ABSTRACT
Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.
Subject(s)
Cold Temperature , Ecosystem , Genome, Viral , Metagenome , Seawater , Seawater/virology , Antarctic Regions , Arctic Regions , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/isolation & purification , Phylogeny , Adaptation, PhysiologicalABSTRACT
Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.
Subject(s)
Bacterial Proteins , Pseudoalteromonas , Truncated Hemoglobins , Pseudoalteromonas/metabolism , Pseudoalteromonas/genetics , Pseudoalteromonas/chemistry , Kinetics , Truncated Hemoglobins/chemistry , Truncated Hemoglobins/metabolism , Truncated Hemoglobins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Molecular Dynamics Simulation , Antarctic Regions , LigandsABSTRACT
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Subject(s)
Adaptation, Physiological , Proteins , Humans , Adaptation, Physiological/physiology , Proteins/metabolism , Amino Acids , Oceans and Seas , Soil , Cold TemperatureABSTRACT
Survival and reproduction are the core elements of Darwinian fitness. In the context of a fixed energy budget, organisms tend to allocate resources in order to maximize one at the expense of the other, in what has been called the lifespan-reproduction trade-off. Reproductive arrest and extended lifespan are common responses to low temperatures in many insects including fruit flies. In this study, we aim to understand the overwintering strategy of two closely-related Drosophila species with contrasting distribution ranges. We compared survival, lifespan, ovarian maturation, and reproductive output (fecundity and fertility) of virgin and mated adults of both Drosophila buzzatii and Drosophila koepferae after long-term cold exposure at dormancy-inducing conditions (10 °C, 10:14 L:D) and controls (25 °C, 12:12 L:D). Virgin flies of D. buzzatii showed the longest lifespan (averaging 102 days) under dormancy-inducing conditions. Cold-induced reproductive arrest preserves reproductive capacity mainly in virgin females that mated after reproductive dormancy, indicating that males were much more susceptible to fertility loss than females, in both species. Notably, females of D. buzzatii were capable of protecting stored sperm from cold damage and produced viable progeny. Even if, in D. buzzatii, fertility of flies mated after the cold-exposure was extremely low, cold temperature likely sterilized D. koepferae males, indicating that cold carry-over effects are stronger for the species with the shorter lifespan. Such species-specific effects of low temperature over fitness likely contributed to the divergence of these closely-related species and to the spread of D. buzzatii into cooler environments.
Subject(s)
Drosophila , Longevity , Animals , Female , Male , Drosophila/physiology , Cold Temperature , Semen , FertilityABSTRACT
The Antarctic environment induces adaptive metabolic and neuroendocrine changes associated with survival, as well as increased risks to physical and mental health. Circadian disruption has been observed in Antarctic expeditioners. The main consequences appear in quality of sleep, which can affect physical and cognitive performance. Physiological adaptation to cold is mediated by the norepinephrine and thyroid hormones (T3 and 3,5-T2 metabolite). The observed changes in the hypothalamic-pituitary-thyroid (HPT) axis of expeditioners varied according to temperature, photoperiod, time spent in the cold environment and stress level. The decrease in T3 levels has frequently been associated with mood swings. Psychological and physical stressors cause disturbances in the hypothalamic-pituitary-adrenal (HPA) axis, with consequent maintenance of high cortisol levels, leading to memory impairment, immunosuppression, and cardiometabolic and reproductive disorders. Preventive measures, such as provision of adequate food, well-established eating times, physical activity and even the use of phototherapy, can all help maintain the circadian rhythm. In addition, the use of high-tech clothing and room temperature control in research stations provide greater protection against the effects of intense cold. However, psychological stress requires a more individualized approach based on the crew's sociocultural characteristics, but it can be mitigated by mental healthcare and training in coping strategies. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.
Subject(s)
Cardiovascular Diseases , Adaptation, Physiological , Adaptation, Psychological , Antarctic Regions , Cardiovascular Diseases/metabolism , Humans , Pituitary-Adrenal System/metabolismABSTRACT
Microorganisms have evolved to colonize all biospheres, including extremely cold environments, facing several stressor conditions, mainly low/freezing temperatures. In general, terms, the strategies developed by cold-adapted microorganisms include the synthesis of cryoprotectant and stress-protectant molecules, cold-active proteins, especially enzymes, and membrane fluidity regulation. The strategy could differ among microorganisms and concerns the characteristics of the cold environment of the microorganism, such as seasonal temperature changes. Microorganisms can develop strategies to grow efficiently at low temperatures or tolerate them and grow under favorable conditions. These differences can be found among the same kind of microorganisms and from the same cold habitat. In this work, eight cold-adapted yeasts isolated from King George Island, subAntarctic region, which differ in their growth properties, were studied about their response to low temperatures at the transcriptomic level. Sixteen ORFeomes were assembled and used for gene prediction and functional annotation, determination of gene expression changes, protein flexibilities of translated genes, and codon usage bias. Putative genes related to the response to all main kinds of stress were found. The total number of differentially expressed genes was related to the temperature variation that each yeast faced. The findings from multiple comparative analyses among yeasts based on gene expression changes and protein flexibility by cellular functions and codon usage bias raise significant differences in response to cold among the studied Antarctic yeasts. The way a yeast responds to temperature change appears to be more related to its optimal temperature for growth (OTG) than growth velocity. Yeasts with higher OTG prepare to downregulate their metabolism to enter the dormancy stage. In comparison, yeasts with lower OTG perform minor adjustments to make their metabolism adequate and maintain their growth at lower temperatures.
ABSTRACT
BACKGROUND Qaidam cattle are local breeds that habitats in northwest China. It has many excellent characteristics, such as high cold and roughage tolerance, low oxygen adaptability, and tender meat quality. Copy number variation (CNV) can induce phenotypic changes in animals by a variety of effects, and thus affects the biological functions of the animals. To explore the molecular mechanism of its adaptation to extreme cold weather and muscle fat development, the CNV variations in the genome of three Qaidam cattle were detected by whole-genome sequencing, in this study. RESULTS : A total of 16,743 CNVs and 9498 copy number variable regions (CNVRs) were obtained after the screening, which accounts for 2.18% of the bovine genome. The CNVR length detected ranged from 0.3 KB to 10.77 KB, with a total length of 58.17 MB and an average length of 6.12 KB/ CNVR. Through functional enrichment of CNVR related genes, LDHB, and ME1 genes were screened as the key genes for Qaidam cattle to adapt to the cold and low oxygen environments, whereas KIT and FGF18 genes might be related to the coat color and growth. In the CNVR overlapped with QTLs, variation in CAPN1 and CAST genes might be closely related to the tender meat quality of Qaidam cattle. CONCLUSIONS Therefore, this study provides new genetic insights on the environmental adaptability and important economic traits of Qaidam cattle
Subject(s)
Animals , Cattle , Adaptation, Physiological/genetics , Genome-Wide Association Study , Acclimatization/genetics , Cattle/genetics , China , Altitude , GenotypeABSTRACT
In this study, we characterize the response of the free-living oligotrophic alphaproteobacterium Caulobacter crescentus to low temperatures by global transcriptomic analysis. Our results showed that 656 genes were upregulated and 619 were downregulated at least 2-fold after a temperature downshift. The identified differentially expressed genes (DEG) belong to several functional categories, notably inorganic ion transport and metabolism, and a subset of these genes had their expression confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Several genes belonging to the ferric uptake regulator (Fur) regulon were downregulated, indicating that iron homeostasis is relevant for adaptation to cold. Several upregulated genes encode proteins that interact with nucleic acids, particularly RNA: cspA, cspB, and the DEAD box RNA helicases rhlE, dbpA, and rhlB. Moreover, 31 small regulatory RNAs (sRNAs), including the cell cycle-regulated noncoding RNA (ncRNA) CcnA, were upregulated, indicating that posttranscriptional regulation is important for the cold stress response. Interestingly, several genes related to transport were upregulated under cold stress, including three AcrB-like cation/multidrug efflux pumps, the nitrate/nitrite transport system, and the potassium transport genes kdpFABC. Further characterization showed that kdpA is upregulated in a potassium-limited medium and at a low temperature in a SigT-independent way. kdpA mRNA is less stable in rho and rhlE mutant strains, but while the expression is positively regulated by RhlE, it is negatively regulated by Rho. A kdpA-deleted strain was generated, and its viability in response to osmotic, acidic, or cold stresses was determined. The implications of such variation in the gene expression for cold adaptation are discussed. IMPORTANCE Low-temperature stress is an important factor for nucleic acid stability and must be circumvented in order to maintain the basic cell processes, such as transcription and translation. The oligotrophic lifestyle presents further challenges to ensure the proper nutrient uptake and osmotic balance in an environment of slow nutrient flow. Here, we show that in Caulobacter crescentus, the expression of the genes involved in cation transport and homeostasis is altered in response to cold, which could lead to a decrease in iron uptake and an increase in nitrogen and high-affinity potassium transport by the Kdp system. This previously uncharacterized regulation of the Kdp transporter has revealed a new mechanism for adaptation to low temperatures that may be relevant for oligotrophic bacteria.
Subject(s)
Bacterial Proteins/metabolism , Caulobacter crescentus/metabolism , Gene Expression Regulation, Bacterial , Iron/metabolism , Repressor Proteins/metabolism , Bacterial Proteins/genetics , Caulobacter crescentus/chemistry , Caulobacter crescentus/genetics , Cold Temperature , Ion Transport , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Regulon , Repressor Proteins/geneticsABSTRACT
Microorganisms inhabiting cold environments have evolved strategies to tolerate and thrive in those extreme conditions, mainly the low temperature that slow down reaction rates. Among described molecular and metabolic adaptations to enable functioning in the cold, there is the synthesis of cold-active proteins/enzymes. In bacterial cold-active proteins, reduced proline content and highly flexible and larger catalytic active sites than mesophylls counterparts have been described. However, beyond the low temperature, microorganisms' physiological requirements may differ according to their growth velocities, influencing their global protein compositions. This hypothesis was tested in this work using eight cold-adapted yeasts isolated from Antarctica, for which their growth parameters were measured and their draft genomes determined and bioinformatically analyzed. The optimal temperature for yeasts' growth ranged from 10 to 22°C, and yeasts having similar or same optimal temperature for growth displayed significative different growth rates. The sizes of the draft genomes ranged from 10.7 (Tetracladium sp.) to 30.7 Mb (Leucosporidium creatinivorum), and the GC contents from 37 (Candida sake) to 60% (L. creatinivorum). Putative genes related to various kinds of stress were identified and were especially numerous for oxidative and cold stress responses. The putative proteins were classified according to predicted cellular function and subcellular localization. The amino acid composition was compared among yeasts considering their optimal temperature for growth and growth rates. In several groups of predicted proteins, correlations were observed between their contents of flexible amino acids and both the yeasts' optimal temperatures for growth and their growth rates. In general, the contents of flexible amino acids were higher in yeasts growing more rapidly as their optimal temperature for growth was lower. The contents of flexible amino acids became lower among yeasts with higher optimal temperatures for growth as their growth rates increased.
ABSTRACT
Cold environments impose challenges to organisms. Polyextremophile microorganisms can survive in these conditions thanks to an array of counteracting mechanisms. Naganishia vishniacii, a yeast species hitherto only isolated from McMurdo Dry Valleys, Antarctica, is an example of a polyextremophile. Here we present the first draft genomic sequence of N. vishniacii. Using comparative genomics, we unraveled unique characteristics of cold associated adaptations. 336 putative genes (total: 6183) encoding solute transfers and chaperones, among others, were absent in sister species. Among genes shared by N. vishniacii and its closest related species we found orthologs encompassing possible evidence of positive selection (dN/dS > 1). Genes associated with photoprotection were found in agreement with high solar irradiation exposure. Also genes coding for desaturases and genomic features associated with cold tolerance (i.e. trehalose synthesis and lipid metabolism) were explored. Finally, biases in amino acid usage (namely an enrichment of glutamine and a trend in proline reduction) were observed, possibly conferring increased protein flexibility. To the best of our knowledge, such a combination of mechanisms for cold tolerance has not been previously reported in fungi, making N. vishniacii a unique model for the study of the genetic basis and evolution of cold adaptation strategies.
Subject(s)
Adaptation, Physiological/genetics , Basidiomycota/genetics , Cold Temperature , Genome, Microbial , Antarctic Regions , Evolution, Molecular , Genomics/methodsABSTRACT
DesK is a Bacillus thermosensor kinase that is inactive at high temperatures but turns activated when the temperature drops below 25 °C. Surprisingly, the catalytic domain (DesKC) lacking the transmembrane region is more active at higher temperature, showing an inverted regulation regarding DesK. How does the transmembrane region control the catalytic domain, repressing activity at high temperatures, but allowing activation at lower temperatures? By designing a set of temperature minimized sensors that share the same catalytic cytoplasmic domain but differ in number and position of hydrogen-bond (H-bond) forming residues along the transmembrane helix, we are able to tune, invert or disconnect activity from the input signal. By favoring differential H-bond networks, the activation peak could be moved towards lower or higher temperatures. This principle may be involved in regulation of other sensors as environmental physicochemical changes or mutations that modify the transmembrane H-bond pattern can tilt the equilibrium favoring alternative conformations.
Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Amino Acid Sequence , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Dimerization , Humans , Hydrogen Bonding , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutagenesis, Site-Directed , Protein Conformation, alpha-Helical , Signal Transduction , TemperatureABSTRACT
Pseudomonas extremaustralis is an Antarctic bacterium with high stress resistance, able to grow under cold conditions. It is capable to produce polyhydroxyalkanoates (PHAs) mainly as polyhydroxybutyrate (PHB) and, to a lesser extent, medium-chain length polyhydroxyalkanoates (mclPHAs). In this work, we analyzed the role of PHAs and cold adaptation in the survival of P. extremaustralis after lethal UVA exposure. P. extremaustralis presented higher radiation resistance under polymer accumulation conditions. This result was also observed in the derivative mutant strain PHA-, deficient for mclPHAs production. On the contrary, the PHB- derivative mutant, deficient for PHB production, showed high sensitivity to UVA exposure. Complementation of the PHB- strain restored the wild-type resistance level, indicating that the UVA-sensitive phenotype is due to the lack of PHB. All strains exhibited high sensitivity to radiation when cultured under PHAs non-accumulation conditions. A slight decrease in PHB content was observed after UVA exposure in association with increased survival. The scattering of UVA radiation by intracellular PHAs granules could also result in bacterial cell protection. In addition, cold conditions improved UVA tolerance, probably depending on PHB mobilization. Results showed that PHB accumulation is crucial in the resistance to UVA in P. extremaustralis. Mechanisms involved probably entail depolymerization and light scattering acting as a screen, both conferring protection against oxidative stress.
Subject(s)
Pseudomonas , Antarctic Regions , Polyhydroxyalkanoates , Protective Factors , Ultraviolet RaysABSTRACT
The recent emergence of antibiotic-resistant bacteria has become a critical public health problem. It is also a concern for industries, since multidrug-resistant microorganisms affect the production of many agricultural and food products of economic importance. Therefore, discovering new antibiotics is crucial for controlling pathogens in both clinical and industrial spheres. Most antibiotics have resulted from bioprospecting in natural environments. Today, however, the chances of making novel discoveries of bioactive molecules from various well-known sources have dramatically diminished. Consequently, unexplored and unique environments have become more likely avenues for discovering novel antimicrobial metabolites from bacteria. Due to their extreme polar environment, Antarctic bacteria in particular have been reported as a potential source for new antimicrobial compounds. We conducted a narrative review of the literature about findings relating to the production of antimicrobial compounds by Antarctic bacteria, showing how bacterial adaptation to extreme Antarctic conditions confers the ability to produce these compounds. We highlighted the diversity of antibiotic-producing Antarctic microorganisms, including the phyla Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, and Bacteroidetes, which has led to the identification of new antibiotic molecules and supports the belief that research on Antarctic bacterial strains has important potential for biotechnology applications, while providing a better understanding of polar ecosystems.
ABSTRACT
OBJECTIVES: According to eco-geographic rules, humans from high latitude areas present larger and wider trunks than their low-latitude areas counterparts. This issue has been traditionally addressed on the pelvis but information on the thorax is largely lacking. We test whether ribcages are larger in individuals inhabiting high latitudes than in those from low latitudes and explored the correlation of rib size with latitude. We also test whether a common morphological pattern is exhibited in the thorax of different cold-adapted populations, contributing to their hypothetical widening of the trunk. MATERIALS AND METHODS: We used 3D geometric morphometrics to quantify rib morphology of three hypothetically cold-adapted populations, viz. Greenland (11 individuals), Alaskan Inuit (8 individuals) and people from Tierra del Fuego (8 individuals), in a comparative framework with European (Spain, Portugal and Austria; 24 individuals) and African populations (South African and sub-Saharan African; 20 individuals). RESULTS: Populations inhabiting high latitudes present longer ribs than individuals inhabiting areas closer to the equator, but a correlation (p < 0.05) between costal size and latitude is only found in ribs 7-11. Regarding shape, the only cold adapted population that was different from the non-cold-adapted populations were the Greenland Inuit, who presented ribs with less curvature and torsion. CONCLUSIONS: Size results from the lower ribcage are consistent with the hypothesis of larger trunks in cold-adapted populations. The fact that only Greenland Inuit present a differential morphological pattern, linked to a widening of their ribcage, could be caused by differences in latitude. However, other factors such as genetic drift or specific cultural adaptations cannot be excluded and should be tested in future studies.
Subject(s)
Adaptation, Biological/physiology , Anthropometry/methods , Cold Temperature , Imaging, Three-Dimensional/methods , Rib Cage , Alaska , Anthropology, Physical , Argentina , Chile , Greenland , Humans , Indians, North American , Rib Cage/diagnostic imaging , Rib Cage/physiology , White PeopleABSTRACT
The Pfam PF04536 TPM_phosphatase family is a broadly conserved family of domains found across prokaryotes, plants and invertebrates. Despite having a similar protein fold, members of this family have been implicated in diverse cellular processes and found in varied subcellular localizations. Very recently, the biochemical characterization of two evolutionary divergent TPM domains has shown that they are able to hydrolyze phosphate groups from different substrates. However, there are still incorrect functional annotations and uncertain relationships between the structure and function of this family of domains. BA41 is an uncharacterized single-pass transmembrane protein from the Antarctic psychrotolerant bacterium Bizionia argentinensis with a predicted compact extracytoplasmic TPM domain and a C-terminal cytoplasmic low complexity region. To shed light on the structural properties that enable TPM domains to adopt divergent roles, we here accomplish a comprehensive structural and functional characterization of the central TPM domain of BA41 (BA41-TPM). Contrary to its predicted function as a beta-propeller methanol dehydrogenase, light scattering and crystallographic studies showed that BA41-TPM behaves as a globular monomeric protein and adopts a conserved Rossmann fold, typically observed in other TPM domain structures. Although the crystal structure reveals the conservation of residues involved in substrate binding, no putative catalytic or intramolecular metal ions were detected. Most important, however, extensive biochemical studies demonstrated that BA41-TPM has hydrolase activity against ADP, ATP, and other di- and triphosphate nucleotides and shares properties of cold-adapted enzymes. The role of BA41 in extracellular ATP-mediated signaling pathways and its occurrence in environmental and pathogenic microorganisms is discussed.
Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Apyrase/chemistry , Apyrase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cold Temperature , Crystallography, X-Ray , Protein Structure, TertiaryABSTRACT
A novel GH1 ß-glucosidase (EaBgl1A) from a bacterium isolated from Antarctica soil samples was recombinantly overexpressed in Escherichia coli cells and characterized. The enzyme showed unusual pH dependence with maximum activity at neutral pH and retention of high catalytic activity in the pH range 6 to 9, indicating a catalytic machinery compatible with alkaline conditions. EaBgl1A is also a cold-adapted enzyme, exhibiting activity in the temperature range from 10 to 40°C with optimal activity at 30°C, which allows its application in industrial processes using low temperatures. Kinetic characterization revealed an enzymatic turnover (Kcat) of 6.92s(-1) (cellobiose) and 32.98s(-1) (pNPG) and a high tolerance for product inhibition, which is an extremely desirable feature for biotechnological purposes. Interestingly, the enzyme was stimulated by up to 200 mM glucose, whereas the commercial cocktails tested were found fully inhibited at this concentration. These properties indicate EaBgl1A as a promising biocatalyst for biotechnological applications where low temperatures are required.