Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Insect Sci ; 23(5)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37864807

ABSTRACT

The African fig fly, Zaprionus indianus (Gupta), is a generalist fruit fly that typically breeds in decaying fruits from over 70 plant species. The species has spread globally from its native range in tropical Africa, becoming an invasive pest on ripening figs in Brazil. First reported in the United States in 2005 in Florida, Z. indianus has since been documented as far north as Canada and is hypothesized to recolonize northwards from southern refugia each year. We sampled drosophilid communities over the growing season at 2 orchards in Virginia from 2020 to 2022 and 11 orchards along the East Coast during the fall of 2022 to quantify the abundance of Z. indianus relative to other drosophilids across locations, seasons, and fruit crops. Massachusetts had the northernmost population, with no Z. indianus detected in Maine and no correlation between latitude and relative abundance. Variation in Z. indianus relative abundance was high between nearby orchards and abundance was higher on peaches relative to apples within orchards. Comparisons of seasonal abundance curves between 2 Virginia orchards showed similar dynamics across years with individuals first detected around July and becoming absent around December, with peaks in late summer and mid-fall. The variation in seasonal and latitudinal abundance shown here highlights a need for broader sampling to accurately characterize the range, spread, and environmental tolerances of Z. indianus in North America.


Subject(s)
Drosophilidae , Humans , Animals , Drosophila , Virginia , Fruit , Brazil , Florida
2.
Int J Biometeorol ; 64(8): 1401-1408, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32372151

ABSTRACT

A dynamic thermal time model (DTTM) has been developed to predict cold-hardiness in dormant grapevine buds, which uses daily mean temperatures as the only input variable. However, it has been recently reported that cold-hardiness in grapevine buds depends not only on low temperatures (LTs), but also on the content of the plant phytohormone abscisic acid (ABA). An important parameter in the DTTM is the ecodormancy boundary (EDB), which represents the chilling degree days (DDc) required for the transition of the buds from endo to ecodormancy. In this study, the bud cold-hardiness of grapevines was measured by the low-temperature exotherm (LTE) in the subtropical Elqui and in the temperate Maipo valleys of Chile, and the values fitted to the DTTM. Moreover, the ABA content was determined in dormant buds throughout the dormant season. The results demonstrated that the DTTM worked better in the Maipo than in the Elqui valley, and that the content of ABA in the buds was higher in the vines grown in the Elqui valley. On the other hand, the optimized EDB parameter value varied from year to year when it was estimated as chilling accumulated, but when it was estimated as time, it remained constant in the Maipo valley. Based on the results, we conclude the following: (a) the proper functioning of the DTTM requires that the ABA content profile in the dormant buds should be kept constant from year to year, (b) the highest content of ABA in the buds collected in the Elqui valley is probably due to abiotic stresses, (c) the EDB parameter corresponds to the accumulated cold until before the buds begin their deacclimation process and not until they release from endodormancy, (d) the release of the buds from endodormancy does not depend on the accumulated cold, but on the elapsed time.


Subject(s)
Vitis , Abscisic Acid , Chile , Cold Temperature , Plant Growth Regulators
3.
Plant Biol (Stuttg) ; 21 Suppl 1: 84-94, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29444373

ABSTRACT

Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses.


Subject(s)
Cell Wall/metabolism , Cold Temperature , Peroxidase/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Triticum/anatomy & histology , Triticum/physiology , Plant Proteins/metabolism , Polysaccharides/metabolism , Seasons
4.
Ann Bot ; 123(4): 681-689, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30418484

ABSTRACT

BACKGROUND AND AIMS: It has been reported that low temperatures (LTs) and the plant hormone abscisic acid (ABA) induce the expression of CBF/DREB1 transcription factors in vegetative tissues and seedlings of Vitis vinifera and Vitis riparia and that foliar applications of ABA to V. vinifera increase the freezing tolerance or cold-hardiness of dormant buds. However, the combined effect of ABA and LTs on the expression of CBF/DREB1 transcription factors and on the acquisition of freezing tolerance in dormant grapevine buds has not been investigated. The objective of this study was to analyse the combined effect of ABA and LT treatments on the expression of CBF/DREB transcription factors and the acquisition of freezing tolerance. METHODS: In vitro experiments with single-bud cuttings of grapevines were used to analyse the effect of ABA, ABA + LT and LT on the expression of CBF/DREB transcription factors, dehydrin and antioxidant genes, the acquisition of freezing tolerance and the endogenous content of ABA. Gene expression analysis was performed by quantitative real-time PCR and freezing tolerance was determined by measuring the low-temperature exotherm by differential thermal analysis. ABA levels were determined by gas chromatography coupled to an electron capture detector. KEY RESULTS: The LT treatment and exogenous application of ABA to grapevine dormant buds increased the expression of the CBF/DREB1 transcription factors VvCBF2, VvCBF3, VvCBF4 and VvCBF6. The joint application of LT and ABA produced a huge increase in the expression of these transcription factors, which was greater than the sum of the increases produced by them individually, which indicates the existence of a synergistic effect between ABA and LT on the activation of these transcription factors. This synergic effect was also observed on the increase in bud cold-hardiness and on the expression of antioxidant and dehydrin genes. CONCLUSIONS: The synergy between ABA and LT on the expression of CBF/DREB1 transcription factors VvCBF2, VvCBF3, VvCBF4 and VvCBF6 plays a key role in cold acclimatization of grapevine buds. The results highlight the importance of the combination of stimuli in the improvement of genetic and physiological responses and help us to understand the adaption of plants to complex environments.


Subject(s)
Abscisic Acid/metabolism , Acclimatization , Cold Temperature , Gene Expression Regulation, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Vitis/physiology , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Vitis/genetics
5.
Int J Biometeorol ; 61(12): 2033-2045, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28717999

ABSTRACT

Low temperature is a limiting factor that affects vineyard distribution globally. The level of cold hardiness acquired during the dormant season by Vitis sp. is crucial for winter survival. Most research published on this topic has been generated beyond 40° N latitude, where daily mean temperatures may attain injurious levels during the dormant season resulting in significant damage to vines and buds. Symptoms of cold injury have been identified in Mendoza (32-35° S latitude), a Southern Hemisphere wine region characterized by a high thermal amplitude, and warm winds during the dormant season. These symptoms have usually been attributed to drought and/or pathogens, but not to rapid deacclimation followed by injurious low temperatures. Because local information on meteorological events as probable causes is scarce, this research was designed to test and study this assumption by comparing macro-, meso-, and microclimatic data from Mendoza, Argentina, and eastern Washington, USA. The goal was to unveil why freezing damage has occurred in both regions, despite the existence of large climatic differences. Because environmental parameters under field conditions may not correspond to data recorded by conventional weather stations, sensors were installed in vineyards for comparison. Microclimatic conditions on grapevines were also evaluated to assess the most vulnerable portions of field-grown grapevines. In order to better understand if it may be possible to modify cold hardiness status in a short period with high thermal amplitude conditions, deacclimation was induced using a thermal treatment. Hence, despite the fact that Mendoza is warmer, and temperatures are not as extreme as in Washington, high daily thermal amplitude might be partially involved in plant deacclimation, leading to a differential cold hardiness response.


Subject(s)
Vitis/physiology , Acclimatization , Argentina , Microclimate , Temperature , Washington
6.
Neotrop Entomol ; 46(1): 58-65, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27830538

ABSTRACT

The pistachio twig borer, Kermania pistaciella Amsel (Lepidoptera: Tineidae), a key pest of pistachio trees, is a monovoltine pest living inside the feeding tunnel of pistachio twigs for almost 10 months in a year and overwinters there as last instar larvae. In this study, we measured some physiological parameters of overwintering field collected larvae of the pest. There were no changes in trehalose, glucose, and myo-inositol contents, but there were differences in the levels of total simple sugar and glycogen during overwintering. Total sugar content at the beginning of overwintering (October) was at the lowest level (24.13 mg/g body weight) and reached to the highest level (55.22 mg/g fresh body weight) in November whereas glycogen content was at the highest level (44.05 mg/g fresh body weight) in October and decreased to 18.42 mg/g fresh body weight in November. Decrease in lipid content during the overwintering period was not significant. The highest and lowest levels of protein content were recorded in January and February, respectively. Supercooling points (SCP) of the overwintering larvae were stable and low (ranged between -17.80 and -25.10°C) throughout the cold season and no larva survived after SCP determination. The lowest cold hardiness (60 and 0.0% survival following exposure to -10 and -20°C/24 h, respectively) was observed for in November-collected larvae. Overwintering larvae of the pistachio twig borer rely mostly on maintaining the high supercooling capacity throughout the overwintering to avoid freezing of their body fluid.


Subject(s)
Hibernation/physiology , Moths/physiology , Animals , Cold Temperature , Larva , Pistacia , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL