Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters











Publication year range
1.
R Soc Open Sci ; 11(7): 240154, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39170929

ABSTRACT

Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.

2.
J Hered ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114995

ABSTRACT

Pathogen species are experiencing strong joint demographic and selective events, especially when they adapt to a new host, for example through overcoming plant resistance. Stochasticity in the founding event and the associated demographic variations hinder our understanding of the expected evolutionary trajectories and the genetic structure emerging at both neutral and selected loci. What would be the typical genetic signatures of such a rapid adaptation event is not elucidated. Here, we build a demogenetic model to monitor pathogen population dynamics and genetic evolution on two host compartments (susceptible and resistant). We design our model to fit two plant pathogen life cycles, 'with' and 'without' host alternation. Our aim is to draw a typology of eco-evolutionary dynamics. Using time-series clustering, we identify three main scenarios: 1) small variations in the pathogen population size and small changes in genetic structure, 2) a strong founder event on the resistant host that in turn leads to the emergence of genetic structure on the susceptible host, and 3) evolutionary rescue that results in a strong founder event on the resistant host, preceded by a bot- tleneck on the susceptible host. We pinpoint differences between life cycles with notably more evolutionary rescue 'with' host alternation. Beyond the selective event itself, the demographic trajectory imposes specific changes in the genetic structure of the pathogen population. Most of these genetic changes are transient, with a signature of resistance overcoming that vanishes within a few years only. Considering time-series is therefore of utmost importance to accurately decipher pathogen evolution.

3.
Evol Appl ; 17(6): e13711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894979

ABSTRACT

Climate change poses a particular threat to long-lived trees, which may not adapt or migrate fast enough to keep up with rising temperatures. Assisted gene flow could facilitate adaptation of populations to future climates by using managed translocation of seeds from a warmer location (provenance) within the current range of a species. Finding the provenance that will perform best in terms of survival or growth is complicated by a trade-off. Because trees face a rapidly changing climate during their long lives, the alleles that confer optimal performance may vary across their lifespan. For instance, trees from warmer provenances could be well adapted as adults but suffer from colder temperatures while juvenile. Here we use a stage-structured model, using both analytical predictions and numerical simulations, to determine which provenance would maximize the survival of a cohort of long-lived trees in a changing climate. We parameterize our simulations using empirically estimated demographic transition matrices for 20 long-lived tree species. Unable to find reliable quantitative estimates of how climatic tolerance changes across stages in these same species, we varied this parameter to study its effect. Both our mathematical model and simulations predict that the best provenance depends strongly on how fast the climate changes and also how climatic tolerance varies across the lifespan of a tree. We thus call for increased empirical efforts to measure how climate tolerance changes over life in long-lived species, as our model suggests that it should strongly influence the best provenance for assisted gene flow.

4.
Animals (Basel) ; 14(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791625

ABSTRACT

Phenotypic traits can evolve independently at different stages of ontogeny, optimizing adaptation to distinct ecological contexts and increasing morphological diversity in species with complex life cycles. Given the relative independence resulting from the profound changes induced by metamorphosis, niche occupation and resource utilization in tadpoles may prompt evolutionary responses that do not necessarily affect the adults. Consequently, diversity patterns observed in the larval shape may not necessarily correspond to those found in the adult shape for the same species, a premise that can be tested through the Adaptive Decoupling Hypothesis (ADH). Herein, we investigate the ADH for larval and adult shape differentiation in Neoaustrarana frogs. Neoaustrarana frogs, particularly within the Cycloramphidae family, exhibit remarkable diversity in tadpole morphology, making them an ideal model for studying adaptive decoupling. By analyzing 83 representative species across four families (Alsodidae, Batrachylidae, Cycloramphidae, and Hylodidae), we generate a morphological dataset for both larval and adult forms. We found a low correlation between larval and adult shapes, species with a highly distinct larval shape having relatively similar shape when adults. Larval morphological disparity is not a good predictor for adult morphological disparity within the group, with distinct patterns observed among families. Differences between families are notable in other aspects as well, such as the role of allometric components influencing shape and morphospace occupancy. The larval shape has higher phylogenetic structure than the adult. Evolutionary convergence emerges as a mechanism of diversification for both larval and adult shapes in the early evolution of neoaustraranans, with shape disparity of tadpoles reaching stable levels since the Oligocene. The widest occupation in morphospace involves families associated with dynamically changing environments over geological time. Our findings support the ADH driving phenotypic diversity in Neoaustrarana, underscoring the importance of considering ontogenetic stages in evolutionary studies.

5.
Am Nat ; 203(5): E175-E187, 2024 May.
Article in English | MEDLINE | ID: mdl-38635365

ABSTRACT

AbstractWe lack a strong understanding of how organisms with complex life histories respond to climate variation. Many stream-associated species have multistage life histories that are likely to influence the demographic consequences of floods and droughts. However, tracking stage-specific demographic responses requires high-resolution, long-term data that are rare. We used 8 years of capture-recapture data for the headwater stream salamander Gyrinophilus porphyriticus to quantify the effects of flooding and drying magnitude on stage-specific vital rates and population growth. Drying reduced larval recruitment but increased the probability of metamorphosis (i.e., adult recruitment). Flooding reduced adult recruitment but had no effect on larval recruitment. Larval and adult survival declined with flooding but were unaffected by drying. Annual population growth rates (λ) declined with flooding and drying. Lambda also declined over the study period (2012-2021), although mean λ was 1.0 over this period. Our results indicate that G. porphyriticus populations are resilient to hydrologic variation because of compensatory effects on recruitment of larvae versus adults (i.e., reproduction vs. metamorphosis). Complex life cycles may enable this resilience to climate variation by creating opportunities for compensatory demographic responses across stages. However, more frequent and intense hydrologic variation in the latter half of this study contributed to a decline in λ over time, suggesting that increasing environmental variability poses a threat even when demographic compensation occurs.


Subject(s)
Ecosystem , Urodela , Animals , Climate , Population Growth , Metamorphosis, Biological , Larva , Population Dynamics
6.
Ecol Evol ; 14(3): e11086, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469047

ABSTRACT

Hybridization among related species is now recognized as common but it remains unclear how hybrid zones persist for prolonged periods. Here, we test the hypothesis that selection in different components of the life cycle may stabilize a hybrid zone. A hybrid zone occurs in southwest England between the marine mussels Mytilus edulis and M. galloprovincialis. Previous studies have found strong directional selection against alleles from M. edulis occurs among hybrids in the adult stage. Traditional hybrid zone models argue that alleles that are selected within the hybrid zone are replaced by migration from neighboring parental population into the hybrid zone. In this system, however, migration occurs out of this hybrid zone into neighboring parental populations. This hybrid zone should therefore be unstable and dissipate, yet this zone has persisted for more than 30 years. We tested and rejected the hypothesis that differences in fecundity may select for M. edulis alleles within this hybrid zone and thus counter the selection observed against these alleles among adults. We also tested the hypothesis that selection during the larval stage may counter selection against M. edulis alleles in the adult stage. We found that selection favors M. edulis alleles during the veliger stage of larval development. The direction and strength of selection during the larval stage are sufficient to counter strong selection during the adult portion of the life cycle. This hybrid zone is stabilized by opposing forms of directional selection operating in different portions of the life cycle.

7.
Proc Biol Sci ; 290(2010): 20231784, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37935368

ABSTRACT

Why is metamorphosis so pervasive? Does it facilitate the independent (micro)evolution of quantitative traits in distinct life stages, similarly to how it enables some limbs and organs to develop at specific life stages? We tested this hypothesis by measuring the expression of 6400 genes in 41 Drosophila melanogaster inbred lines at larval and adult stages. Only 30% of the genes showed significant genetic correlations between larval and adult expression. By contrast, 46% of the traits showed some level of genetic independence between stages. Gene ontology terms enrichment revealed that across stages correlated traits were often involved in proteins synthesis, insecticide resistance and innate immunity, while a vast number of genes expression traits associated with energy metabolism were independent between life stages. We compared our results to a similar case: genetic constraints between males and females in gonochoric species (i.e. sexual antagonism). We expected selection for the separation between males and females to be higher than between juvenile and adult functions, as gonochorism is a more common strategy in the animal kingdom than metamorphosis. Surprisingly, we found that inter-stage constraints were lower than inter-sexual genetic constraints. Overall, our results show that metamorphosis enables a large part of the transcriptome to evolve independently at different life stages.


Subject(s)
Drosophila melanogaster , Metamorphosis, Biological , Animals , Female , Male , Drosophila melanogaster/genetics , Larva/genetics , Phenotype , Gene Expression , Selection, Genetic
8.
Palliat Care Soc Pract ; 17: 26323524231201868, 2023.
Article in English | MEDLINE | ID: mdl-37790797

ABSTRACT

Medical advances have increased the number of children living with life-threatening/life-limiting illnesses worldwide, including in Gulf Cooperation Council (GCC) countries. Pediatric palliative care (PPC) is a relatively young subspecialty that cares for children with life-threatening/life-limiting illnesses and their families. PPC aims to alleviate physical, psychological, and social distress in children with life-threatening/life-limiting illnesses and their families and improve their quality of life. PPC is an essential service that should be implemented in all nations, as it is a human right. Moreover, a core value of PPC services is to alleviate children's suffering, irrespective of cure availability. Hence, the global consensus on palliative services must be universal and include developing countries with limited resources. While PPC services are growing internationally, the GCC countries have yet to implement these valuable services in the region. This work aims to define the local base information important to facilitating the PPC program. We explored and identified the information vital for establishing a successful program, which was then categorized and mapped into subgroups. In doing so, we outline a roadmap to facilitate the smooth introduction of PPC in GCC countries to benefit the lives of children with life-limiting illnesses.

9.
Conserv Physiol ; 11(1): coad062, 2023.
Article in English | MEDLINE | ID: mdl-37588621

ABSTRACT

To predict the impacts of environmental change on species, we must first understand the factors that limit the present-day ranges of species. Most anuran amphibians cannot survive at elevated salinities, which may drive their distribution in coastal locations. Previous research showed that coastal Hyla cinerea are locally adapted to brackish habitats in North Carolina, USA. Although Hyla squirella and Hyla chrysoscelis both inhabit coastal wetlands nearby, they have not been observed in saline habitats. We take advantage of naturally occurring microgeographic variation in coastal wetland occupancy exhibited by these congeneric tree frog species to explore how salt exposure affects oviposition site choice, hatching success, early tadpole survival, plasma osmolality and tadpole body condition across coastal and inland locations. We observed higher survival among coastal H. cinerea tadpoles than inland H. cinerea, which corroborates previous findings. But contrary to expectations, coastal H. cinerea had lower survival than H. squirella and H. chrysoscelis, indicating that all three species may be able to persist in saline wetlands. We also observed differences in tadpole plasma osmolality across species, locations and salinities, but these differences were not associated with survival rates in salt water. Instead, coastal occupancy may be affected by stage-specific processes like higher probability of total clutch loss as shown by inland H. chrysoscelis or maladaptive egg deposition patterns as shown by inland H. squirella. Although we expected salt water to be the primary filter driving species distributions along a coastal salinity gradient, it is likely that the factors dictating anuran ranges along the coast involve stage-, species- and location-specific processes that are mediated by ecological processes and life history traits.

10.
Biol Lett ; 19(6): 20230091, 2023 06.
Article in English | MEDLINE | ID: mdl-37282491

ABSTRACT

For parasites with complex multi-host life cycles, the facultative truncation of the cycle represents an adaptation to challenging conditions for transmission. However, why certain individuals are capable of abbreviating their life cycle while other conspecifics are not remains poorly understood. Here, we test whether conspecific trematodes that either follow the normal three-host life cycle or skip their final host by reproducing precociously (via progenesis) in an intermediate host differ in the composition of their microbiomes. Characterization of bacterial communities based on sequencing of the V4 hypervariable region of the 16S SSU rRNA gene revealed that the same bacterial taxa occur in both normal and progenetic individuals, independent of host identity and temporal variation. However, all bacterial phyla recorded in our study, and two-thirds of bacterial families, differed in abundance between the two morphs, with some achieving higher abundance in the normal morph and others in the progenetic morph. Although the evidence is purely correlative, our results reveal a weak association between microbiome differences and intraspecific plasticity in life cycle pathways. Advances in functional genomics and experimental microbiome manipulation will allow future tests of the significance of these findings.


Subject(s)
Host-Parasite Interactions , Trematoda , Humans , Animals , Life Cycle Stages , Trematoda/genetics , Adaptation, Physiological
11.
Proc Biol Sci ; 290(2000): 20222539, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37282536

ABSTRACT

Marine heatwaves are increasingly subjecting organisms to unprecedented stressful conditions, but the biological consequences of these events are still poorly understood. Here we experimentally tested the presence of carryover effects of heatwave conditions on the larval microbiome, settlers growth rate and metamorphosis duration of the temperate sponge Crella incrustans. The microbial community of adult sponges changed significantly after ten days at 21°C. There was a relative decrease in symbiotic bacteria, and an increase in stress-associated bacteria. Sponge larvae derived from control sponges were mainly characterised by a few bacterial taxa also abundant in adults, confirming the occurrence of vertical transmission. The microbial community of sponge larvae derived from heatwave-exposed sponges showed significant increase in the endosymbiotic bacteria Rubritalea marina. Settlers derived from heatwave-exposed sponges had a greater growth rate under prolonged heatwave conditions (20 days at 21°C) compared to settlers derived from control sponges exposed to the same conditions. Moreover, settler metamorphosis was significantly delayed at 21°C. These results show, for the first time, the occurrence of heatwave-induced carryover effects across life-stages in sponges and highlight the potential role of selective vertical transmission of microbes in sponge resilience to extreme thermal events.


Subject(s)
Microbiota , Porifera , Animals , Bacteria , Symbiosis , Phylogeny
12.
Int J Parasitol ; 53(5-6): 285-303, 2023 05.
Article in English | MEDLINE | ID: mdl-37001631

ABSTRACT

Parasitic helminths exhibit remarkable diversity in their life cycles, although few parasite species have their whole life cycles resolved. Owing to the fact that parasite life stages within hosts are often not comparable using morphological data, genetic data provides convincing evidence of transmission pathways between intermediate and definitive hosts. We took this approach to an ecosystem level, genetically matching parasite (acanthocephalan, cestode, nematode and trematode) life stages across a broad taxonomic range of intermediate and definitive hosts (invertebrates, seabirds, elasmobranchs and teleost fish) in Otago's (New Zealand) coastal marine ecosystem. We identified which transmission routes are utilized by the most parasite species and assessed which intermediate hosts are most important in facilitating the transmission of parasites in this ecosystem. Our findings reveal 59 new records of larval parasites infecting their respective intermediate hosts and 289 transmission pathways utilized by 35 helminth species to complete their life cycles. Sprat, triplefin and arrow squid all hosted the highest number of larval parasite species, suggesting they play important roles as intermediate hosts. We then used the new life cycle data to provide a synthetic overview of the life cycles known for various parasite groups in New Zealand. This study highlights how studying parasite life cycles can enhance our understanding of the ecology and evolution of parasites and hosts in natural systems, beyond simply resolving life cycles.


Subject(s)
Helminths , Parasites , Animals , Parasites/genetics , Ecosystem , Life Cycle Stages , Helminths/genetics , Ecology , Fishes/parasitology , Larva , Host-Parasite Interactions
13.
Ecol Evol ; 13(2): e9809, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36820248

ABSTRACT

For species with complex life histories, phenotypic correlations between life-history stages constrain both ecological and evolutionary trajectories. Studies that seek to understand correlations across the life history differ greatly in their experimental approach: some follow individuals ("individual longitudinal"), while others follow cohorts ("cohort longitudinal"). Cohort longitudinal studies risk confounding results through Simpson's Paradox, where correlations observed at the cohort level do not match that of the individual level. Individual longitudinal studies are laborious in comparison, but provide a more reliable test of correlations across life-history stages. Our understanding of the prevalence, strength, and direction of phenotypic correlations depends on the approaches that we use, but the relative representation of different approaches remains unknown. Using marine invertebrates as a model group, we used a formal, systematic literature map to screen 17,000+ papers studying complex life histories, and characterized the study type (i.e., cohort longitudinal, individual longitudinal, or single stage), as well as other factors. For 3315 experiments from 1716 articles, 67% focused on a single stage, 31% were cohort longitudinal and just 1.7% used an individual longitudinal approach. While life-history stages have been studied extensively, we suggest that the field prioritize individual longitudinal studies to understand the phenotypic correlations among stages.

14.
Proc Natl Acad Sci U S A ; 120(7): e2216640120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745781

ABSTRACT

The early embryo of the cockroach Blattella germanica exhibits high E93 expression. In general, E93 triggers adult morphogenesis during postembryonic development. Here we show that E93 is also crucial in early embryogenesis in the cockroach, as a significant number of E93-depleted embryos are unable to develop the germ band under maternal RNAi treatment targeting E93. Moreover, transcriptomic analysis indicates that E93 depletion results in important gene expression changes in the early embryo, and many of the differentially expressed genes are involved in development. Then, using public databases, we gathered E93 expression data in embryo and preadult stages, finding that embryonic expression of E93 is high in hemimetabolan species (whose juveniles, or nymphs, are similar to the adult) and low in holometabolans (whose juveniles, or larvae, are different from the adult). E93 expression is also low in Thysanoptera and in Hemiptera Sternorrhyncha, hemimetabolans with postembryonic quiescent stages, as well as in Odonata, the nymph of which is very different from the adult. In ametabolans, such as the Zygentoma Thermobia domestica, E93 transcript levels are very high in the early embryo, whereas during postembryonic development they are medium and relatively constant. We propose the hypothesis that during evolution, a reduction of E93 expression in the embryo of hemimetabolans facilitated the larval development and the emergence of holometaboly. Independent decreases of E93 transcripts in the embryo of Odonata, Thysanoptera, and different groups of Hemiptera Sternorrhyncha would have allowed the development of modified juvenile stages adapted to specific ecophysiological conditions.


Subject(s)
Hemiptera , Insecta , Animals , Insecta/metabolism , Metamorphosis, Biological/genetics , Larva , Hemiptera/genetics , RNA Interference , Gene Expression Regulation, Developmental , Insect Proteins/genetics
15.
J Gerontol B Psychol Sci Soc Sci ; 78(4): 609-619, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36454717

ABSTRACT

OBJECTIVES: Life experiences that are complex, sustained, and intense, such as active participation in music and speaking multiple languages, have been suggested to contribute to maintaining or improving cognitive performance and mental health. The current study focuses on whether lifetime musical and multilingual experiences differentially relate to cognition and well-being in older adults, and tests whether there is a cumulative effect of both experiences. METHODS: A total of 11,335 older adults from the population-based Lifelines Cohort Study completed a musical and multilingual background and experience questionnaire. Latent class analysis was used to categorize individuals into subgroups according to their various musical and multilingual experiences resulting in a (1) nonmusical, low-multilingual group; (2) nonmusical, high-multilingual group; (3) musical, low-multilingual group; and (4) musical high-multilingual group. To determine whether the groups differed in terms of cognition or emotional affect, differences in Ruff Figural Fluency Test (RFFT) and Positive and Negative Affect Schedule scores were investigated by means of multinomial logistic regression analysis. RESULTS: Having high-multilingual, and not musical, experience was related to better RFFT performance compared to no experience, but not to more positive affect. Having both musical and high-multilingual experiences is related to better RFFT performance and more positive affect in advanced age compared to having only one experience or none. Importantly, these results were found independently of age, level of education, and socioeconomic status. DISCUSSION: Musical and multilingual experiences are related to healthy aging, especially when combined, which supports the suggestion that a broader spectrum of lifetime experiences relates to cognitive reserve.


Subject(s)
Healthy Aging , Multilingualism , Humans , Aged , Cohort Studies , Neuropsychological Tests , Cognition
16.
J Anim Ecol ; 91(8): 1582-1595, 2022 08.
Article in English | MEDLINE | ID: mdl-35362147

ABSTRACT

In organisms with complex life cycles, the various stages occupy different habitats creating demographically open populations. The dynamics of these populations will depend on the occurrence and timing of stochastic influences relative to demographic density dependence, but understanding of these fundamentals, especially in the face of climate warming, has been hampered by the difficulty of empirical studies. Using a logically feasible organism, we conducted a replicated density-perturbation experiment to manipulate late-instar larvae of nine populations of a stream caddisfly, Zelandopsyche ingens, and measured the resulting abundance over 2 years covering the complete life cycle of one cohort to evaluate influences on dynamics. Negative density feedback occurred in the larval stage, and was sufficiently strong to counteract variation in abundance due to manipulation of larval density, adult caddis dispersal in the terrestrial environment as well as downstream drift of newly hatched and older larvae in the current. This supports theory indicating regulation of open populations must involve density dependence in local populations sufficient to offset variability associated with dispersal, especially during recruitment, and pinpoints the occurrence to late in the larval life cycle and driven by food resource abundance. There were large variations in adult, egg mass and early instar abundance that were not related to abundance in the previous stage, or the manipulation, pointing to large stochastic influences. Thus, the results also highlight the complementary nature of stochastic and deterministic influences on open populations. Such density dependence will enhance population persistence in situations where variable dispersal and transitioning between life stages frequently creates mismatches between abundance and the local availability of resources, such as might become more common with climate warming.


Subject(s)
Ecosystem , Insecta , Animals , Humans , Larva , Life Cycle Stages , Population Density , Population Dynamics
17.
Article in English | MEDLINE | ID: mdl-35310018

ABSTRACT

Why do so many parasitic worms have complex life-cycles? A complex life-cycle has at least two hypothesized costs: (i) worms with longer life-cycles, i.e. more successive hosts, must be generalists at the species level, which might reduce lifetime survival or growth, and (ii) each required host transition adds to the risk that a worm will fail to complete its life-cycle. Comparing hundreds of trophically transmitted acanthocephalan, cestode, and nematode species with different life-cycles suggests these costs are weaker than expected. Helminths with longer cycles exhibit higher species-level generalism without impaired lifetime growth. Further, risk in complex life-cycles is mitigated by increasing establishment rates in each successive host. Two benefits of longer cycles are transmission and production. Longer cycles normally include smaller (and thus more abundant) first hosts that are likely to consume parasite propagules, as well as bigger (and longer-lived) definitive hosts, in which adult worms grow to larger and presumably more fecund reproductive sizes. Additional factors, like host immunity or dispersal, may also play a role, but are harder to address. Given the ubiquity of complex life-cycles, the benefits of incorporating or retaining hosts in a cycle must often exceed the costs.

18.
Ecology ; 103(1): e03565, 2022 01.
Article in English | MEDLINE | ID: mdl-34674265

ABSTRACT

Under climate change, marine organisms will need to tolerate or adapt to increasing temperatures to persist. The ability of populations to cope with thermal stress may be influenced by conditions experienced by parents, by both genetic changes and transgenerational phenotypic plasticity through epigenetics or maternal provisioning. In organisms with complex life cycles, larval stages are particularly vulnerable to stress. Positive parental carry-over effects occur if more stressful parental environments yield more tolerant offspring while the opposite pattern leads to negative carry-over effects. This study evaluated the role of parental effects in determining larval thermal tolerances for the intertidal mussel, Mytilus californianus. We tested whether thermal environments across a natural gradient (shoreline elevation) impacted mussel temperature tolerances. Lethal thermal limits were compared for field-collected adults and their larvae. We observed parental effects across one generation, in which adult mussels exposed to warmer habitats yielded less tolerant offspring. Interestingly, although parental environments influenced offspring tolerances, we found no clear effects of habitat conditions on adult phenotypes (tolerances). We found indicators of trade-offs in energy investment, with higher reproductive condition and larger egg diameters in low stress environments. These results suggest that parental effects are negative, leading to possible adverse effects of thermal stress on the next generation.


Subject(s)
Climate Change , Mytilus , Animals , Ecosystem , Larva , Temperature
19.
J Insect Physiol ; 136: 104341, 2022 01.
Article in English | MEDLINE | ID: mdl-34843740

ABSTRACT

Many insects have complex life cycles where a drastic ontogenetic change happens between the larval stages and the adult stage, i.e. metamorphosis. Damselflies (order Odonata, suborder Zygoptera) are widely distributed and ecologically important semi-aquatic insects with a complex life cycle. Phenotypic changes over damselfly ontogeny have been documented, however, if and how metabolite profiles are also changing is currently unknown. Here we used a metabolomics methodology to gain insights into the metabolic changes during the life cycle of the Northern damselfly (Coenagrion hastulatum). Hatchlings of wild-caught damselflies were reared in the laboratory and metabolomics analyses using liquid chromatography and gas chromatography coupled to mass spectrometry were carried out at three larval stages and on adult damselflies. Additionally, a subset of larvae was exposed to wastewater effluent to assess how metabolite profiles responded to an environmental stressor. A total of 212 compounds belonging to several classes (e.g. amino acids, fatty acids, sugars) were annotated. Across metamorphosis, we found that damselflies shifted from protein catabolism to lipid catabolism. Wastewater effluent exposure resulted in ontogenetic stage-dependent changes of individual metabolites, but not to a marked extent. Overall, our study is one of the first to describe changes of metabolite profiles during ontogeny of an insect, and it provides a first step towards a greater understanding of the physiological changes occurring during general insect-but especially damselfly-ontogeny.


Subject(s)
Odonata , Animals , Gas Chromatography-Mass Spectrometry , Larva , Metabolomics , Metamorphosis, Biological
20.
Proc Biol Sci ; 288(1964): 20212122, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34847763

ABSTRACT

Complex life cycles, in which discrete life stages of the same organism differ in form or function and often occupy different ecological niches, are common in nature. Because stages share the same genome, selective effects on one stage may have cascading consequences through the entire life cycle. Theoretical and empirical studies have not yet generated clear predictions about how life cycle complexity will influence patterns of adaptation in response to rapidly changing environments or tested theoretical predictions for fitness trade-offs (or lack thereof) across life stages. We discuss complex life cycle evolution and outline three hypotheses-ontogenetic decoupling, antagonistic ontogenetic pleiotropy and synergistic ontogenetic pleiotropy-for how selection may operate on organisms with complex life cycles. We suggest a within-generation experimental design that promises significant insight into composite selection across life cycle stages. As part of this design, we conducted simulations to determine the power needed to detect selection across a life cycle using a population genetic framework. This analysis demonstrated that recently published studies reporting within-generation selection were underpowered to detect small allele frequency changes (approx. 0.1). The power analysis indicates challenging but attainable sampling requirements for many systems, though plants and marine invertebrates with high fecundity are excellent systems for exploring how organisms with complex life cycles may adapt to climate change.


Subject(s)
Adaptation, Physiological , Life Cycle Stages , Acclimatization , Animals , Climate Change , Genome , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL