Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Expert Opin Ther Targets ; 28(5): 345-356, 2024 May.
Article in English | MEDLINE | ID: mdl-38714500

ABSTRACT

INTRODUCTION: Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED: We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION: Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.


Subject(s)
Alphavirus Infections , Antiviral Agents , Drug Discovery , Animals , Antiviral Agents/pharmacology , Humans , Alphavirus Infections/drug therapy , Alphavirus Infections/virology , Alphavirus , Arthralgia/drug therapy , Drug Development , Molecular Targeted Therapy , Disease Models, Animal
2.
Antimicrob Agents Chemother ; 68(1): e0050923, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38063403

ABSTRACT

The main challenges associated with leishmaniasis chemotherapy are drug toxicity, the possible emergence of resistant parasites, and a limited choice of therapeutic agents. Therefore, new drugs and assays to screen and detect novel active compounds against leishmaniasis are urgently needed. We thus validated Leishmania braziliensis (Lb) and Leishmania infantum (Li) that constitutively express the tandem tomato red fluorescent protein (tdTomato) as a model for large-scale screens of anti-Leishmania compounds. Confocal microscopy of Lb and Li::tdTomato revealed red fluorescence distributed throughout the entire parasite, including the flagellum, and flow cytometry confirmed that the parasites emitted intense fluorescence. We evaluated the infectivity of cloned promastigotes and amastigotes constitutively expressing tdTomato, their growth profiles in THP-1 macrophages, and susceptibility to trivalent antimony, amphotericin, and miltefosine in vitro. The phenotypes of mutant and wild-type parasites were similar, indicating that the constitutive expression of tdTomato did not interfere with the evaluated parameters. We applied our validated model to a repositioning strategy and assessed the susceptibility of the parasites to eight commercially available drugs. We also screened 32 natural plant and fungal extracts and 10 pure substances to reveal new active compounds. The infectivity and Glucantime treatment efficacy of BALB/c mice and golden hamsters infected with Lb and Li::tdTomato mutant lines, respectively, were very similar compared to animals infected with wild-type parasites. Standardizing our methodology would offer more rapid, less expensive, and easier assays to screen of compounds against L. braziliensis and L. infantum in vitro and in vivo. Our method could also enhance the discovery of active compounds for treating leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania braziliensis , Leishmania infantum , Leishmaniasis , Cricetinae , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Fluorescence , Leishmaniasis/drug therapy , Leishmania infantum/genetics , Leishmania braziliensis/genetics , Mesocricetus , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL