hydroxyapatite, and polyvinylpyrrolidone) were explored to implement the modified coaxial processes for creating the multifunctional nanofibers. Their morphologies and inner structures were assessed through scanning and transmission electron microscopes, which all showed a linear format without the discerned beads or spindles and a diameter smaller than 1.0 µm, and some of them had incomplete core-shell nanostructures, represented by the symbol @. Additionally, strange details about the sheaths' topographies were observed, which included cracks, adhesions, and embedded nanoparticles. XRD and FTIR verified that the drugs tranexamic acid and fenoprofen presented in the nanofibers in an amorphous state, which resulted from the fine compatibility among the involved components. All the prepared samples were demonstrated to have a fine hydrophilic property and exhibited a lower water contact angle smaller than 40° in 300 ms. In vitro dissolution tests indicated that fenoprofen was released in a sustained manner over 6 h through a typical Fickian diffusion mechanism. Hemostatic tests verified that the intentional distribution of tranexamic acid on the shell sections was able to endow a rapid hemostatic effect within 60 s.

13.
Biomater Adv ; 160: 213830, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552500

ABSTRACT

Cancer, namely breast and prostate cancers, is the leading cause of death in many developed countries. Controlled drug delivery systems are key for the development of new cancer treatment strategies, to improve the effectiveness of chemotherapy and tackle off-target effects. In here, we developed a biomaterials-based wireless electrostimulation system with the potential for controlled and on-demand release of anti-cancer drugs. The system is composed of curcumin-loaded poly(3,4-ethylenedioxythiophene) nanoparticles (CUR/PEDOT NPs), encapsulated inside coaxial poly(glycerol sebacate)/poly(caprolactone) (PGS/PCL) electrospun fibers. First, we show that the PGS/PCL nanofibers are biodegradable, which allows the delivery of NPs closer to the tumoral region, and have good mechanical properties, allowing the prolonged storage of the PEDOT NPs before their gradual release. Next, we demonstrate PEDOT/CUR nanoparticles can release CUR on-demand (65 % of release after applying a potential of -1.5 V for 180 s). Finally, a wireless electrostimulation platform using this NP/fiber system was set up to promote in vitro human prostate cancer cell death. We found a decrease of 67 % decrease in cancer cell viability. Overall, our results show the developed NP/fiber system has the potential to effectively deliver CUR in a highly controlled way to breast and prostate cancer in vitro models. We also show the potential of using wireless electrostimulation of drug-loaded NPs for cancer treatment, while using safe voltages for the human body. We believe our work is a stepping stone for the design and development of biomaterial-based future smarter and more effective delivery systems for anti-cancer therapy.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Glycerol/analogs & derivatives , Nanoparticles , Polyesters , Polymers , Wireless Technology , Humans , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Polyesters/chemistry , Curcumin/administration & dosage , Curcumin/chemistry , Glycerol/chemistry , Male , Prostatic Neoplasms/therapy , Antineoplastic Agents/administration & dosage , Decanoates/chemistry , Nanofibers/chemistry , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Cell Line, Tumor , Electric Stimulation/instrumentation , Electric Stimulation/methods
14.
Front Bioeng Biotechnol ; 12: 1331078, 2024.
Article in English | MEDLINE | ID: mdl-38328445

ABSTRACT

Background: Small-diameter (<6 mm) artificial vascular grafts (AVGs) are urgently required in vessel reconstructive surgery but constrained by suboptimal hemocompatibility and the complexity of anastomotic procedures. This study introduces coaxial electrospinning and magnetic anastomosis techniques to improve graft performance. Methods: Bilayer poly(lactide-co-caprolactone) (PLCL) grafts were fabricated by coaxial electrospinning to encapsulate heparin in the inner layer for anticoagulation. Magnetic rings were embedded at both ends of the nanofiber conduit to construct a magnetic anastomosis small-diameter AVG. Material properties were characterized by micromorphology, fourier transform infrared (FTIR) spectra, mechanical tests, in vitro heparin release and hemocompatibility. In vivo performance was evaluated in a rabbit model of inferior vena cava replacement. Results: Coaxial electrospinning produced PLCL/heparin grafts with sustained heparin release, lower platelet adhesion, prolonged clotting times, higher Young's modulus and tensile strength versus PLCL grafts. Magnetic anastomosis was significantly faster than suturing (3.65 ± 0.83 vs. 20.32 ± 3.45 min, p < 0.001) and with higher success rate (100% vs. 80%). Furthermore, magnetic AVG had higher short-term patency (2 days: 100% vs. 60%; 7 days: 40% vs. 0%) but similar long-term occlusion as sutured grafts. Conclusion: Coaxial electrospinning improved hemocompatibility and magnetic anastomosis enhanced implantability of small-diameter AVG. Short-term patency was excellent, but further optimization of anticoagulation is needed for long-term patency. This combinatorial approach holds promise for vascular graft engineering.

15.
Mater Today Bio ; 25: 100940, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38298561

ABSTRACT

The use of endovascular stent-graft has become an important option in the treatment of aortic pathologies. However, the currently used endograft membranes have limited ability to prevent bacterial colonization. This makes them unsuitable for the treatment of mycotic aneurysms, as the infection is prone to progress after endograft implantation. Moreover, even in non-mycotic aortic pathologies, endograft infections can occur in the short or long term, especially for patients with diabetes mellitus or in immune insufficiency conditions. So, this study aimed to develop a kind of Ag-NPs-loaded endograft membrane by coaxial electrospinning technique, and a series of physical and chemical properties and biological properties of the Ag-NPs-loaded membrane were characterized. Animal experiments conducted in pigs confirmed that the Ag-NPs-loaded membrane was basically non-toxic, exhibited good biocompatibility, and effectively prevented bacterial growth in a mycotic aortic aneurysm model. In conclusion, the Ag-NPs-loaded membrane exhibited good biocompatibility, good anti-infection function and slow-release of Ag-NPs for long-term bacteriostasis. Thus, the Ag-NPs-loaded membrane might hold potential for preventing infection progression and treating mycotic aortic aneurysms in an endovascular way.

16.
Heliyon ; 10(4): e25983, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390081

ABSTRACT

The coaxial electrospinning method is widely used in a wide range of applications, including medical devices and sensing technology. This study proposes a novel optical dual sensor for simultaneous detection of oxygen (O2) and ammonia (NH3) based on coaxial electrospinning method to produce core-shell fiber membrane doped fluorescent dyes. The O2 (core) and NH3 (shell) sensitive dye membranes were successfully fabricated using coaxial electrospinning method by dissolving a polymer matrix, cellulose acetate (CA), with platinum (II) meso-tetrakis (pentafluorophenyl) porphyrin (PtTFPP) and Eosin-Y, respectively. The optical dual sensor was illuminated by an UV LED to monitor the intensity change and wavelength shift in the presence of selected analyte gases. The experimental data show that the sensitivities of optical dual sensor were found to be 6.4 and 3.2 for O2 and NH3, respectively. The response and recovery times of O2 and NH3 sensing probes were measured to be 12 s/29 s and 65 s/66 s, respectively. Also, when exposed to NH3 gas gradually from 0 to 500 ppm, the wavelength shift data of Eosin-Y was started at 569.5 nm, 573.9 nm, 578.4 nm, 579.4 nm, 580.8 nm, and 582.2 nm, respectively. In applications, the proposed optical dual sensor based on coaxial electrospinning method can detect O2 and NH3 gases simultaneously.

17.
Colloids Surf B Biointerfaces ; 235: 113771, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350205

ABSTRACT

Silver nanoparticles (AgNPs) synthesized from Aloe vera extract exhibited a pronounced antibacterial effect, while the Ampelopsis brevipedunculata extract (ABE) showcased a high antioxidant capacity for wound healing. Spherical AgNPs with a particle size of 28.82 nm crystallized in a face-centered-cubic lattice. AgNPs/polyvinyl alcohol (PVA) and ABE/polycaprolactone (PCL) underwent electrospinning to produce coaxial and electrosprayed nanofibers, respectively. The developed coaxial nanofibers demonstrated a strain of 159%, a Young's modulus of elasticity of 7080.14 kPa, a 3.9-fold swelling ratio, a water contact angle of 38.91°, characteristic hydrophilicity, and an adequate water vapor transmission rate of 2272 g/m2/day. ABE exhibited no cytotoxicity to L929 cells and induced a twofold increase in the cell migration rate. Upon applying the developed coaxial nanofiber on an in vivo rat model with a 9 mm wound diameter, the wound rapidly and completely healed within 10 days, with a healing speed 60% greater than that of the control group. Histopathological analysis revealed that the coaxial group did not exhibit inflammation, showed complete epithelization, and featured a well-arranged deposition of collagen on the 10th day.


Subject(s)
Ampelopsis , Metal Nanoparticles , Nanofibers , Rats , Animals , Silver/pharmacology , Wound Healing , Anti-Bacterial Agents/pharmacology
18.
J Biomater Sci Polym Ed ; 35(4): 482-500, 2024 04.
Article in English | MEDLINE | ID: mdl-38190321

ABSTRACT

Wound healing will be enhanced using structures with therapeutic effects. This study fabricated a novel nanofibrous scaffold for skin tissue regeneration using a coaxial structure polyglycerol sebacate (PGS)/platelet-rich plasma (PRP) was embedded in the core and two different compositions were selected for the shell; in one group, polycaprolactone (PCL), and in the other group, PGS/PCL blend was used. The physical, mechanical behavior, drug delivery patterns, and cell response of scaffolds were evaluated. Results revealed that by adding PRP to the core and PGS to the shell, fiber diameters decreased to 260.8 ± 31.3 nm. It also decreased the water contact angle from 66° to 32°, that is ideal candidate for cell attachment. The drug release showed a burst release pattern in the first 30 min, followed by a continuous and slow release during the first day. Adding PGS to the shell decreased the elastic modulus, and its value reached about 500 kPa, which is near the skin elastic modulus and will lead to greater mechanical compatibility for cell proliferation. Particularly, the addition of PRP to the fiber structure enhanced the cell viability and cell adhesion with a suitable morphology. Based on the results, nanofibrous PGS-PRP/PGS-PCL dressing can enhance skin tissue regeneration.


Subject(s)
Glycerol , Nanofibers , Platelet-Rich Plasma , Polymers , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Polyesters/chemistry
19.
Chemosphere ; 349: 140837, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065266

ABSTRACT

Coaxial electrospun polyacrylonitrile (PAN) and polyethersulfone (PES) based nanofibers were prepared and was used for filtration of fluoride from drinking water for the first time. Well defined fiber geometry was obtained at 1 ml/h of core polymer, i.e., PES flow rate, 1.4 ml/h of shell polymer, i.e., PAN flow rate, voltage of 22 kV, while the distance between the needle tip and the collector was 15-17 cm. Increase in bead like structure in fiber strands was observed with higher PAN concentration, while it decreased for lower PES concentration, thereby giving an optimum composition (6 wt% PAN and 10 wt% PES) for uniform fiber morphology. This nanofiber, abbreviated as N2 acted as an ultrafiltration membrane having permeability in the lower range, i.e., 0.5 × 10-11 m/s Pa and its fluoride removal efficacy was 46%. Fibers were also hydrophilic with considerable porous nature. Uptake of fluoride by this N2 nanofibers were evident from binding energy of 685.2 eV during XPS analysis. It is probable that nitrile and sulfone groups present in the core and shell of the nanofibers played an active in fluoride uptake, which was estimated as 110 mg/g at 298 K. Isoelectric point was in alkaline range which promoted negative fluoride ion uptake on positive nanofiber surface. Lead played higher masking effect in the uptake of fluoride in comparison to arsenic as coexisting ion. Dynamic cross flow filtration was also studied with this nanofiber in both synthetic and real life feed solution.


Subject(s)
Fluorides , Nanofibers , Nanofibers/chemistry , Rivers , Polymers/chemistry , Sulfones
20.
Mol Pharm ; 21(1): 173-182, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37990999

ABSTRACT

Precisely modulating the synergistic release behavior of multiple bioactive substances has emerged as a formidable challenge in recent years. In this work, we successfully prepared core-sheath nanofibers, where a thin cellulose acetate (CA) coating enrobed the core. Curcumin (Cur) was encapsulated in the core layer as a model drug, while zinc oxide (ZnO) nanoparticles were loaded on the sheath layer. The prepared fiber exhibited a straight cylindrical morphology containing nanoparticles, and the distinct core-sheath nanostructure was demonstrated through transmission electron microscopy (TEM). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) were conducted to study the physical state and compatibility among CA, Cur, and ZnO. Drug release data indicated that core-sheath nanofibers were able to decelerate the rate of drug release, and the thickness of the sheath layer increased in the presence of ZnO particles. Most remarkably, these core-sheath nanofibers exhibited the remarkable ability to sustain the release of drugs and zinc ion (Zn2+), the two-day synergistically release behavior leading to a significant increase in cell proliferation. This material preparation strategy for the synergistic and controlled release of two bioactive substances is instructive for the exploration of innovative and versatile drug delivery systems.


Subject(s)
Nanofibers , Zinc Oxide , Pharmaceutical Preparations , Nanofibers/chemistry , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL