Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.976
Filter
1.
Sci Total Environ ; 946: 174463, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964385

ABSTRACT

The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.

2.
J Chromatogr A ; 1730: 465130, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38955130

ABSTRACT

This study describes the preparation of a cylindrical polymer foam column termed Chitosan/ß-Cyclodextrin/MIL-68(Al) (CS/ß-CD/MIL-68(Al)). An ice template-freeze drying technique was employed to prepare the CS/ß-CD/MIL-68(Al) foam column by embedding MIL-68(Al) in a polymer matrix comprising cross-linked chitosan (CS) and ß-cyclodextrin (ß-CD). The cylindrical CS/ß-CD/MIL-68(Al) foam was subsequently inserted into a syringe to develop a solid phase extraction (SPE) device. Without the requirement for an external force, the sample solution passed easily through the SPE column thanks to the porous structure of the CS/ß-CD/MIL-68(Al) foam column. Moreover, the CS/ß-CD/MIL-68(Al) foam column was thought to be a superior absorbent for SPE since it included the adsorptive benefits of CS, ß-CD, and MIL-68(Al). The SPE was utilized in conjunction with high-performance liquid chromatography to analyze six sulfonamides found in milk, urine, and water. With matrix effects ranging from 80.49 % to 104.9 % with RSD values of 0.4-14.0 %, the method showed high recoveries ranging from 80.6 to 107.4 % for water samples, 93.4-105.2 % for urine, and 87.4-100.9 % for milk. It also demonstrated good linearity in the range of 10-258 ng·mL-1 with the limits of detection ranging from 1.88 to 2.58 ng·mL-1. The cylindrical CS/ß-CD/MIL-68(Al) foam column prepared in this work offered several advantages, including its simple fabrication, excellent water stability, absence of pollutants, biodegradability, and reusability. It is particularly well-suited for SPE. Furthermore, the developed SPE method, employing CS/ß-CD/MIL-68(Al) foam column, is straightforward and precise, and its benefits, including affordability, ease of preparation, lack of specialized equipment, and solvent economy, underline its broad applicability for the pretreatment of aqueous samples.

3.
Environ Technol ; : 1-11, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955504

ABSTRACT

As volatile organic compounds (VOCs), gaseous ethylbenzene has adverse effects on human health and ecology. Therefore, an effective degradation process is highly desirable. The Fenton process under UV 365 nm was selected as the first option to remove gaseous ethylbenzene in a bubble column reactor. The main parameters for the batch experiments were systematically studied, including H2O2 concentration, [H2O2]/[Fe2+], pH, UV wavelength, UV intensity, gaseous ethylbenzene concentration, gas flow rate, and process stability towards removal efficiency. The optimum conditions were found to be H2O2 concentration of 100 mmol·L-1, [H2O2]/[Fe2+] of 4, pH of 3.0, UV wavelength of 365 nm, UV power of 5 W, gas flow rate of 900 mL·min-1, and gaseous ethylbenzene concentration of 30 ppm, resulting in a removal efficiency of 76.3%. The study found that the Fenton process, when coupled with UV 365 nm, was highly effective in removing gaseous ethylbenzene. The degradation mechanism of gaseous ethylbenzene was proposed in the UV365/Fenton process based on EPR, radical quenching experiments, iron analysis, carbon balance, and GC-MS analysis. The results indicated that •OH played a crucial role in the process.

4.
J Craniovertebr Junction Spine ; 15(2): 190-195, 2024.
Article in English | MEDLINE | ID: mdl-38957760

ABSTRACT

Background: The purpose of this study was to present our experience in patients who had been treated with posterior vertebral column resection (PVCR) for various spinal deformities. Methods: Thirty-seven patients who performed PVCR between 2015 and 2018 were evaluated retrospectively. The mean follow-up period was 24 months (range: 12-50 months). The demographic data of the patients, mean blood loss, amount of blood replacement, duration of operation, intensive care and hospitalization period, PVCR level, instrumentation level, amount of preoperative curvature, amount of postoperative curvature improvement, preoperative and postoperative neurological status, and complications were examined. Angular measurements were performed on X-ray. Results: The mean age of the patients was 37.5 years (range: 3-80 years). PVCR was applied to patients due to different pathologies (congenital, tumor metastasis, posttraumatic kyphosis, revision scoliosis, and infection). The mean operation time was 445.5 min (260-720) with an average blood loss of 1903 ml (400-7000 ml). It was observed that the average local kyphosis angle decreased from 67.65° to 7.42° in 26 patients who were operated for advanced deformity (P < 0.001). When these values were compared in all 34 patients, the preoperative angle value decreased from 55.1° to 3.5° (P < 0.001) and decreased from 70° to 0° in 13 congenital kyphosis patients. Conclusion: PVCR is an effective method for correcting severe spinal deformities and can be used to correct curvature in different patient groups. Level of Evidence: Level 3.

6.
Heliyon ; 10(12): e32953, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988531

ABSTRACT

If absolutely nothing is taken to reduce carbon dioxide (CO2) emissions, atmospheric concentrations of carbon dioxide will rise to 550 parts per million by 2050, which will have disastrous effects on the world's climate and food production. An apparatus has been designed and setup to convert CO2 into a useful and vital product which was silica. The effect of different experimental factors on the compositions by weight percent of SiO2 and Na2CO3 were studied including the CO2 gas flow rate (1.037, 1.648 and 2.26 L/min), initial concentration of sodium silicate (Na2SiO3) solution (5, 7.5 and 10 %wt) and the packing size (15.95, 20.175, and 24.4 mm). An optimization process was performed using the Design Expert software program to achieve the optimum experimental conditions at which the maximum weight percent of SiO2 (main product), the minimum weight percent of (Na2CO3) (side product) and the minimum reaction time were determined. From the optimization process, the maximum weight percent of SiO2 (25.63 %), the minimum weight percent of (Na2CO3) (9.62 %) and the minimum reaction time (7.59 min) were achieved at the following optimum experimental conditions of CO2 gas flow rate = 1.648 L/min, packing size = 24.4 mm and initial concentration of sodium silicate solution = 10 %wt.

7.
Talanta ; 278: 126504, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38986309

ABSTRACT

Microplastics is known to be ubiquitous in aquatic environment. Quantification of microplastics in natural waters is an important problem of analytical chemistry, the solution of which is needed for the assessment of water quality and potential risks for water inhabitants and consumers. Separation methods play a key role in the correct quantification of microplastics in natural waters. In the present study the applicability of countercurrent chromatography to the continuous-flow separation and preconcentration of microplastics from water samples in rotating coiled column (RCC) using water-oil systems has been demonstrated for the first time. The effect of column rotation speed and mobile phase (water) flow rate on the retention of the stationary (oil) phase in RCC is studied. The retention parameters of 10 vegetable and 2 synthetic oils are determined. Castor, olive, rapeseed, soybean, linseed, sesame, and sunflower oils are found to be applicable to the separation of microplastics from water samples using RCC. Taking as example polyethylene microparticles of different size (40-63, 63-100, and 100-250 µm), the high recovery of microplastics (about 100 %) from aqueous phase into castor and rapeseed oils is shown. The method has been proven to be efficient for the separation of microplastics from simulated fresh and sea natural waters. It may be perspective not only for the quantification of microplastics in natural waters but as well as for the purification of wastewaters containing microplastics.

8.
J Environ Manage ; 365: 121651, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955043

ABSTRACT

Hydraulic mixing of stratified reservoirs homogenizes physicochemical gradients and microbial communities. This has potential repercussions for microbial metabolism and water quality, not least in dams and hydraulically controlled waters. A better understanding of how key taxa respond to mixing of such stratified water bodies is needed to understand and predict the impact of hydraulic operations on microbial communities and nutrient dynamics in reservoirs. We studied taxa transitions between cyanobacteria and sulfur-transforming bacteria following mixing of stratified water columns in bioreactors and complemented the experimental approach with a biogeochemical model. Model predictions were consistent with experimental observations, suggesting that stable stratification of DO is restored within 24 h after episodic and complete mixing, at least in the absence of other more continuous disturbances. Subsequently, the concentration of S2- gradually return to pre-mixing states, with higher concentration at the surface and lower in the bottom waters, while the opposite pattern was seen for SO42-. The total abundance of sulfate-reducing bacteria and phototrophic sulfur bacteria increased markedly after 24h of mixing. The model further predicted that the rapid re-oxygenation of the entire water column by aeration will effectively suppress the water stratification and the growth of sulfur-transforming bacteria. Based on these results, we suggest that a reduction of thermocline depth by optimal flow regulation in reservoirs may also depress sulfur transforming bacteria and thereby constrain sulfur transformation processes and pollutant accumulation. The simulation of microbial nutrient transformation processes in vertically stratified waters can provide new insights about effective environmental management measures for reservoirs.


Subject(s)
Bacteria , Bacteria/metabolism , Cyanobacteria , Water Quality , Water Microbiology , Models, Theoretical
9.
Water Res ; 261: 121998, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38996735

ABSTRACT

The presence of active pharmaceutical ingredients (APIs) in wastewater effluents and natural aquatic systems threatens ecological and human health. While activated carbon-based adsorbents, such as GAC and PAC, are widely used for API removal, they exhibit certain deficiencies, including reduced performance due to the presence of natural organic macromolecules (NOMs) and high regeneration costs. There is growing demand for a robust, stable, and self-regenerative adsorbent designed for API removal in various environments. In this study, we synthesized a self-generating metal oxide nano-composite (S-MGC) containing titanium dioxide (TiO2) and silicon dioxide (SiO2) combined with 3D graphene oxide (GO) to adsorb APIs and undergo regeneration via light illumination. We determined optimal TiO2:SiO2:GO compositions for the S-MGCs through experiments using a model contaminant, methylene blue. The physical and chemical properties of S-MGCs were characterized, and their adsorption and photodegradation capabilities were studied using five model APIs, including sulfamethoxazole, carbamazepine, ketoprofen, valsartan, and diclofenac, both in single-component and multi-component mixtures. In the absence of TiO2/SiO2, 3D graphene oxide (CGB) displayed better adsorption performance compared to GAC, and S-MGCs further improve CGB's adsorption capacity. This performance remained consistent in two complex water environments: aqueous solutions at varying NOM levels and artificial urine. TiO2 supported on the GO surface exhibits similar photocatalytic activity to suspended TiO2. In a continuous fixed-bed column test, S-MGCs demonstrated robust API adsorption performance that is maintained in the presence of NOM or urine, and can be regenerated through multiple cycles of adsorption and light illumination.

10.
Mikrochim Acta ; 191(8): 457, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38980449

ABSTRACT

A new enantioselective open-tubular capillary electrochromatography (OT-CEC) was developed employing ß-cyclodextrin covalent organic frameworks (ß-CD COFs) conjugated gold-poly glycidyl methacrylate nanoparticles (Au-PGMA NPs) as a stationary phase. The resulting coating layer on the inner wall of the fabricated capillary column was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS), and electroosmotic flow (EOF) experiments. The performance of the fabricated capillary column was evaluated by CEC using enantiomers of seven model analytes, including two proton pump inhibitors (PPIs, omeprazole and tenatoprazole), three amino acids (AAs, tyrosine, phenylalanine, and tryptophan), and two fluoroquinolones (FQs, gatifloxacin and sparfloxacin). The influences of coating time, buffer concentration, buffer pH, and applied voltage on enantioseparation were investigated to obtain satisfactory enantioselectivity. In the optimum conditions, the enantiomers of seven analytes were fully resolved within 10 min with high resolutions of 3.03 to 5.25. The inter- to intra-day and column-to-column repeatabilities of the fabricated capillary column were lower than 4.26% RSD. Furthermore, molecular docking studies were performed based on the chiral fabricated column and as ligand isomers of analytes using Auto Dock Tools. The binding energies and interactions acquired from docking results of analytes supported the experimental data.


Subject(s)
Capillary Electrochromatography , Gold , beta-Cyclodextrins , Capillary Electrochromatography/methods , Gold/chemistry , beta-Cyclodextrins/chemistry , Stereoisomerism , Polymethacrylic Acids/chemistry , Amino Acids/chemistry , Amino Acids/analysis , Fluoroquinolones/chemistry , Fluoroquinolones/analysis , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Molecular Docking Simulation
11.
Methods Mol Biol ; 2829: 247-255, 2024.
Article in English | MEDLINE | ID: mdl-38951340

ABSTRACT

The Baculovirus Expression Vector System (BEVS) is used with cultured insect cells to produce a wide variety of heterologous proteins, which can be secreted into the culture medium during the transient infection process (Smith et al. Mol Cell Biol 12:2156-2165, 1983). When the infection process is complete, centrifugation is often used to separate the desired protein from the spent insect cells. The desired product in the harvested supernatant is contaminated with baculovirus, amino acids, lipids, detergents, oils, lysed cells from the infection process, genomic DNA from the insect cells, and proteases due to the lytic nature of the baculovirus infection process and many other contaminants (Ikonomou et al. Appl Microbiol Biotechnol 62:1-20, 2003). All these contaminants that are present in the centrifuged supernatant with the desired secreted protein make the initial chromatographic capture step critical for effective purification of the desired protein. A purification scheme will be outlined for a slightly acidic secreted protein using cation exchange chromatography (Lundanes et al. Chromatography: basic principles, sample preparations and related methods, 1st edn. Wiley, 2013).


Subject(s)
Baculoviridae , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Chromatography, Ion Exchange/methods , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Insecta/cytology , Sf9 Cells , Genetic Vectors/genetics , Cell Line , Spodoptera
12.
Environ Monit Assess ; 196(8): 698, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963549

ABSTRACT

Air pollution is affected by the atmospheric dynamics. This study aims to determine that air pollution concentration values in Istanbul increased significantly and reached peak values due to atmospheric blocking between the 30th of December 2022 and the 5th of January 2023. In this study, hourly pollutant data was obtained from 16 air quality monitoring stations (AQMS), the exact reanalysis data was extracted from ERA5 database, and inversion levels and meteorological and synoptic analyses were used to determine the effects of atmospheric blocking on air pollution. Also, cloud base heights and vertical visibility measurements were taken with a ceilometer. Statistical calculations and data visualizations were performed using the R and Grads program. Omega-type blocking, which started in Istanbul on December 30, 2022, had a significant impact on the 1st and 2nd of January 2023, and PM10 and PM2.5 concentration values reached their peak values at 572.8 and 254.20 µg/m3, respectively. In addition, it was found that the average concentration values in the examined period in almost all stations were higher than the averages for January and February. As a result, air quality in Istanbul was determined as "poor" between these calendar dates. It was found that the blocking did not affect the ozone (µg/m3) concentration. It was also found that the concentrations of particulate matter (PM) 10 µm or less in diameter (PM10) and PM 2.5 µm or less in diameter (PM2.5) were increased by the blocking effect in the Istanbul area. Finally, according to the data obtained using the ceilometer, cloud base heights decreased to 30 m and vertical visibility to 10 m.


Subject(s)
Air Pollutants , Air Pollution , Atmosphere , Environmental Monitoring , Ozone , Particulate Matter , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Ozone/analysis , Atmosphere/chemistry , Turkey , Seasons
13.
Equine Vet J ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989893

ABSTRACT

BACKGROUND: Cervical articular process joint (CAPJ) therapy is advocated for horses with neck disorders. Several ultrasound-guided CAPJ techniques have been described in cadaver studies with 72%-89% intra-articular injection accuracy; however, the CAPJ injection accuracy in clinical equine practice has not been extensively reported. OBJECTIVES: To describe a modified cranial approach for ultrasound-guided caudal CAPJ injections, to investigate the accuracy of this CAPJ injection technique in live horses, and to assess the effect of CAPJ injection location, laterality, operator, and radiographic CAPJ enlargement on injection accuracy. STUDY DESIGN: Retrospective case study. METHODS: Medical records of adult horses in which ultrasound-guided caudal (C4-T1) CAPJ injections were performed using a modified cranial approach between November 2006 and December 2020 were reviewed. Radiographic images of caudal cervical vertebrae were assessed by a blinded radiologist and the degree of CAPJ enlargement was graded using a previously described grading system (Rgrade 1-5b). Ultrasound-guided caudal CAPJ injection accuracy was determined by synovial fluid retrieval during an individual CAPJ injection. Statistical analysis was performed using mixed-effects multivariable logistic model to evaluate the association of CAPJ injection accuracy and the CAPJ injection location, Rgrade, laterality (right, left), and operator. RESULTS: The study included 149 horses with 177 hospital admissions. Synovial fluid was obtained from 586/658 (89.1%) caudal CAPJs using modified cranial ultrasound-guided approach for CAPJ injections. C6-C7 CAPJ injections had 7-fold higher likelihood (OR = 6.78, 95% CI: 1.67-27.52; p = 0.007) of synovial fluid retrieval compared with C4-C5 CAPJ injections. Operator, CAPJ injection side (left, right), and degree of radiographic CAPJ enlargement did not have significant effects on the success of synovial fluid retrieval from ultrasound-guided caudal CAPJ injections. MAIN LIMITATIONS: Retrospective study design. CONCLUSIONS: Intra-articular ultrasound-guided caudal CAPJ injections using a modified cranial approach can be performed accurately in live horses with and without CAPJ arthropathy.

14.
Mycotoxin Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990417

ABSTRACT

UPLC-MS/MS analytical conditions for the analysis of aflatoxins in spices were optimized and validated in this study. Liquid-liquid partition-based protocols for the cleaning up of extracts using common organic solvents such as acetonitrile, hexane, and ethyl acetate were developed and validated. The developed liquid-liquid partition methods were compared with immuno-affinity column and QuEChERS clean-up methods for the UPLC-MS/MS analysis of aflatoxins in 8 spices. The reduction of lipophilic components using the partition with hexane is particularly useful in spices like red pepper that have higher levels of fatty acids, carotenoids, sterols, triterpenoids, etc. The subsequent partitioning with ethyl acetate considerably reduced the matrix interference from the polar components and increased the sensitivity. The cleaning up of spice extracts using liquid-liquid partition techniques resulted in limits of quantification (LOQ) of 2-5 µgL-1 in UPLC-MS/MS analysis. Trueness, repeatability, and reproducibility of the methods were in acceptable ranges. The accuracy of the developed methods was further verified by analyzing aflatoxins in naturally incurred samples of spices and comparing the results with those obtained from the immuno-affinity column cleanup-HPLC-FD method.

15.
Int J Biol Macromol ; 275(Pt 2): 133762, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986974

ABSTRACT

Water pollution has remained a pressing concern in recent years, presenting multifaceted challenges in search of effective mitigation strategies. Our study, which targets mitigating pollution caused by 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a significant aquatic pollutant, is innovative in its approach. We have identified adsorption as a promising, cost-effective method for its removal. Our research strategy involves dynamic adsorption utilizing a peristaltic pump and composite beads containing activated carbon and sodium alginate (CA/Alg), a novel combination that mimics industrial processes. To optimize column adsorption, we examine bead stability under varied pH conditions and optimize parameters such as concentration, adsorption time, and pH through batch adsorption experiments, employing experimental design techniques. Additionally, we optimize column adsorption factors, including bead height, circulation time, and flow rate, crucial for process efficiency, and under these optimum conditions (C2,4,5-T = 80 ppm. pH = 2, t = 27h30min, H = 30 cm and D = 0.5 mL/min) the capacity of adsorption equal to 748.25 mg/g. Characterization techniques like SEM, EDX, BET analysis, XRD, and FTIR provide insights into the morphology, composition, surface area (331 m2/g), pore volume (0.11 cm3/g), crystal structure, and functional groups of the CA-P/Alg adsorbent. Theoretical analysis elucidates the adsorption mechanism and interaction with pollutants. Economic analysis, encompassing CAPEX and OPEX estimation, evaluates the feasibility of implementing this cleanup method at an industrial scale, considering initial investment and ongoing operational costs, indicating potential savings of 64 % compared with the activated carbon normally used on the Moroccan market. This comprehensive and innovative approach addresses water pollution challenges effectively while ensuring economic viability for industry-scale implementation.

16.
Sci Total Environ ; 947: 174685, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997042

ABSTRACT

At present, there has been relatively less coverage of microplastics (MPs) pollution in sediment columns, especially across a large geographical span. This study collected sediment columns across 11 provinces along the coastline of China for MPs pollution investigation. The study found higher MPs diversity (Simpson diversity index) in sediment columns than in surface sediments, mostly comprising fiber MPs with dominant transparent and blue colors. Lower MPs pollution was noted in mangrove reserves, while estuarine and coastal areas showed higher pollution levels. Spearman correlation analysis shows that vertical of MPs abundance significantly decreased with depth at 6 of 11 sites. Large-sized MPs with diverse colors in deeper sediments (>40 cm) suggests that burial processes may render MPs more resistant to degradation. Our research highlights varied MPs distribution in coastal sediment, aiding future marine MPs pollution prediction and assessment.

17.
Healthcare (Basel) ; 12(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998860

ABSTRACT

One expanding area of bioinformatics is medical diagnosis through the categorization of biomedical characteristics. Automatic medical strategies to boost the diagnostic through machine learning (ML) methods are challenging. They require a formal examination of their performance to identify the best conditions that enhance the ML method. This work proposes variants of the Voting and Stacking (VC and SC) ensemble strategies based on diverse auto-tuning supervised machine learning techniques to increase the efficacy of traditional baseline classifiers for the automatic diagnosis of vertebral column orthopedic illnesses. The ensemble strategies are created by first combining a complete set of auto-tuned baseline classifiers based on different processes, such as geometric, probabilistic, logic, and optimization. Next, the three most promising classifiers are selected among k-Nearest Neighbors (kNN), Naïve Bayes (NB), Logistic Regression (LR), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Decision Tree (DT). The grid-search K-Fold cross-validation strategy is applied to auto-tune the baseline classifier hyperparameters. The performances of the proposed ensemble strategies are independently compared with the auto-tuned baseline classifiers. A concise analysis evaluates accuracy, precision, recall, F1-score, and ROC-ACU metrics. The analysis also examines the misclassified disease elements to find the most and least reliable classifiers for this specific medical problem. The results show that the VC ensemble strategy provides an improvement comparable to that of the best baseline classifier (the kNN). Meanwhile, when all baseline classifiers are included in the SC ensemble, this strategy surpasses 95% in all the evaluated metrics, standing out as the most suitable option for classifying vertebral column diseases.

18.
J Hazard Mater ; 476: 135173, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003812

ABSTRACT

The complicated loading process and easy falling off of powder catalysts still restrict the wide application of Photo-Fenton technology in practical water treatment. In this study, a magnetic fixed film plate column water treatment equipment is designed as a visible Photo-Fenton reactor to remove levofloxacin (LEV). The effect of magnetic force can ensure that the catalyst is firmly fixed, and the multi-level shallow column plate structure achieves full contact and efficient reaction between the catalyst and wastewater. Simultaneously, the Cu0/CuFe2O4 (STCCF) utilizes Cu0 to construct an S-scheme electron transfer channel, which improves the separation efficiency of photo-generated carriers and provides sufficient photo-generated electrons for the reduction of Fe (Ⅲ) and Cu (Ⅱ). The pseudo-first-order reaction kinetic constant k for the degradation of LEV in the visible Photo-Fenton system is 0.0349 min-1, which is 15.9 times that of the photocatalytic system and 4.8 times that of the Fenton system. After continuous operation for 72 h, the magnetic fixed film plate column reactor can still remove more than 90 % of LEV and 82 % of COD in the secondary effluent of simulated antibiotic pharmaceutical wastewater treatment process, and the effluent is stable and meets the standard. The magnetic fixed film plate column reactor can be used for advanced treatment of antibiotic pharmaceutical wastewater. This study provides a new insight into the application of the Photo-Fenton process.

19.
Cureus ; 16(6): e62350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006667

ABSTRACT

Kidney transplantation is the preferred treatment for end-stage renal disease (ESRD); however, ABO incompatibility (ABOi) poses challenges due to increased graft rejection risk. Desensitization strategies, including immunoadsorption (IA), aim to overcome ABOi barriers. The objective of this case report was to present the initial findings and patient outcomes of ABOi kidney transplantation (KT) using two different brands of IA columns (Glycosorb® ABO and SECORIM®-ABO) in reducing isoagglutinin titers to the desired target level. We present a case report of a 51-year-old male with ESRD secondary to diabetic kidney disease who underwent desensitization for ABOi KT, involving rituximab administration followed by IA using Glycosorb® and Vitrosorb SECORIM®-ABO columns and plasmapheresis (PP). Glycosorb® ABO column decreased anti-B titers from an initial level of 1:128/1:128 to 1:64/1:64 (target range ≤1:8); however, the titers rebounded to 1:64 following the fourth session of PP. Subsequent use of Vitrosorb SECORIM®-ABO column achieved target titers of 1:4, enabling successful transplantation with satisfactory graft function. Monitoring included anti-B IgG/IgM titer levels post IA columns, IA column reuse, kidney function, and adverse events. The IA columns were well tolerated. Desensitization using IA columns effectively reduced anti-B titers, facilitating successful ABOi KT.

20.
Article in English | MEDLINE | ID: mdl-39012533

ABSTRACT

The distribution coefficient (Kd) of radionuclides is a crucial parameter in assessing the safety of high-level radioactive waste (HLW) geological repository. It is determined in the laboratory through batch and column experiments. However, differences in obtained Kd values from distinct experiments have not been thoroughly assessed and compared. This study evaluated strontium (Sr) sorption on different granite materials using static batch and dynamic experiments (column and core-flooding experiments). The results from batch sorption experiments showed higher Sr sorption on granite under acidic and strongly alkaline conditions, low solid-liquid ratios, and low ionic strength. In column experiments, a two-site sorption model was used to simulate Sr transport in crushed granite and mixed pure minerals. The sorption of Sr on crushed granite exhibited a higher affinity than that of mixed pure minerals. The dual-porosity transport model was employed to investigate Sr transport behavior in fractured granite in the core-flooding experiment. Kd obtained from batch sorption experiments are four to twenty times higher than those from column experiments, and two to three orders of magnitude higher than that from a core-flooding experiment. The results of this study provide valuable insights into safety assessment for the HLW geological repository.

SELECTION OF CITATIONS
SEARCH DETAIL
...