Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
Front Genet ; 15: 1376721, 2024.
Article in English | MEDLINE | ID: mdl-38933922

ABSTRACT

Background: Circular RNAs (circRNAs) play an important role in the occurrence and development of diseases. However, the role of circRNAs in male smokers with chronic obstructive pulmonary disease (COPD) remains unclear. Methods: Stable COPD patients and healthy controls were recruited. Peripheral blood mononuclear cells (PBMCs) were extracted. After high-throughput RNA sequencing (RNA-Seq) of PBMCs, a bioinformatics method was used to analyse differentially expressed (DE) circRNAs (DEcircRNAs) and mRNAs (DEmRNAs). Results: Total of 114 DEcircRNAs and 58 DEmRNAs were identified. Functional enrichment analysis showed that processes related to COPD include the regulation of interleukin (IL)-18, IL-5 and the NLRP3 inflammasome; differentiation of T helper type 1 (Th1), Th2, and Th17 cells, and the AMPK, Wnt, JAK-STAT, and PI3K-Akt signalling pathways. In the protein-protein interaction (PPI) network, the core genes were MYO16, MYL4, SCN4A, NRCAM, HMCN1, MYOM2, and IQSEC3. Small-molecule prediction results revealed potential drugs for the COPD treatment. Additionally, the circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory network was constructed. Conclusion: This study identified a set of dysregulated circRNAs and mRNAs and revealed potentially important genes, pathways, new small-molecule drugs and ceRNA regulatory networks in male smokers with COPD. These circRNAs might be prospective biomarkers or potential molecular targets of the ceRNA mechanism for COPD.

2.
Aging (Albany NY) ; 16(10): 9147-9167, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38795390

ABSTRACT

Alcoholic liver disease (ALD) has a complex pathogenesis. Although early-stage ALD can be reversed by ceasing alcohol consumption, early symptoms are difficult to detect, and several factors contribute to making alcohol difficult to quit. Continued alcohol abuse worsens the condition, meaning it may gradually progress into alcoholic hepatitis and cirrhosis, ultimately, resulting in irreversible consequences. Therefore, effective treatments are urgently needed for early-stage ALD. Current research mainly focuses on preventing the progression of alcoholic fatty liver to alcoholic hepatitis and cirrhosis. However, challenges remain in identifying key therapeutic targets and understanding the molecular mechanisms that underlie the treatment of alcoholic hepatitis and cirrhosis, such as the limited discovery of effective therapeutic targets and treatments. Here, we downloaded ALD microarray data from Gene Expression Omnibus and used bioinformatics to compare and identify the hub genes involved in the progression of alcoholic fatty liver to alcoholic hepatitis and cirrhosis. We also predicted target miRNAs and long non-coding RNAs (lncRNAs) to elucidate the regulatory mechanisms (the mRNA-miRNA-lncRNA axis) underlying this progression, thereby building a competitive endogenous RNA (ceRNA) mechanism for lncRNA, miRNA, and mRNA. This study provides a theoretical basis for the early treatment of alcoholic hepatitis and cirrhosis and identifies potential therapeutic targets.


Subject(s)
Gene Regulatory Networks , Liver Diseases, Alcoholic , MicroRNAs , RNA, Long Noncoding , Humans , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/therapy , Liver Diseases, Alcoholic/diagnosis , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Early Diagnosis , RNA, Messenger/metabolism , RNA, Messenger/genetics , Computational Biology , Disease Progression , Gene Expression Profiling , Gene Expression Regulation , RNA, Competitive Endogenous
3.
J Gynecol Oncol ; 35(4): e97, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670562

ABSTRACT

OBJECTIVE: Cervical cancer (CC) is a serious gynecologic health issue for women worldwide. Long non-coding RNA (lncRNA) has been well-documented in controlling malignant behavior of various cancer cells. The role of lncRNA STARD7-AS1 in regulating CC cell proliferation and autophagy and its possible mechanism were investigated in this work. METHODS: RNA expression and protein levels were quantified by reverse transcription quantitative polymerase chain reaction and western blotting. The location of STARD7-AS1 in CC cells was examined using subcellular fraction assays. Cell Counting Kit-8 assays and colony forming assays were performed to measure CC cell viability and proliferation. Autophagy in CC cells was evaluated using macrophage-derived chemokine (MDC) staining and transmission electron microscopy. The binding between microRNA (miR)-31-5p and STARD7-AS1 (or thioredoxin-interacting protein [TXNIP]) was determined by performing luciferase reporter, RNA pull-down or RNA immunoprecipitation assays. RESULTS: STARD7-AS1 overexpression significantly suppressed CC cell viability and proliferation while notably inducing autophagy. STARD7-AS1 upregulated TXNIP expression via interaction with miR-31-5p. In addition, the effects of STARD7-AS1 on CC cell proliferation and autophagy were reversed by TXNIP silencing. The suppressive effect of STARD7-AS1 overexpression on phosphorylated levels of mTOR and S6K1 was countervailed by TXNIP deficiency. CONCLUSION: In conclusion, lncRNA STARD7-AS1 inhibits CC cell proliferation and promotes cell autophagy by targeting the miR-31-5p/TXNIP axis to inactivate the mTOR signaling.


Subject(s)
Autophagy , Carrier Proteins , Cell Proliferation , MicroRNAs , RNA, Long Noncoding , Signal Transduction , TOR Serine-Threonine Kinases , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Female , MicroRNAs/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Autophagy/genetics , Cell Proliferation/genetics , TOR Serine-Threonine Kinases/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
4.
World J Gastrointest Oncol ; 16(4): 1514-1531, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660664

ABSTRACT

BACKGROUND: Competitive endogenous RNA (ceRNA) is an innovative way of gene expression modulation, which plays a crucial part in neoplasia. However, the intricacy and behavioral characteristics of the ceRNA network in hepatocellular carcinoma (HCC) remain dismal. AIM: To establish a cyclin dependent kinase inhibitor 2A (CDKN2A)-related ceRNA network and recognize potential prognostic indicators for HCC. METHODS: The mutation landscape of CDKN2A in HCC was first explored using the cBioPortal database. Differential expression analysis was implemented between CDKN2Ahigh and CDKN2Alow expression HCC samples. The targeted microRNAs were predicted by lncBasev3.0, and the targeted mRNAs were predicted by miRDB, and Targetscan database. The univariate and multivariate analysis were utilized to identify independent prognostic indicators. RESULTS: CDKN2A was frequently mutated and deleted in HCC. The single-cell RNA-sequencing analysis revealed that CDKN2A participated in cell cycle pathways. The CDKN2A-related ceRNA network-growth arrest specific 5 (GAS5)/miR-25-3p/SRY-box transcription factor 11 (SOX11) was successfully established. GAS5 was recognized as an independent prognostic biomarker, whose overexpression was correlated with a poor prognosis in HCC patients. The association between GAS5 expression and methylation, immune infiltration was explored. Besides, traditional Chinese medicine effective components targeting GAS5 were obtained. CONCLUSION: This CDKN2A-related ceRNA network provides innovative insights into the molecular mechanism of HCC formation and progression. Moreover, GAS5 might be a significant prognostic biomarker and therapeutic target in HCC.

5.
Heliyon ; 10(8): e29344, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681584

ABSTRACT

Several types of non-coding RNAs such as circRNAs, lncRNAs, and miRNAs have been identified to regulate mRNAs through the mechanism known as the competitive endogenous RNA (ceRNA) network. To explore the role of the ceRNA regulatory network in the immune microenvironment of bladder cancer, whole-transcriptome sequencing of bladder tumor and its peritumoral tissues from 38 bladder cancer patients, with a total of 63 samples, was performed to screen differentially expressed circ-, lnc-, mi-, and mRNAs to construct a circ/lnc-mi-mRNA regulatory network with pruning algorithms. We excavated a key immune-related gene BDNF to build the final ceRNA network as hsa-miR-107 sponged by hsa-circ-000211, AC108488.1, and LINC00163. Finally, a meta-analysis of 7 public datasets demonstrated that low expression of BDNF and high expression of hsa-miR-107 were associated with longer survival. Our study identified a ceRNA regulatory network as a potentially new prognostic marker and molecular therapeutic target of bladder cancer.

6.
J Cell Mol Med ; 28(7): e18197, 2024 04.
Article in English | MEDLINE | ID: mdl-38506091

ABSTRACT

Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Circular/genetics , RNA, Circular/therapeutic use , RNA, Competitive Endogenous , Drug Resistance, Neoplasm/genetics , MicroRNAs/genetics , MicroRNAs/therapeutic use , RNA, Untranslated/genetics , RNA, Messenger/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
7.
Front Oncol ; 14: 1337579, 2024.
Article in English | MEDLINE | ID: mdl-38505593

ABSTRACT

Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related deaths of females worldwide. It is a complex and molecularly heterogeneous disease, with various subtypes that require different treatment strategies. Despite advances in high-resolution single-cell and multinomial technologies, distant metastasis and therapeutic resistance remain major challenges for BC treatment. Long non-coding RNAs (lncRNAs) are non-coding RNAs with more than 200 nucleotides in length. They act as competing endogenous RNAs (ceRNAs) to regulate post-transcriptional gene stability and modulate protein-protein, protein-DNA, and protein-RNA interactions to regulate various biological processes. Emerging evidence suggests that lncRNAs play essential roles in human cancers, including BC. In this review, we focus on the roles and mechanisms of lncRNAs in BC progression, metastasis, and treatment resistance, and discuss their potential value as therapeutic targets. Specifically, we summarize how lncRNAs are involved in the initiation and progression of BC, as well as their roles in metastasis and the development of therapeutic resistance. We also recapitulate the potential of lncRNAs as diagnostic biomarkers and discuss their potential use in personalized medicine. Finally, we provide lncRNA-based strategies to promote the prognosis of breast cancer patients in clinical settings, including the development of novel lncRNA-targeted therapies.

8.
J Gastrointest Oncol ; 15(1): 220-236, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38482222

ABSTRACT

Background: Colorectal cancer is one of the top five malignant tumors in the world in terms of morbidity and mortality. Numerous long non-coding RNAs (lncRNAs) are specifically expressed in tumours and can affect various types of human cancer by participating in competitive endogenous RNA (ceRNA) regulatory networks. However, the specific mechanisms and complex networks of ceRNA regulatory patterns in colon adenocarcinoma (COAD) remain unclear. Methods: Using The Cancer Genome Atlas (TCGA) database, we identified the differentially expressed lncRNA, microRNA (miRNA), and messenger RNA (mRNA) between colon cancer and normal tissues, as well as between groups with high and low CEACAM5 expression. Then, we constructed CEACAM5-related ceRNA networks, established the key lncRNA-miRNA-mRNA regulatory axis, and explored the biological mechanisms of this axis and its clinical significance in colon cancer from multiomic aspects. Results: We constructed a ceRNA network of 18 lncRNAs, 177 miRNAs, and 25 mRNAs associated with CEACAM5 and finally established the key LCMT1-AS2/miR-454-3p/ribosomal protein S6 kinase A5 (RPS6KA5) axis associated with overall survival. Subsequent investigations have indicated that this regulatory axis could potentially participate in the progression of COAD and exert influence on the therapeutic outcomes of chemotherapy and immunotherapy. It may be involved in the PI3K-Akt signaling pathway and may modify the tumor immune microenvironment and influence the course of COAD. Additionally, it may be related to ferroptosis, N6-methyladenosine (m6A) methylation, and tumor stemness and interfere with the sensitivity of tumor cells to 5-fluorouracil and immunotherapy. Conclusions: The LCMT1-AS2/RPS6KA5 axis may be instrumental in tumor progression, potentially acting as a prognostic biomarker and therapeutic target.

9.
Transl Cancer Res ; 13(2): 594-612, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38482448

ABSTRACT

Background: Recent studies have reported a role of protein phosphatase 4 regulatory subunit 1 (PPP4R1) in cancer development. However, its expression, diagnostic significance, prognostic value and biological function in liver hepatocellular carcinoma (LIHC) are not known. Methods: The expression level of PPP4R1 in pan-cancer was evaluated by analyzing publicly accessible data from the University of California Santa Cruz (UCSC) Xena database. The diagnostic value of PPP4R1 for tumors was assessed using receiver operating characteristic (ROC) curves, whereas the impact of PPP4R1 on tumor prognosis was determined using Kaplan-Meier survival curves, and a prognostic model for LIHC was established using cox regression analysis. In addition, analysis of the correlation between PPP4R1 and anti-cancer drugs using Spearman's correlation coefficient was carried out. Four databases, miRWalk (mRNA-miRNA interactions), MicroT-CDS (mRNA-miRNA interactions), LncBase (miRNA-lncRNA interactions) and Encyclopedia of RNA Interactomes (ENCORI), were used to predict the competitive endogenous RNA (ceRNA) regulatory network of PPP4R1. Finally, the expression of PPP4R1 protein levels was verified using experiments. Results: The findings indicated that the PPP4R1 expression level in cancerous tissues was notably greater than in adjacent tissues (P<0.05). PPP4R1 showed diagnostic significance for 14 tumors based on the ROC curves results area under the curve >0.7. Furthermore, the Kaplan-Meier survival plots demonstrated that PPP4R1 exhibited prognostic significance for all five tumors (P<0.05). According to the cox regression analysis, LIHC patients' prognosis was independently influenced by pathological stage, M stage, and PPP4R1 (P<0.05). The drug sensitivity analysis revealed a positive correlation between the expression level of PPP4R1 and the half maximal inhibitory concentration (IC50) of fludarabine. Additionally, the ceRNA network prediction indicated that the FGD5 antisense RNA 1 (FGD5-AS1)-hsa-miR-22-3p-PPP4R1 ceRNA network could potentially contribute to the progression of LIHC. The experimental results showed that the expression level of PPP4R1 protein was higher in cancer tissues than in paracancerous tissues. Conclusions: PPP4R1 has diagnostic value in most cancers, and high expression of PPP4R1 is associated with poor prognosis, drug resistance and natural killer cell-mediated toxicity, particularly in LIHC. Therefore, PPP4R1 may be a prognostic biomarker and a potential target for immunotherapy in LIHC.

10.
Front Endocrinol (Lausanne) ; 15: 1338889, 2024.
Article in English | MEDLINE | ID: mdl-38469144

ABSTRACT

Background: Nonalcoholic steatohepatitis (NASH) is the advanced stage of nonalcoholic fatty liver disease (NAFLD), one of the most prevalent chronic liver diseases. The effectiveness of bariatric surgery in treating NASH and preventing or even reversing liver fibrosis has been demonstrated in numerous clinical studies, but the underlying mechanisms and crucial variables remain unknown. Methods: Using the GSE135251 dataset, we examined the gene expression levels of NASH and healthy livers. Then, the differentially expressed genes (DEGs) of patients with NASH, at baseline and one year after bariatric surgery, were identified in GSE83452. We overlapped the hub genes performed by protein-protein interaction (PPI) networks and DEGs with different expression trends in both datasets to obtain key genes. Genomic enrichment analysis (GSEA) and genomic variation analysis (GSVA) were performed to search for signaling pathways of key genes. Meanwhile, key molecules that regulate the key genes are found through the construction of the ceRNA network. NASH mice were induced by a high-fat diet (HFD) and underwent sleeve gastrectomy (SG). We then cross-linked the DEGs in clinical and animal samples using quantitative polymerase chain reaction (qPCR) and validated the key genes. Results: Seven key genes (FASN, SCD, CD68, HMGCS1, SQLE, CXCL10, IGF1) with different expression trends in GSE135251 and GSE83452 were obtained with the top 30 hub genes selected by PPI. The expression of seven key genes in mice after SG was validated by qPCR. Combined with the qPCR results from NASH mice, the four genes FASN, SCD, HMGCS1, and CXCL10 are consistent with the biological analysis. The GSEA results showed that the 'cholesterol homeostasis' pathway was enriched in the FASN, SCD, HMGCS1, and SQLE high-expression groups. The high-expression groups of CD68 and CXCL10 were extremely enriched in inflammation-related pathways. The construction of the ceRNA network obtained microRNAs and ceRNAs that can regulate seven key genes expression. Conclusion: In summary, this study contributes to our understanding of the mechanisms by which bariatric surgery improves NASH, and to the development of potential biomarkers for the treatment of NASH.


Subject(s)
Bariatric Surgery , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/surgery , MicroRNAs/genetics , Protein Interaction Maps
11.
J Cancer ; 15(7): 1916-1928, 2024.
Article in English | MEDLINE | ID: mdl-38434987

ABSTRACT

Background: Accumulating evidence indicates that non-coding RNAs (ncRNA), including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), can function as competitive endogenous RNAs (ceRNAs) by binding to microRNAs (miRNAs) and regulating host gene expression at the transcriptional or post-transcriptional level. Dysregulation in ceRNA network regulation has been implicated in the occurrence and development of cancer. However, the lncRNA/circRNA-miRNA-mRNA regulatory network is still lacking in nasopharyngeal carcinoma (NPC). Methods: Differentially expressed genes (DEGs) were obtained from our previous sequencing data and Gene Expression Omnibus (GEO). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) were used to explore the biological functions of these common DEGs. Through a series of bioinformatic analyses, the lncRNA/circRNA-miRNA-mRNA network was established. In additional, the external data GSE102349 was used to test the prognostic value of the hub mRNAs through the Kaplan-Meier method. Results: We successfully constructed a lncRNA/circRNA-miRNA-mRNA network in NPC, consisting of 16 lncRNAs, 6 miRNAs, 3 circRNAs and 10 mRNAs and found that three genes (TOP2A, ZWINT, TTK) were significantly associated with overall survival time (OS) in patients. Conclusion: The regulatory network revealed in this study may help comprehensively elucidate the ceRNA mechanisms driving NPC, and provide novel candidate biomarkers for evaluating the prognosis of NPC.

12.
Adv Clin Exp Med ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315381

ABSTRACT

BACKGROUND: Aberrant circular RNA (circRNA) acts as an oncogene or suppressor during neoplasm initiation and development. However, the functions of most circRNAs in osteosarcoma (OS) remain unclear. OBJECTIVES: We aimed to investigate the expression, molecular functions and mechanisms underlying circRNAs in OS. MATERIAL AND METHODS: Network interaction, pathway enrichment and regression analyses were performed to determine differentially expressed (DE) circRNAs, microRNAs (miRNAs) and messenger RNAs (mRNAs). We constructed competitive endogenous RcodeNA (ceRNA) networks and integrated patient clinical data to analyze the relationship between the networks and prognosis. The circRNA, miRNA and mRNA data were retrieved from Gene Expression Omnibus (GEO) microarray datasets. A circRNA-miRNA-mRNA interaction network was established and visualized using miRNet. Protein interactions were investigated using STRING and Cytoscape, and hub genes were identified using the MCODE plug-in. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway analyses were performed to determine the DEmRNAs. LIMMA and RobustRankAggreg were used to screen for DERNAs. Node genes in the interaction network were analyzed using least absolute shrinkage and selection operator (LASSO) and Cox regression to obtain OS-related ceRNA networks. RESULTS: We identified 9 DEcircRNAs, 243 DEmiRNAs and 211 DEmRNAs. We found that a ceRNA subnetwork, based on 1 circRNA, 1 miRNA and 8 mRNAs, was closely associated with OS prognosis. Integrating the proportional hazards model and survival analysis revealed 3 independent protective factors: adenosine triphosphate (ATP)-binding cassette sub-family A member 8 (ABCA8), catalase (CAT) and C-X-C motif chemokine ligand 12 (CXCL12). CONCLUSIONS: Our study provides novel insights into circRNA-related ceRNA networks and identifies potential prognostic biomarkers of OS.

13.
Heliyon ; 10(1): e23672, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226266

ABSTRACT

Objective: Postmenopausal osteoporosis (PMOP) is a common systemic metabolic bone disorder that is owing to the reduced estrogen secretion and imbalance of bone absorption and bone formation in postmenopausal women. Ferroptosis has been identified as a novel modulatory mechanism of osteoporosis. Nevertheless, the particular modulatory mechanism between ferroptosis and PMOP is still unclear. The objective of the current investigation was to detect potential biomarkers connected to ferroptosis in PMOP and discover its probable mechanism through bioinformatics. Methods: We downloaded PMOP-related microarray datasets from the database of Gene Expression Omnibus (GEO) and obtained the differentially expressed genes (DEGs). Utilizing bioinformatics analysis, the DEGs were intersected with the ferroptosis dataset to obtain ferroptosis-connected mRNAs. Enrichment analysis employing KOBAS 3.0 was conducted to comprehend the biological functions and enrichment pathways of the DEGs. The generation of the protein-protein interaction (PPI) network was conducted with the aim of identifying central genes. Lastly, the coexpression and competitive endogenous RNA (ceRNA) networks were built using Cytoscape. With the help of external datasets GSE56815 to verify the reliability of the hub genes by plotting ROC curves. Results: We identified 178 DE microRNAs (miRNAs), 138 DE circular RNAs (circRNAs), and 86 ferroptosis-related mRNAs. Enrichment analysis exhibited that mRNAs were primarily connected with the signaling pathways of PI3K/Akt, metabolism, mTOR, FoxO, HIF-1, AMPK, MAPK, ferroptosis, VEGF, and NOD-like receptors. Generation of the PPI network detected eight hub genes. The circRNA/miR-23b-3p/PTEN axis may relieve PMOP by inhibiting ferroptosis through targeting the pathway of PI3K/Akt signaling, which is a vital modulatory pathway for PMOP progression. Moreover, the ROC curves ultimately indicates that the four hub genes have greater diagnostic importance in PMOP samples in contrast to the normal group samples, which may be possible markers for PMOP diagnosis. Conclusions: Bioinformatics analysis identified four hub genes, namely, PTEN, SIRT1, VEGFA, and KRAS, as potential biomarkers for PMOP diagnosis and management. Moreover, the circRNA/miR-23b-3p/PTEN axis may relieve PMOP by suppressing ferroptosis through targeting the pathway of PI3K/Akt signaling, providing a new avenue to explore the pathogenesis of PMOP.

14.
J Assist Reprod Genet ; 41(1): 15-29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847421

ABSTRACT

Primary ovarian insufficiency (POI) is a common condition leading to the pathological decline of ovarian function in women of reproductive age, resulting in amenorrhea, hypogonadism, and infertility. Biochemical premature ovarian insufficiency (bPOI) is an intermediate stage in the pathogenesis of POI in which the fertility of patients has been reduced. Previous studies suggest that granulosa cells (GCs) play an essential role in the pathogenesis of POI, but their pathogenetic mechanisms remain unclear. To further explore the potential pathophysiological mechanisms of GCs in POI, we constructed a molecular long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network using GC expression data collected from biochemical premature ovarian failure (bPOI) patients in the GEO database. We discovered that the GCs of bPOI patients had differential expression of 131 mRNAs, 191 lncRNAs, and 28 miRNAs. By systematic network analysis, we identified six key genes, including SRSF1, PDIA5, NEURL1B, UNK, CELF2, and CFL2, and five hub miRNAs, namely hsa-miR-27a-3p, hsa-miR-24-3p, hsa-miR-22-3p, hsa-miR-129-5p, and hsa-miR-17-5p, and the results suggest that the expression of these key genes may be regulated by two hub miRNAs, hsa-miR-27a-3p and hsa-miR-17-5p. Additionally, a POI model in vitro was created to confirm the expression of a few important genes. In this study, we discovered a unique lncRNA-miRNA-mRNA network based on the ceRNA mechanism in bPOI for the first time, and we screened important associated molecules, providing a partial theoretical foundation to better understand the pathogenesis of POI.


Subject(s)
MicroRNAs , Primary Ovarian Insufficiency , RNA, Long Noncoding , Humans , Female , RNA, Long Noncoding/genetics , Primary Ovarian Insufficiency/genetics , RNA, Competitive Endogenous , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Granulosa Cells/metabolism , Gene Regulatory Networks/genetics , CELF Proteins/genetics , Nerve Tissue Proteins/genetics , Serine-Arginine Splicing Factors/genetics
15.
Organ Transplantation ; (6): 70-81, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005236

ABSTRACT

Objective To analyze the core genes of lung ischemia-reperfusion injury and construct a competitive endogenous RNA (ceRNA) network. Methods Original data of GSE145989 were downloaded from the Gene Expression Omnibus (GEO) database as the training set, and the GSE172222 and GSE9634 datasets were used as the validation sets, and the differentially-expressed genes (DEG) were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Protein-protein interaction (PPI) network was constructed, and the core genes were screened, and the diagnostic values of these core genes and the immune infiltration levels of immune cells were evaluated. The ceRNA network was constructed and validated. The targeted drugs based on ceRNA network were assessed. Results A total of 179 DEG were identified, including 61 down-regulated and 118 up-regulated genes. GO analysis showed that DEGs were associated with multiple biological processes, such as cell migration, differentiation and regulation, etc. They were correlated with cell components, such as vesicle membrane, serosa and membrane raft, etc. They were also associated with multiple molecular functions, such as chemokine receptor, G protein-coupled receptor, immune receptor activity and antigen binding, etc. KEGG pathway enrichment analysis revealed that DEG were involved in tumor necrosis factor (TNF), Wnt, interleukin (IL)-17 and nuclear factor (NF)-κB signaling pathways, etc. PPI network suggested that CD8A, IL2RG, STAT1, CD3G and SYK were the core genes of lung ischemia-reperfusion injury. The ceRNA network prompted that miR-146a-3p, miR-28-5p and miR-593-3p were related to the expression level of CD3G. The miR-149-3p, miR-342-5p, miR-873-5p and miR-491-5p were correlated with the expression level of IL-2RG. The miR-194-3p, miR-512-3p, miR-377-3p and miR-590-3p were associated with the expression level of SYK. The miR-590-3p and miR-875-3p were related to the expression level of CD8A. The miR-143-5p, miR-1231, miR-590-3p and miR-875-3p were associated with the expression level of STAT1. There were 13 targeted drugs for CD3G, 4 targeted drugs for IL-2RG, 28 targeted drugs for SYK and 3 targeted drugs for lncRNA MUC2. No targeted drugs were identified for CD8A, STAT1 and other ceRNA network genes. Conclusions CD8A, IL2RG, STAT1, CD3G and SYK are the core genes of lung ischemia-reperfusion injury. The research and analysis of these core genes probably contribute to the diagnosis of lung ischemia-reperfusion injury and providing novel research ideas and therapeutic targets.

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003411

ABSTRACT

ObjectiveTo explore the mechanism of Bushen Huoxue enema in treating the rat model of kidney deficiency and blood stasis-thin endometrium (KDBS-TE) by transcriptome sequencing. MethodThe rat model of KDBS-TE was established by administration of tripterygium polyglycosides tablets combined with subcutaneous injection of adrenaline. The pathological changes of rat endometrium in each group were then observed. Three uterine tissue specimens from each of the blank group, model group, and Bushen Huoxue enema group were randomly selected for transcriptome sequencing. The differentially expressed circRNAs, lncRNAs, and miRNAs were screened, and the disease-related specific competitive endogenous RNA (ceRNA) regulatory network was constructed. Furthermore, the gene ontology (GO) functional annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed for the mRNAs in the network. ResultCompared with the blank group, the model group showed endometrial dysplasia, decreased endometrial thickness and endometrial/total uterine wall thickness ratio (P<0.01), and differential expression of 18 circRNAs, 410 lncRNAs, and 7 miRNAs. Compared with the model group, the enema and estradiol valerate groups showed improved endometrial morphology and increased endometrial thickness and ratio of endometrial to total uterine wall thickness (P<0.05). In addition, 21 circRNAs, 518 lncRNAs, and 17 miRNAs were differentially expressed in the enema group. The disease-related specific circRNA-miRNA-mRNA regulatory network composed of 629 nodes and 664 edges contained 2 circRNAs, 34 miRNAs, and 593 mRNAs. The lncRNA-miRNA-mRNA regulatory network composed of 180 nodes and 212 edges contained 5 lncRNAs, 10 miRNAs, and 164 mRNAs. The mNRAs were mainly enriched in Hippo signaling pathway, autophagy-animal, axon guidance, etc. ConclusionBushen Huoxue enema can treat KDBS-TE in rats by regulating specific circRNAs, lncRNAs, and miRNAs in the uterus and the ceRNA network.

17.
Curr Issues Mol Biol ; 45(12): 9549-9565, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38132443

ABSTRACT

Colorectal cancer (CRC) represents the second deadliest malignancy worldwide. Around 75% of CRC patients exhibit high levels of chromosome instability that result in the accumulation of somatic copy number alterations. These alterations are associated with the amplification of oncogenes and deletion of tumor-ppressor genes and contribute to the tumoral phenotype in different malignancies. Even though this relationship is well known, much remains to be investigated regarding the effect of said alterations in long non-coding RNAs (lncRNAs) and, in turn, the impact these alterations have on the tumor phenotype. The present study aimed to evaluate the role of differentially expressed lncRNAs coded in regions with copy number alterations in colorectal cancer patient samples. We downloaded RNA-seq files of the Colorectal Adenocarcinoma Project from the The Cancer Genome Atlas (TCGA) repository (285 sequenced tumor tissues and 41 non-tumor tissues), evaluated differential expression, and mapped them over genome sequencing data with regions presenting copy number alterations. We obtained 78 differentially expressed (LFC > 1|< -1, padj < 0.05) lncRNAs, 410 miRNAs, and 5028 mRNAs and constructed a competing endogenous RNA (ceRNA) network, predicting significant lncRNA-miRNA-mRNA interactions. Said network consisted of 30 lncRNAs, 19 miRNAs, and 77 mRNAs. To understand the role that our ceRNA network played, we performed KEGG and GO analysis and found several oncogenic and anti-oncogenic processes enriched by the molecular players in our network. Finally, to evaluate the clinical relevance of the lncRNA expression, we performed survival analysis and found that C5orf64, HOTAIR, and RRN3P3 correlated with overall patient survival. Our results showed that lncRNAs coded in regions affected by SCNAs form a complex gene regulatory network in CCR.

18.
Brief Funct Genomics ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37941447

ABSTRACT

Our understanding of RNA biology has evolved with recent advances in research from it being a non-functional product to molecules of the genome with specific regulatory functions. Competitive endogenous RNA (ceRNA), which has gained prominence over time as an essential part of post-transcriptional regulatory mechanism, is one such example. The ceRNA biology hypothesis states that coding RNA and non-coding RNA co-regulate each other using microRNA (miRNA) response elements. The ceRNA components include long non-coding RNAs, pseudogene and circular RNAs that exert their effect by interacting with miRNA and regulate the expression level of its target genes. Emerging evidence has revealed that the dysregulation of the ceRNA network is attributed to the pathogenesis of various cancers, including the head and neck squamous cell carcinoma (HNSCC). This is the most prevalent cancer developed from the mucosal epithelium in the lip, oral cavity, larynx and pharynx. Although many efforts have been made to comprehend the cause and subsequent treatment of HNSCC, the morbidity and mortality rate remains high. Hence, there is an urgent need to understand the holistic progression of HNSCC, mediated by ceRNA, that can have immense relevance in identifying novel biomarkers with a defined therapeutic intervention. In this review, we have made an effort to highlight the ceRNA biology hypothesis with a focus on its involvement in the progression of HNSCC. For the identification of such ceRNAs, we have additionally highlighted a number of databases and tools.

19.
Clin Biochem ; 121-122: 110657, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793583

ABSTRACT

BACKGROUND: Numerous studies have reported the vital roles of circular RNA (circRNA)-based competitive endogenous RNA (ceRNA) regulatory networks in cancers. Here, we established a non-small-cell lung cancer (NSCLC)-related circRNA-miRNA-mRNA axis and estimated its diagnostic value in NSCLC. METHODS: The circ_0061235-miR-3180-5p-PPM1L axis was constructed by small RNA deep sequencing, bioinformatics databases, and preliminary testing. The serum levels of the selected circ_0061235, miR-3180-5p, and PPM1L were quantified using quantitative polymerase chain reaction. Receiver operating characteristic analyses were conducted to evaluate the diagnostic power. RESULTS: The levels of circ_0061235, miR-3180-5p, and PPM1L showed close correlations according to the ceRNA regulation rule. They were significantly dysregulated in NSCLC and showed the diagnostic ability to discriminate between healthy and NSCLC, and remarkably, between benign lung tumors and NSCLC. Additionally, the down-regulated levels of hsa_circ_0061235, the up-regulated levels of miR-3180-5p, and the decreased levels of PPM1L were correlated to more aggressive features of NSCLC, such as lymph node metastasis, distant metastasis, and higher stages. Intriguingly, compared to the single circ_0061235, miR-3180-5p, PPM1L, and traditional tumor markers, the diverse combinations of circ_0061235, miR-3180-5p, and PPM1L showed much higher sensitivity and specificity to differentiate greater or lesser severity of NSCLC. GO annotation and KEGG pathway analyses revealed the underlying role of the circ_0061235-miR-3180-5p-PPM1L axis in NSCLC. CONCLUSIONS: We established a specific circRNA-miRNA-mRNA network with higher sensitivity and specificity to diagnose NSCLC, particularly more aggressive NSCLC, providing a new strategy for further developing tumor biomarkers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , RNA, Circular , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , MicroRNAs/genetics , Biomarkers, Tumor/genetics , RNA, Messenger/genetics , Cell Proliferation
20.
Article in English | MEDLINE | ID: mdl-37855355

ABSTRACT

BACKGROUND: Gout is a common inflammatory arthritis, which is mainly caused by the deposition of monosodium urate (MSU) in tissues. Transcriptomics was used to explore the pathogenesis and treatment of gout in our work. OBJECTIVE: The objective of the study was to analyze and validate potential therapeutic targets and biomarkers in THP-1 cells that were exposed to MSU. METHODS: THP-1 cells were exposed to MSU. The inflammatory effect was characterized, and RNA-Seq analysis was then carried out. The differential genes obtained by RNA-Seq were analyzed with gene expression omnibus (GEO) series 160170 (GSE160170) gout-related clinical samples in the GEO database and gout-related genes in the GeneCards database. From the three analysis approaches, the genes with significant differences were verified by the differential genes' transcription levels. The interaction relationship of long non-coding RNA (lncRNA) was proposed by ceRNA network analysis. RESULTS: MSU significantly promoted the release of IL-1ß and IL-18 in THP-1 cells, which aggravated their inflammatory effect. Through RNA-Seq, 698 differential genes were obtained, including 606 differential mRNA and 92 differential `LncRNA. Cross-analysis of the RNA-Seq differential genes, the GSE160170 differential genes, and the gout-related genes in GeneCards revealed a total of 17 genes coexisting in the tripartite data. Furthermore, seven differential genes-C-X-C motif chemokine ligand 8 (CXCL8), C-X-C motif chemokine ligand 2 (CXCL2), tumor necrosis factor (TNF), C-C motif chemokine ligand 3 (CCL3), suppressor of cytokine signaling 3 (SOCS3), oncostatin M (OSM), and MIR22 host gene (MIR22HG)-were verified as key genes that analyzed the weight of genes in pathways, the enrichment of inflammationrelated pathways, and protein-protein interaction (PPI)nodes combined with the expression of genes in RNA-Seq and GSE160170. It is suggested that MIR22HG may regulate OSM and SOCS3 through microRNA 4271 (miR-4271), OSM, and SOCS3m; CCL3 through microRNA 149-3p (miR-149-3p); and CXCL2 through microRNA 4652-3p (miR-4652-3p). CONCLUSION: The potential of CXCL8, CXCL2, TNF, CCL3, SOCS3, and OSM as gout biomarkers and MIR22HG as a therapeutic target for gout are proposed, which provide new insights into the mechanisms of gout biomarkers and therapeutic methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...