Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 425
Filter
1.
Small Methods ; : e2401324, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385653

ABSTRACT

The popularity of portable and wearable flexible electronic devices, coupled with the rapid advancements in military field, requires electromagnetic interference (EMI) shielding materials with lightweight, thin, and flexible characteristics, which are incomparable for traditional EMI shielding materials. The film materials can fulfill the above requirements, making them among the most promising EMI shielding materials for next-generation electronic devices. Meticulously controlling structure of composite film materials while optimizing the electromagnetic parameters of the constructed components can effectively dissipate and transform electromagnetic wave energy. Herein, the review systematically outlines high-performance EMI shielding composite films through structural design strategies, including homogeneous structure, layered structure, and porous structure. The attenuation mechanism of EMI shielding materials and the evaluation (Schelkunoff theory and calculation theory) of EMI shielding performance are introduced in detail. Moreover, the effect of structure attributes and electromagnetic properties of composite films on the EMI shielding performance is analyzed, while summarizing design criteria and elucidating the relevant EMI shielding mechanism. Finally, the future challenges and potential application prospects of EMI shielding composite films are prospected. This review provides crucial guidance for the construction of advanced EMI shielding films tailored for highly customized and personalized electronic devices in the future.

2.
Food Chem ; 463(Pt 4): 141490, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39366091

ABSTRACT

This study aimed to address the challenge of extending the shelf life of Boletus wild mushrooms, which are prone to environmental and microbial contamination. An antibacterial film composed of polylactic acid (PLA) and mesoporous silica nanoparticles loaded with citral (CMP film) was developed for this purpose. Fifteen quality indices were assessed, and the data were integrated using AHP and TOPSIS to evaluate the film's efficacy. The CMP film effectively maintained the quality of mushroom over time. Additionally, a Nonlinear Global Optimization-Long Short-Term Memory (NGO-LSTM) model was employed to predict storage quality, using seven highly correlated quality indicators. The model achieved a high predictive accuracy, with the R2 exceeding 0.999. This study presents a novel packaging solution and a predictive model that together enhance the storage and quality control of Boletus wild mushrooms.

3.
Int J Biol Macromol ; 279(Pt 4): 135569, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39276902

ABSTRACT

Flexible sensors play an important role in the field of smart devices. However, most flexible sensors suffer from poor sensing signal stability and monofunction. In this study, a multifunctional film (named PM) with dual conductive network structure was fabricated by nanocellulose crystal dispersed with silver nanoparticles and carbon nanotube. The PM film exhibited excellent conductivity (24.6 S/m) along with antimicrobial effects against Staphylococcus aureus and Escherichia coli. Furthermore, the PM sensor showed excellent electrothermal performance, reaching 133.1 °C within 50 s at 12 V, and an excellent temperature coefficient of resistance (TCR = -0.65 % °C-1) over a temperature range of 36-124 °C. More importantly, the PM sensor demonstrated a high strain sensitivity (GF = 1.66) and durability (320 cycles), capable of detecting minute human body movements at a strain as low as 1 %. Additionally, the PM sensor maintained a stable sensing performance even after 30 d of exposure to air. Therefore, the multifunctional integration of the PM sensor shows great potential for application in the field of flexible electronics.


Subject(s)
Electric Conductivity , Escherichia coli , Metal Nanoparticles , Nanotubes, Carbon , Silver , Staphylococcus aureus , Silver/chemistry , Nanotubes, Carbon/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Biosensing Techniques/methods , Humans , Temperature , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wearable Electronic Devices
4.
ACS Appl Mater Interfaces ; 16(40): 54731-54741, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39320964

ABSTRACT

Terahertz absorbers play a crucial role in terahertz detectors, radar stealth, electromagnetic shielding, and other fields. However, the design and fabrication of flexible terahertz broadband absorbers remain a challenge at present. Here, we demonstrated a terahertz broadband absorber based on a copper composite film (CCF) consisting of a copper foam and an organic silica gel doped with Fe3O4 powder. The CCF can be fabricated by the infiltration method. The influence of the thickness and the pore size of the copper foam and the mass fraction of doped Fe3O4 powder on the absorption bandwidth were investigated. When the thickness of the CCF is 1.5 mm, the pore size of the copper foam is 95 pores per inch (ppi), and the mass fraction of Fe3O4 is 1%; a broadband absorption is achieved in the range of 0.11-3.5 THz. It is noted that the mass fraction of Fe3O4 has a significant impact on the absorption bandwidth. In addition, the thickness of the CCF and the pore size of the copper foam also have an impact on the absorption. The impedance matching theory is introduced to understand the mechanism of broadband absorption. This flexible broadband absorber has potential application in terahertz stealth, shielding, and the sixth-generation (6G) broadband wireless communication in the future.

5.
Int J Biol Macromol ; 280(Pt 2): 135791, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306174

ABSTRACT

The alarming issue of food waste, coupled with the potential risks posed by petroleum-based plastic preservation materials to both the environment and human health necessitate innovative solutions. In this study, we prepared nanoemulsions (NEs) of chitosan (CS) and ginger essential oil (GEO) and systematically evaluated the effects of varying NEs concentrations (0, 10 %, 30 %, 50 %) on the physicochemical properties and biological activities of gelatin films. These films were subsequently applied to blueberry preservation. The scanning electron microscopy confirmed that the NEs were well-integrated with the Gel matrix, significantly enhancing the performance of the Gel films, including improvements of mechanical properties (tensile strength from 7.71 to 19.92 MPa; elongation at break from 38.55 to 113.65 %), thermal, and barrier properties (water vapor permeability from 1.52 × 10-9 to 6.54 × 10-10 g·m/Pa·s·m2). The films exhibited notable antibacterial and antioxidant activities due to the gradual release of GEO, thereby extending the storage life of blueberries. Moreover, the prepared composite films demonstrated excellent biodegradability and environmental friendliness, with the majority of the material decomposing within 30 days under soil microbial action. In conclusion, the active films loaded with NEs exhibit superior performance and hold significant potential for developing biodegradable materials for food preservation.

6.
Polymers (Basel) ; 16(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39339086

ABSTRACT

In this work, we present the innovative synthesis of salophen (acetaminosalol) derivatives in a solvent-free environment by high-speed ball milling, using a non-conventional activation method, which allowed obtaining compounds in a shorter time and with a better yield. Furthermore, for the first time, the salophen derivatives were deposited as composite films, using a matrix of poly 3,4-ethylene dioxythiophene:polystyrene sulfonate (PEDOT:PSS) polymer. Significant findings include the transformation from the benzoid to the quinoid form of PEDOT post-IPA treatment, as evidenced by Raman spectroscopy. SEM analysis revealed the formation of homogeneous films, and AFM provided insights into the changes in surface roughness and morphology post-IPA treatment, which may be crucial for understanding potential applications in electronics. The optical bandgap ranges between 2.86 and 3.2 eV for PEDOT:PSS-salophen films, placing them as organic semiconductors. The electrical behavior of the PEDOT:PSS-salophen films undergoes a transformation with the increase in voltage, from ohmic to space charge-limited conduction, and subsequently to constant current, with a maximum of 20 mA. These results suggest the possible use of composite films in organic electronics.

7.
Polymers (Basel) ; 16(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339118

ABSTRACT

In this paper, green composite films comprising natural rubber (NR), cellulose (CE), and chitosan (CS) were successfully fabricated through a simple, facile, cost-effective method in order to improve mechanical, chemical, and antimicrobial properties of NR composite films. Chitosan with a low molecular weight of 30,000-50,000 g/mol (CS-L) and a medium molecular weight of 300,000-500,000 g/mol (CS-M) was used for the fabrication. The composite films were prepared via a latex aqueous microdispersion method with different weight ratios of NR:CE:CS-L/CS-M. Fourier transform infrared spectroscopy (FTIR) results demonstrated strong interactions of hydrogen bonds between CE and CS-L/CS-M in the composite films. The tensile strength and the modulus of the composite films in dried form were found to significantly increase with the reinforcement of CE and CS-L/CS-M. The maximum tensile strength (13.8 MPa) and Young's modulus (12.7 MPa) were obtained from the composite films reinforced with CE at 10 wt.% and CS-L at 10 wt.%. The high elongation of 500-526% was obtained from the composite films reinforced with CE at 10 wt.% and CS (CS-L or CS-M) at 5.0 wt.%. The modification could also significantly promote antimicrobial activities and chemical resistance against non-polar solvents in the composite films. The NR composite films have potential uses as flexible films for sustainable green packaging.

8.
Biopolymers ; : e23630, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39310959

ABSTRACT

This research investigates the production of biodegradable films using a combination of gum odina (GO) and polyvinyl alcohol (PVA) with varied ratio. The study focuses on the chemical, physical, and mechanical properties of PVA-GO composite films, emphasizing how versatile and biodegradable they may be for a range of packaging applications. Solvent-cast PVA-GO films with different ratios are subjected to a methodical analytical process to determine several parameters like mechanical qualities, thermal stability, biodegradability in soil, contact angle, transparency, water vapor permeability, moisture content, thickness, density, water solubility, microstructure, and FTIR analysis. The outcomes demonstrate that GO improves UV barrier qualities and water vapor permeability. Additionally, the films showed notable biodegradability, acceptable thermal stability, and mechanical qualities. In short, PVA-GO films can provide an eco-friendly packing substitute with adaptable qualities fit for a range of uses. Therefore, this research may further contribute promising information in the field of biodegradable packaging materials in the future.

9.
Int J Biol Macromol ; 280(Pt 2): 135829, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306175

ABSTRACT

The development of environmental-friendly composite products from renewable resources has been considered as an excellent approach to address the negative impact of petroleum-based plastics on environment. Konjac flour (KF), as an excellent polysaccharide material, has a broad application in food field. It shows a promising future in the film field due to its excellent film-forming properties. In this work, KF was selected as primary film-forming matrix, and dialdehyde starch (DAS) as the reinforcing component. A series of KF/DAS composite films were prepared by adjusting the addition ratio of DAS component. Then, their physical and mechanical properties were characterized and analyzed. The results showed that KF/DAS composite film with 25 % DAS content exhibited the optimal mechanical properties, including tensile strength (TS) of 13.1 MPa and elongation at break (EAB) of 93.7 %, indicating that an excellent cross-linked system formed among KF and DAS utilizing the method described in this study. Furthermore, much evidences from the fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed that a strong chemical cross-linkages between DAS and KF via Schiff base and esterification reactions. Based on the thermogravimetry (TG) and scanning electron microscopy (SEM) results, KF/DAS composite films also had excellent thermal stability and a dense microstructure, although there are also changes with the DAS usage.

10.
Food Chem ; 463(Pt 1): 141081, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39243627

ABSTRACT

In this study, grape seed oil nanoliposomes (GSO-NLs) were constructed and doped into tapioca starch/konjac gum composite films (TK-GSO-NLs) to evaluate the preservation of chilled mutton. The results showed that the GSO-NLs have a good spherical or rounded state and good stability. The doping of GSO-NLs resulted in a smooth, flat, and dense structure on the surface and cross-section of the TK films. The TK-GSO-NLs showed the best compatibility among the components, with excellent mechanical and barrier properties. FTIR and XRD confirmed the presence of ionic bonds between the components, further improving the copolymer crystal structure. Notably, the packaging material provided ideal antioxidant and bacteriostatic stability as well as delayed GSO release. This packaging could effectively maintain the quality of chilled mutton and prolong the shelf-life to 15 days. The study provides ideas for the design of green and active food packaging and for extending the shelf life of meat.

11.
Talanta ; 281: 126906, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303327

ABSTRACT

Crystal violet (CV) residues in Marine food have produced a severe health threat in human life. In this study, we proposed a semiconductor surface-enhanced Raman scattering (SERS) sensor of corrosion-resistant Polyaniline/Graphene oxide (PPy/GO) film by electrochemical growth method to detect CV residues in fresh fish tissue. A PPy/GO dispersion solution was one-step deposited on a stainless steel sheet surface by electrochemical polymerization process to form a PPy/GO composite film acting as a semiconductor SERS substrate. Since the substrate of PPy/GO film was mainly composed of GO sheet without other metals, it had a good corrosion resistance. The SERS enhancement factor and charge transfer intensity PCT of PPy/Go SERS substrate for CV molecules were up to 1.18 × 106 and 0.903, respectively. Furthermore, the limit of detection (LOD) of PPy/GO SERS substrate could reach 1.58 nM. In addition, SERS sensor of PPy/GO film could identify CV residues in fresh fish tissues, and its recovery rate was 91.8 %-107 %. This preparing method and detecting method we proposed PPy/GO SERS substrate provide a new pathway for detecting CV residues in Marine food.

12.
Int J Mol Sci ; 25(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273137

ABSTRACT

Chitosan-based biomaterials are being investigated for their unique properties that support skin regeneration and wound healing. This study focused on the preparation and characterization of a mupirocin (Mup)-loaded PEGylated chitosan (CS-PEG) nanoparticulate film (NF) [CBNF]. The CBNF was characterized using FTIR spectroscopy and SEM analysis. The results demonstrated that CBNF was successfully incorporated into the composites, as shown by functional group modification through FTIR analysis. Additionally, the SEM micrograph revealed the deposition of nanoparticles (<200 nm) on the surface of transparent CBNF. The film has higher water absorption (≥1700%) and moderate water retention ability within 6 h. Furthermore, histological findings showed significant development, with re-epithelialization and granulation of tissues after 19 days, indicating the healing efficiency of CNBF. These results suggest that drug-loaded films could be an effective carrier and delivery agent for Mup-like anti-inflammatory drugs.


Subject(s)
Chitosan , Mupirocin , Nanoparticles , Polyethylene Glycols , Wound Healing , Chitosan/chemistry , Mupirocin/chemistry , Mupirocin/pharmacology , Mupirocin/administration & dosage , Wound Healing/drug effects , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Animals , Drug Carriers/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Spectroscopy, Fourier Transform Infrared
13.
Carbohydr Polym ; 346: 122663, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245517

ABSTRACT

Concerns about food safety and environmental impact from chemical surfactants have prompted interest in natural lignocellulosic materials as alternatives. In this study, we combined hydrated deep eutectic solvent (DES) pretreatment with ultrasound treatment to prepare lignocellulosic nanofibrils (LCNF) from bamboo shoot shells with appropriate surface properties for stabilizing Pickering emulsions. The pretreatment intensity effectively modulated the surface characteristics of LCNF, achieving desirable wettability through lignin retention and in-situ esterification. The resulting LCNF/curcumin Pickering emulsion (CPE) demonstrated curcumin protection and pH-responsive color changes, while the ensuing CPE/PVA composite film exhibited ultraviolet shielding, mechanical strength, oxygen barrier, and antioxidant properties. Furthermore, the CPE/PVA film showed promise as a real-time indicator for monitoring shrimp freshness, maintaining sensitivity to spoilage even after six months of storage. These findings advance the advancement of green LCNF technologies, providing eco-friendly solutions for valorizing bamboo shoot shells and enhancing the application of LCNF in Pickering emulsions.


Subject(s)
Curcumin , Emulsions , Lignin , Nanofibers , Curcumin/chemistry , Lignin/chemistry , Emulsions/chemistry , Animals , Nanofibers/chemistry , Antioxidants/chemistry , Deep Eutectic Solvents/chemistry , Plant Shoots/chemistry , Sasa/chemistry , Wettability , Hydrogen-Ion Concentration
14.
Food Chem ; 460(Pt 3): 140764, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39121763

ABSTRACT

Attenuating the moisture sensitivity of hydrophilic protein/polysaccharide-based films without impairing other properties remains a challenge. Fatty acid dispersed in Pickering emulsion was proposed to overcome such issue. An increase in fatty acid chain length slightly reduced the water vapor permeability (WVP) of emulsion films. As the number of fatty acid double bonds increased from 0 to 1, the WVP of emulsion films was significantly decreased by 14.02% while mechanical properties were significantly enhanced. More hydrogen bonds and stronger electrostatic interactions in the presence of fatty acids were observed by molecular dynamics simulation. The weight loss of bananas coated with oleic acid-incorporated film-forming emulsion was 6.81% lower than that of uncoated group after 4 days, and the corresponding film was more effective to delay oil oxidation than the commercial polypropylene film, indicating that the film is a promising alternative to food coating and packaging material.


Subject(s)
Alginates , Fatty Acids , Food Packaging , Musa , Oryza , Permeability , Plant Proteins , Water , Food Packaging/instrumentation , Musa/chemistry , Oryza/chemistry , Water/chemistry , Alginates/chemistry , Plant Proteins/chemistry , Fatty Acids/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Steam , Plant Oils/chemistry , Emulsions/chemistry
15.
Int J Biol Macromol ; 277(Pt 3): 134294, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102925

ABSTRACT

Despite the significant properties of fossil plastics, the current unsustainable methods employed in production, usage and disposal present a grave threat to both energy and environment. The development of degradable biomass materials as substitutes for fossil plastics can effectively address the energy-environment paradox at the source. Here, we prepared novel micro-nano multiscale composite films through assembling and crosslinking nanocellulose with coniferous wood pulp microfibers. The composite film combines the advantages of microfibers and nanocellulose, achieving a maximum transmittance of 91 %, foldability, excellent mechanical properties (tensile strength: 51.3 MPa, elongation at break: 4 %, young's modulus: 3.4 GPa), high thermal stability and complete degradation within 40 days. The composite film exhibits mechanochemical self-healing and retains properties even after fracture. Such exceptional performance fully meets the requirements for substituting petroleum plastics. By incorporating CaAlSiN3:Eu2+ into the composite film, it enables dual emission of red and blue light, thereby being able to promote plant growth and presenting potential as a novel sustainable alternative for agricultural films. By assembling microfiber and nanocellulose, such novel strategy is presented for the fabrication of high-quality biomass materials, thereby offering a promising avenue towards environment-friendly resource-sustainable new materials.


Subject(s)
Cellulose , Nanofibers , Wood , Nanofibers/chemistry , Cellulose/chemistry , Wood/chemistry , Tensile Strength , Biomass
16.
Int J Biol Macromol ; 279(Pt 2): 135183, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214227

ABSTRACT

Developing non-toxic and sustainable materials with versatile and diverse functions has always been a crucial issue in food preservation packaging. Recently, inverse vulcanization has emerged as a precise and eco-friendly solution, attributed to the versatility of resulting polysulfides. In this study, a polysulfide crosslinked with sorbic acid was prepared by inverse vulcanization, and further combined with bio-macromolecular ethyl cellulose to form composite films via a casting method. Thanks to the ethanol-solubility and good compatibility of ethyl cellulose towards the polysulfide, morphology of the films can be tailored by adjusting the component ratio, thereby achieving favorable water vapor permeability (2.20 × 10-12 gs-1m-1Pa-1), oxygen permeability (4.01 × 10-4 gs-1 m-2), elasticity modulus (~400 MPa), elongation at break (~16 %), etc. Some films demonstrate remarkable antibacterial activity against a broad spectrum of bacteria and fungi, demonstrating their effectiveness in food preservation. The browning and spoilage of preserved Agaricus bisporus were inhibited, with 79.2 % of the initial firmness retained and a 5.6 % weight loss recorded on the 6th day. For the 15-day preservation of grapes, minimal changes in appearance, firmness, or TSS were observed, underscoring the promising potential of this composite for food preservation applications.

17.
Small ; : e2312004, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206612

ABSTRACT

Thermochromic vanadium dioxide (VO2) can intelligently modulate the transmittance of indoor solar radiation to reduce the energy consumption of air conditioning in buildings. Nevertheless, it remains a great challenge to simultaneously improve the luminous transmittance (Tlum) and solar modulation ability (ΔTsol) of VO2. In this study, a novel approach is employed utilizing a coordination compound to finely tune the growth of a VO2 based composite film, yielding a hierarchical film comprising Zn2V2O7 nanoflakes and VO2@Zn2V2O7 core-shell nanoparticles. Remarkably, the resulting composite films showcase exceptional optical performance, achieving a Tlum of up to 73.0% and ΔTsol of 15.7%. These outcomes are attributed to the antireflection properties inherent in the nanoflake structure and the localized surface plasmon resonance of well-dispersed VO2 nanoparticles. In addition, the Zn2V2O7-VO2 film demonstrates remarkable environmental durability, retaining 90% of its initial ΔTsol even after undergoing aging at 100 °C under 50% relative humidity for a substantial period of 30 days - a durability equivalent to ≈20 years under ambient conditions. This work not only achieves a harmonious balance between Tlum and ΔTsol but also introduces a promising avenue for the design of distinctive composite nanostructures.

18.
Foods ; 13(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39200529

ABSTRACT

In this study, a zein-stabilized lemon essential oil Pickering emulsion (ZLPE) was incorporated into a carboxymethyl cellulose/gelatin (CMC/GL) composite film to develop a bio-based packaging material with bioactive properties. The average droplet size of the ZLPE was measured at 3.62 ± 0.08 µm, with a zeta potential of -31.33 ± 0.32 mV, highlighting its excellent stability. The image results of confocal laser microscopy and scanning electron microscopy validated the uniform distribution of ZLPE in the film. The incorporation of ZLPE reduced the water solubility of films by 45.90% and decreased its water vapor permeability by 22.61%, thereby enhancing its hydrophobicity. Additionally, the ZLPE-loaded film improved mechanical properties, enhanced UV-blocking capabilities, and increased thermal stability. The introduction of ZLPE led to the antioxidant activity of the CMC/GL film increasing by six times the original level and endowed it with outstanding antibacterial properties. As a result, cherries packaged with the ZLPE film demonstrated superior preservation performance and extended shelf life in the preservation experiment, exhibiting the film's potential as a food packaging material.

19.
ACS Appl Mater Interfaces ; 16(28): 36942-36952, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958414

ABSTRACT

MnO2/polypyrrole (PPy) composite films were deposited on fluorine-doped tin oxide (FTO) conductive glasses by a two-step wet-chemical method, including electrochemical deposition and chemical bath deposition (CBD). The porous MnO2 films were first grown on FTO glasses by an electrodeposition method. Second, polypyrrole nanoparticles were polymerized by the oxidation-reduction reaction between MnO2 and pyrrole, using the presynthesized MnO2 as the skeleton. Then, MnO2/PPy composite films with coral-like structures were obtained. The electrochemical and electrochromic (EC) properties of the prepared films were investigated. The results show that, compared to the single MnO2 or PPy film, the MnO2/PPy composite film has a larger optical modulation (67.3% at a wavelength of 900 nm), faster response times (4 s for coloration and 3 s for bleaching), and a higher coloration efficiency (218.16 cm2·C-1). The high coloration efficiency attests to the exceptional performance of the composite film in converting electrical signals into vivid color changes. The electrochemical stability test results show that the composite film maintains a stable EC performance after 200 coloration/bleaching cycles. The coral-like structures of the composite film are responsible for the better EC properties.

20.
Int J Biol Macromol ; 276(Pt 1): 133689, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971272

ABSTRACT

Benzyl isothiocyanate (BITC) is a naturally active bacteriostatic substance and κ-carrageenan (KC) is a good film-forming substrate. In the present study, a nanoemulsion incorporating BITC was fabricated with a particle size of 224.1 nm and an encapsulation efficiency of 69.2 %. Subsequently, the acquired BITC nanoemulsion (BITC-NE) was incorporated into the KC-based film, and the light transmittance of the prepared composite films was lower than that of the pure KC film. Fourier transform infrared spectroscopy and scanning electron microscopy revealed that BITC-NE was compatible with the KC matrix. BITC-NE incorporation enhanced the tensile strength of the KC-based films by 33.7 %, decreased the elongation at break by 33.8 %, decreased the water vapor permeability by 60.1 %, increased the maximum thermal degradation temperature by 48.8 %, and decreased the oxygen permeability by 42 % (p < 0.05). Furthermore, the composite films showed enhanced antimicrobial activity against Staphylococcus aureus, Salmonella typhimurium, and Pseudomonas fluorescens. The developed KC-based composite films were applied to wrap raw beef, which significantly delayed the increase in total viable count, total volatile base nitrogen content, and thiobarbituric acid reactive substances, and prolonged the shelf-life of the raw beef by up to 10 days. These results indicated that the composite films prepared by incorporating BITC nanoemulsions into KC matrices have great antimicrobial application potential.


Subject(s)
Anti-Bacterial Agents , Carrageenan , Emulsions , Isothiocyanates , Carrageenan/chemistry , Carrageenan/pharmacology , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Permeability , Food Preservation/methods , Cattle , Red Meat , Food Packaging/methods , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL