Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 631
Filter
1.
J Neurochem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946488

ABSTRACT

A growth cone is a highly motile tip of an extending axon that is crucial for neural network formation. Three-dimensional-structured illumination microscopy, a type of super-resolution light microscopy with a resolution that overcomes the optical diffraction limitation (ca. 200 nm) of conventional light microscopy, is well suited for studying the molecular dynamics of intracellular events. Using this technique, we discovered a novel type of filopodia distributed along the z-axis ("z-filopodia") within the growth cone. Z-filopodia were typically oriented in the direction of axon growth, not attached to the substratum, protruded spontaneously without microtubule invasion, and had a lifetime that was considerably shorter than that of conventional filopodia. Z-filopodia formation and dynamics were regulated by actin-regulatory proteins, such as vasodilator-stimulated phosphoprotein, fascin, and cofilin. Chromophore-assisted laser inactivation of cofilin induced the rapid turnover of z-filopodia. An axon guidance receptor, neuropilin-1, was concentrated in z-filopodia and was transported together with them, whereas its ligand, semaphorin-3A, was selectively bound to them. Membrane domains associated with z-filopodia were also specialized and resembled those of lipid rafts, and their behaviors were closely related to those of neuropilin-1. The results suggest that z-filopodia have unique turnover properties, and unlike xy-filopodia, do not function as force-generating structures for axon extension.

2.
Article in English | MEDLINE | ID: mdl-38841932

ABSTRACT

Background Hailey-Hailey disease (HHD) is a rare, autosomal dominant, hereditary skin disorder characterised by epidermal acantholysis. The HHD-associated gene ATPase calcium-transporting type 2C member 1 (ATP2C1) encodes the protein secretory pathway Ca2+ ATPase1 (SPCA1), playing a critical role in HHD pathogenesis. Aims We aimed to investigate the effect of ATP2C1 knockdown on keratinocytes that mimicked acantholysis in HHD. Methods Immunohistochemistry (IHC) was employed to evaluate the levels of cytoskeletal and tight junction proteins such as SPCA1, P-cofilin, F-actin, claudins, occludin, and zonula occludens 1 in the skin biopsies of patients with HHD. Subsequently, the expression of these proteins in cultured ATP2C1 knockdown keratinocytes was analysed using Western blotting and immunofluorescence. Furthermore, we assessed the proliferation, apoptosis, and intracellular Ca2+ concentrations in the ATP2C1-knocked keratinocytes. Results The results showed decreased levels of these proteins (SPCA1, P-cofilin, F-actin, claudins, occluding, and zonula occludens 1) in HHD skin lesions. Moreover, their levels decreased in human keratinocytes transfected with ATP2C1 short hairpin RNA, accompanied by morphological acantholysis. Furthermore, the proliferation and apoptosis of the keratinocytes, as well as intracellular calcium concentrations in these cells, were not affected. Limitations The limitations of this study are the absence of animal experiments and the failure to explore the relationship between skeletal and tight junction proteins. Conclusion The present study indicated that ATP2C1 inhibition led to abnormal levels of the cytoskeletal and tight junction proteins in the keratinocytes. Therefore, keratinocytes can mimic HHD-like acantholysis and serve as an in vitro model, helping develop treatment strategies against HHD.

3.
J Biomed Res ; : 1-14, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38828848

ABSTRACT

Although the p21-activated kinase 2 (PAK2) is an essential serine/threonine protein kinase, its role in lung squamous cell carcinoma (LUSC) progression has yet to be fully understood. We analyzed PAK2 mRNA levels and DNA copy numbers as well as protein levels by quantitative real-time PCR and immunohistochemical staining, respectively, in human LUSC tissues and adjacent normal tissues. Then, we used colony formation assays, cell counting kit-8 assays, matrigel invasion assays, wound healing assays and xenograft models in nude mice to investigate the functions of PAK2 in LUSC progression. We demonstrated that the mRNA levels, DNA copy numbers, and protein levels of PAK2 were up-regulated in human LUSC tissues than in adjacent normal tissues. In addition, a higher PAK2 expression was correlated with a poorer prognosis in LUSC patients. In the in vitro study, we found that PAK2 promoted cell growth, migration, invasion, EMT process, and cell morphology regulation in LUSC cells. Furthermore, PAK2 enhanced tumor cell proliferation, migration, and invasion by regulating actin dynamics through the LIMK1/cofilin signaling. Our findings implicated that the PAK2/LIMK1/cofilin signaling pathway is likely a potential clinical marker and therapeutic target for LUSC.

4.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38869008

ABSTRACT

Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Neuromuscular Junction , Synaptic Transmission , Animals , Neuromuscular Junction/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Actin Depolymerizing Factors/metabolism , Actin Depolymerizing Factors/genetics , Actins/metabolism , Sarcomeres/metabolism , Gene Knockdown Techniques , Actin Cytoskeleton/metabolism , Myopathies, Nemaline/metabolism , Myopathies, Nemaline/genetics , Myopathies, Nemaline/pathology
5.
Int J Cancer ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738971

ABSTRACT

Peroxiredoxin 1 (PRDX1) is an important member of the peroxiredoxin family (PRDX) and is upregulated in a variety of tumors. Previous studies have found that high PRDX1 expression is closely related to the metastasis of oral squamous cell carcinoma (OSCC), but the specific molecular mechanism is elusive. To elucidate the role of PRDX1 in the metastasis process of OSCC, we evaluated the expression of PRDX1 in OSCC clinical specimens and its impact on the prognosis of OSCC patients. Then, the effect of PRDX1 on OSCC metastasis and cytoskeletal reconstruction was explored in vitro and in nude mouse tongue cancer models, and the molecular mechanisms were also investigated. PRDX1 can directly interact with the actin-binding protein Cofilin, inhibiting the phosphorylation of its Ser3 site, accelerating the depolymerization and turnover of actin, promoting OSCC cell movement, and aggravating the invasion and metastasis of OSCC. In clinical samples and mouse tongue cancer models, PRDX1 also increased lymph node metastasis of OSCC and was negatively correlated with the phosphorylation of Cofilin; PRDX1 also reduced the overall survival rate of OSCC patients. In summary, our study identified that PRDX1 may be a potential therapeutic target to inhibit OSCC metastasis.

6.
Sci Rep ; 14(1): 10241, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702365

ABSTRACT

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.


Subject(s)
Actin Cytoskeleton , Cell Movement , Cofilin 1 , Monocytes , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Cofilin 1/metabolism , Monocytes/metabolism , Myosins/metabolism , THP-1 Cells , Vascular Cell Adhesion Molecule-1/metabolism
7.
Immunol Invest ; : 1-17, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721960

ABSTRACT

The anti-tumor capacity of natural killer (NK) cells heavily relies on their ability to migrate towards their target cells. This process is based on dynamic actinrearrangement, so-called actin treadmilling, andis tightly regulated by proteins such as cofilin-1. The aim of the present study was to identify the role of cofilin-1 (CFL-1) in the migratory behavior of NK cells and to investigate a possible impact of an obesity-associated micromilieu on these cells, as it is known that obesity correlates with various impaired NK cell functions. CFL-1 was knocked-down via transfection of NK-92 cells with respective siRNAs. Obesity associated micromilieu was mimicked by incubation of NK-92 cells with adipocyte-conditioned medium from human preadipocyte SGBS cells or leptin. Effects on CFL-1 levels, the degree of phosphorylation to the inactive pCFL-1 as well as NK-92 cell motility were analyzed. Surprisingly, siRNA-mediated CFL-1 knockdown led to a significant increase of migration, as determined by enhanced velocity and accumulated distance of migration. No effect on CFL-1 nor pCFL-1 expression levels, proportion of phosphorylation and cell migratory behavior could be demonstrated under the influence of an obesity-associated microenvironment. In conclusion, the results indicate a significant effect of a CFL-1 knockdown on NK cell motility.

8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2489-2500, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812153

ABSTRACT

This study aims to reveal the molecular mechanism of Chaijin Jieyu Anshen Tablets(CJJYAS) in regulating the abnormal anterior cingulate cortex(ACC)-ventral hippocampus(vHPC) glutaminergic neural circuit to alleviate synaptic remodeling of ventral hippocampal neurons in depressed rats. Firstly, the study used chemogenetics to localize glutaminergic adeno-associated virus(AAV) into the ACC brain region of rats. The model of depressed rats was established by chronic unpredictable mild stress(CUMS) combined with independent feeding. The rats were randomly divided into control group, model group, AAV empty group, AAV group, AAV+ glucocorticoid receptors(GR) blocker group, AAV+chemokine receptor 1(CX3CR1) blocker group, and AAV+CJJYAS group. Depressive-like behaviors of rats were evaluated by open-field, forced-swimming, and Morris water maze tests, combined with an animal behavior analysis system. The morphological and structural changes of ACC and vHPC neurons in rats were observed by hematoxylin-eosin(HE) staining. Immunofluorescence and nuclear phosphoprotein(c-Fos) were used to detect glutaminergic neural circuit activation of ACC-vHPC in rats. The changes in dendrites, synaptic spines, and synaptic submicrostructure of vHPC neurons were observed by Golgi staining and transmission electron microscopy, respectively. The expressions of synaptic remodeling-related proteins N-methyl-D-asprtate receptor 2A(GRIN2A), N-methyl-D-asprtate receptor 2B(GRIN2B), Ca~(2+)/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ), mitogen-activated protein kinase-activated protein kinase 2(MK2), and a ubiquitous actin-binding protein(cofilin) in vHPC glutaminergic neurons of rats were detected by immunofluorescence and Western blot, respectively. The results indicated that the activated glutaminergic AAV aggravated the depressive-like behaviors phenotype of rats in the model group and deteriorated the damage of morphology and structure of ACC and vHPC neurons and synaptic ultrastructure. However, both GR and CX3CR1 bloc-kers could reverse the abnormal changes to varying degrees, suggesting that the abnormal activation of ACC-vHPC glutaminergic neural circuit mediated by GR/CX3CR1 signals in gliocytes in the ACC brain region may be closely related to the occurrence and development of depression. Interestingly, CJJYAS significantly inhibited the activation of the ACC-vHPC glutaminergic neural circuit induced by AAV and the elevated Glu level. Furthermore, CJJYAS could also effectively reverse the aggravation of depressive-like behaviors and synaptic remodeling of vHPC neurons of rats in the model group induced by the activated AAV. Additionally, the findings suggested that the molecular mechanism of CJJYAS in improving synaptic damage of vHPC neurons might be related to the regulation of synaptic remodeling-related signals such as NR/CaMKⅡ and MK2/cofilin. In conclusion, this research confirms that CJJYAS effectively regulates the abnormal ACC-vHPC glutaminergic neural circuit and alleviates the synaptic remodeling of vHPC glutaminergic neurons in depressed rats, and the molecular mechanism might be associated with the regulation of synapse-related NR/CaMKⅡ and MK2/cofilin signaling pathways, which may be the crucial mechanism of its antidepressant effect.


Subject(s)
Depression , Drugs, Chinese Herbal , Gyrus Cinguli , Hippocampus , Neurons , Rats, Sprague-Dawley , Animals , Rats , Male , Neurons/metabolism , Hippocampus/metabolism , Depression/metabolism , Depression/physiopathology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Synapses/metabolism , Neuronal Plasticity , Humans
9.
Eur J Cell Biol ; 103(2): 151423, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796920

ABSTRACT

Intracellular actin networks assemble through the addition of ATP-actin subunits at the growing barbed ends of actin filaments. This is followed by "aging" of the filament via ATP hydrolysis and subsequent phosphate release. Aged ADP-actin subunits thus "treadmill" through the filament before being released back into the cytoplasmic monomer pool as a result of depolymerization at filament pointed ends. The necessity for aging before filament disassembly is reinforced by preferential binding of cofilin to aged ADP-actin subunits over newly-assembled ADP-Pi actin subunits in the filament. Consequently, investigations into how cofilin influences pointed-end depolymerization have, thus far, focused exclusively on aged ADP-actin filaments. Using microfluidics-assisted Total Internal Reflection Fluorescence (mf-TIRF) microscopy, we reveal that, similar to their effects on ADP filaments, cofilin and cyclase-associated protein (CAP) also promote pointed-end depolymerization of ADP-Pi filaments. Interestingly, the maximal rates of ADP-Pi filament depolymerization by CAP and cofilin together remain approximately 20-40 times lower than for ADP filaments. Further, we find that the promotion of ADP-Pi pointed-end depolymerization is conserved for all three mammalian cofilin isoforms. Taken together, the mechanisms presented here open the possibility of newly-assembled actin filaments being directly disassembled from their pointed-ends, thus bypassing the slow step of Pi release in the aging process.


Subject(s)
Actin Cytoskeleton , Actins , Actin Cytoskeleton/metabolism , Animals , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Adenosine Diphosphate/metabolism , Rabbits , Mice , Polymerization , Cofilin 1/metabolism
10.
Mol Divers ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689175

ABSTRACT

The understanding of the molecular basis of complex diseases like hepatocellular carcinoma (HCC) needs large datasets of multiple genes and proteins involved in different phenomenon of its development. This study focuses on the molecular basis of HCC and the development of therapeutic strategies. We analyzed a dataset of 5475 genes (Homo sapiens) involved in HCC hallmarks, involving comprehensive data on multiple genes and frequently mutated genes. As HCC is characterized by metastasis, angiogenesis, and oxidative stress, exploration of genes associated with them has been targeted. Through gene ontology, functional characterization, and pathway enrichment analysis, we identified target proteins such as Lysyl oxidase, Survivin, Cofilin, and Cathepsin B. A library of curcumin analogs was used to target these proteins. Tetrahrydrocurcumin showed promising binding affinities for all four proteins, suggesting its potential as an inhibitor against these proteins for HCC therapy.

11.
Eur J Med Chem ; 271: 116391, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38669909

ABSTRACT

LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors. Homology models were first constructed to better understand the binding mode of our preliminary compounds and to explain differences in biological activity. A library of over 60 products was generated and in vitro enzymatic activities were measured in the mid to low nanomolar range. The most promising derivatives were then evaluated in cell on cofilin phosphorylation inhibition which led to the identification of 52 which showed excellent selectivity for LIMKs in a kinase selectivity panel. We also demonstrated that 52 affected the cell cytoskeleton by disturbing actin filaments. Cell migration studies with this derivative using three different cell lines displayed a significant effect on cell motility. Finally, the crystal structure of the kinase domain of LIMK2 complexed with 52 was solved, greatly improving our understanding of the interaction between 52 and LIMK2 active site. The reported data represent a basis for the development of more efficient LIMK inhibitors for future in vivo preclinical validation.


Subject(s)
Lim Kinases , Protein Kinase Inhibitors , Lim Kinases/antagonists & inhibitors , Lim Kinases/metabolism , Humans , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Structure , Cell Movement/drug effects , Models, Molecular , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Dose-Response Relationship, Drug , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis
12.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659736

ABSTRACT

Intracellular actin networks assemble through the addition of ATP-actin subunits at the growing barbed ends of actin filaments. This is followed by "aging" of the filament via ATP hydrolysis and subsequent phosphate release. Aged ADP-actin subunits thus "treadmill" through the filament before being released back into the cytoplasmic monomer pool as a result of depolymerization at filament pointed ends. The necessity for aging before filament disassembly is reinforced by preferential binding of cofilin to aged ADP-actin subunits over newly-assembled ADP-Pi actin subunits in the filament. Consequently, investigations into how cofilin influences pointed-end depolymerization have, thus far, focused exclusively on aged ADP-actin filaments. Using microfluidics-assisted Total Internal Reflection Fluorescence (mf-TIRF) microscopy, we reveal that, similar to their effects on ADP filaments, cofilin and cyclase-associated protein (CAP) also promote pointed-end depolymerization of ADP-Pi filaments. Interestingly, the maximal rates of ADP-Pi filament depolymerization by CAP and cofilin together remain approximately 20-40 times lower than for ADP filaments. Further, we find that the promotion of ADP-Pi pointed-end depolymerization is conserved for all three mammalian cofilin isoforms. Taken together, the mechanisms presented here open the possibility of newly-assembled actin filaments being directly disassembled from their pointed-ends, thus bypassing the slow step of Pi release in the aging process.

13.
Life Sci ; 347: 122609, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38580197

ABSTRACT

LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-ß pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.


Subject(s)
Lim Kinases , Neoplasms , Humans , Lim Kinases/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Animals , Signal Transduction , Gene Expression Regulation, Neoplastic , rho-Associated Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Cell Rep ; 43(3): 113914, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451813

ABSTRACT

Stroke, trauma, and neurodegenerative disorders cause loss of neurites (axons and dendrites) in addition to neuronal death. Neurite loss may result directly from a primary insult, secondary to parental neuron death, or secondary to a post-injury inflammatory response. Here, we use lipopolysaccharide and the alarmin S100ß to selectively evaluate neurite loss caused by the inflammatory response. Activation of microglia and infiltrating macrophages by these stimuli causes neurite loss that far exceeds neuronal death, both in vitro and in vivo. Neurite loss is accompanied by the formation of cofilactin rods and aggregates (CARs), which are polymers of cofilin-1 and actin induced by oxidative stress and other factors. Mice deficient in either cofilin-1 or the superoxide-generating enzyme NADPH oxidase-2 show reduced CAR formation, neurite loss, and motor impairment. The findings identify a mechanism by which inflammation leads to neurite loss via CAR formation and highlight the relevance of neurite loss to functional impairment.


Subject(s)
Neurites , Neurodegenerative Diseases , Mice , Animals , Neurons , Axons , Inflammation
15.
Horm Behav ; 161: 105516, 2024 May.
Article in English | MEDLINE | ID: mdl-38428223

ABSTRACT

Studies in ovariectomized (OVX) female rodents suggest that G protein-coupled estrogen receptor (GPER) is a key regulator of memory, yet little is known about its importance to memory in males or the cellular mechanisms underlying its mnemonic effects in either sex. In OVX mice, bilateral infusion of the GPER agonist G-1 into the dorsal hippocampus (DH) enhances object recognition and spatial memory consolidation in a manner dependent on rapid activation of c-Jun N-terminal kinase (JNK) signaling, cofilin phosphorylation, and actin polymerization in the DH. However, the effects of GPER on memory consolidation and DH cell signaling in males are unknown. Thus, the present study first assessed effects of DH infusion of G-1 or the GPER antagonist G-15 on object recognition and spatial memory consolidation in gonadectomized (GDX) male mice. As in OVX mice, immediate post-training bilateral DH infusion of G-1 enhanced, whereas G-15 impaired, memory consolidation in the object recognition and object placement tasks. However, G-1 did not increase levels of phosphorylated JNK (p46, p54) or cofilin in the DH 5, 15, or 30 min after infusion, nor did it affect phosphorylation of ERK (p42, p44), PI3K, or Akt. Levels of phospho-cAMP-responsive element binding protein (CREB) were elevated in the DH 30 min following G-1 infusion, indicating that GPER in males activates a yet unknown signaling mechanism that triggers CREB-mediated gene transcription. Our findings show for the first time that GPER in the DH regulates memory consolidation in males and suggests sex differences in underlying signaling mechanisms.


Subject(s)
Hippocampus , Memory Consolidation , Quinolines , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Male , Memory Consolidation/physiology , Memory Consolidation/drug effects , Female , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Receptors, Estrogen/metabolism , Ovariectomy , Orchiectomy , Cyclopentanes/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Mice, Inbred C57BL
16.
Elife ; 122024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446501

ABSTRACT

Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin ß4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.


Subject(s)
Actin Depolymerizing Factors , Actins , Humans , Actin Depolymerizing Factors/genetics , Actin Cytoskeleton , Myosins , Mutation
17.
FASEB J ; 38(5): e23518, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38441532

ABSTRACT

NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.


Subject(s)
Actins , Dyneins , Animals , Mice , Biological Transport , Cell Death , Dyneins/genetics , Retinal Rod Photoreceptor Cells
18.
Biol Open ; 13(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38299702

ABSTRACT

Mouse monoclonal 12E8 antibody, which recognises conserved serine phosphorylated KXGS motifs in the microtubule binding domains of tau/tau-like microtubule associated proteins (MAPs), shows elevated binding in brain during normal embryonic development (mammals and birds) and at the early stages of human Alzheimer's disease (AD). It also labels ADF/cofilin-actin rods that form in neurites during exposure to stressors. We aimed to identify direct and indirect 12E8 binding proteins in postnatal mouse brain and embryonic chick brain by immunoprecipitation (IP), mass spectrometry and immunofluorescence. Tau and/or MAP2 were major direct 12E8-binding proteins detected in all IPs, and actin and/or tubulin were co-immunoprecipitated in most samples. Additional proteins were different in mouse versus chick brain IP. In mouse brain IPs, FSD1l and intermediate filament proteins - vimentin, α-internexin, neurofilament polypeptides - were prominent. Immunofluorescence and immunoblot using recombinant intermediate filament subunits, suggests an indirect interaction of these proteins with the 12E8 antibody. In chick brain IPs, subunits of eukaryotic translation initiation factor 3 (EIF3) were found, but no direct interaction between 12E8 and recombinant Eif3e protein was detected. Fluorescence microscopy in primary cultured chick neurons showed evidence of co-localisation of Eif3e and tubulin labelling, consistent with previous data demonstrating cytoskeletal organisation of the translation apparatus. Neither total tau or MAP2 immunolabelling accumulated at ADF/cofilin-actin rods generated in primary cultured chick neurons, and we were unable to narrow down the major antigen recognised by 12E8 antibody on ADF/cofilin-actin rods.


Subject(s)
Actins , Microtubule-Associated Proteins , Mice , Animals , Humans , Microtubule-Associated Proteins/metabolism , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Tubulin/metabolism , Brain/metabolism , Carrier Proteins/metabolism , Mammals/metabolism
19.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189087, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395237

ABSTRACT

Cofilin-1 (CFL1) modulates dynamic actin networks by severing and enhancing depolymerization. The upregulation of cofilin-1 expression in several cancer types is associated with tumor progression and metastasis. However, recent discoveries indicated relevant cofilin-1 functions under oxidative stress conditions, interplaying with mitochondrial dynamics, and apoptosis networks. In this scenario, these emerging roles might impact the response to clinical therapy and could be used to enhance treatment efficacy. Here, we highlight new perspectives of cofilin-1 in the therapy resistance context and discussed how cofilin-1 is involved in these events, exploring aspects of its contribution to therapeutic resistance. We also provide an analysis of CFL1 expression in several tumors predicting survival. Therefore, understanding how exactly coflin-1 plays, particularly in therapy resistance, may pave the way to the development of treatment strategies and improvement of patient survival.


Subject(s)
Actins , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics
20.
CNS Neurosci Ther ; 30(2): e14585, 2024 02.
Article in English | MEDLINE | ID: mdl-38421133

ABSTRACT

INTRODUCTION: Serum response factor (SRF) is important in muscle development, tissue repair, and neuronal regulation. OBJECTIVES: This research aims to thoroughly examine the effects of SRF on spinal cord injury (SCI) and its ability to significantly impact the recovery and regeneration of neuronal axons. METHODS: The researchers created rat models of SCI and scratch injury to primary spinal cord neurons to observe the expression of relevant factors after neuronal injury. RESULTS: We found that the SRF, Ras, Raf, and cofilin levels increased after injury and gradually returned to normal levels. Afterward, researchers gave rats with SCI an SRF inhibitor (CCG1423) and studied the effects with nuclear magnetic resonance and transmission electron microscopy. The SRF inhibitor rodents had worse spinal cord recovery and axon regrowth than the control group. And the apoptosis of primary neurons after scratch injury was significantly higher in the SRF inhibitor group. Additionally, the researchers utilized lentiviral transfection to modify the SRF expression in neurons. SRF overexpression increased neuron migration while silencing SRF decreased it. Finally, Western blotting and RT-PCR were conducted to examine the expression changes of related factors upon altering SRF expression. The results revealed SRF overexpression increased Ras, Raf, and cofilin expression. Silencing SRF decreased Ras, Raf, and Cofilin expression. CONCLUSION: Based on our research, the SRF promotes axonal regeneration by activating the "Ras-Raf-Cofilin" signaling pathway.


Subject(s)
Actin Depolymerizing Factors , Spinal Cord Injuries , Rats , Animals , Actin Depolymerizing Factors/metabolism , Actin Depolymerizing Factors/pharmacology , Serum Response Factor/genetics , Serum Response Factor/metabolism , Serum Response Factor/pharmacology , Spinal Cord Injuries/pathology , Neurons/metabolism , Axons , Spinal Cord/metabolism , Signal Transduction , Nerve Regeneration , Recovery of Function/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...