Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
J Mol Model ; 30(10): 332, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276242

ABSTRACT

CONTEXT: The reaction force constant ( κ ), introduced by Professor Alejandro Toro-Labbé, plays a pivotal role in characterizing the reaction pathway by assessing the curvature of the potential energy profile along the intrinsic reaction coordinate. This study establishes a novel link between κ and the reactivity descriptors of conceptual density functional theory (c-DFT). Specifically, we derive expressions that relate the reaction force constant to nuclear softness and variations in chemical potential. Our findings indicate that regions of the reaction pathway where κ is negative match with significant electronic structure rearrangements, while positive κ regions match mostly with geometric rearrangements. This correlation between κ and c-DFT reactivity descriptors enhances our understanding of the underlying forces driving chemical reactions and offers new perspectives for analyzing reaction mechanisms. METHODS: The internal reaction path for the proton transfer in SNOH, chemical potential, and nuclear softness were computed using DFT with B3LYP exchange-correlation functional and 6-311++G(d,2p) basis set.

2.
Molecules ; 29(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675590

ABSTRACT

In this article, we present a comprehensive computational investigation into the reaction mechanism of N-arylation of substituted aryl halides through Ullmann-type coupling reactions. Our computational findings, obtained through DFT ωB97X-D/6-311G(d,p) and ωB97X-D/LanL2DZ calculations, reveal a direct relation between the previously reported experimental reaction yields and the activation energy of haloarene activation, which constitutes the rate-limiting step in the overall coupling process. A detailed analysis of the reaction mechanism employing the Activation Strain Model indicates that the strain in the substituted iodoanilines is the primary contributor to the energy barrier, representing an average of 80% of the total strain energy. Additional analysis based on conceptual Density Functional Theory (DFT) suggests that the nucleophilicity of the nitrogen in the lactam is directly linked to the activation energies. These results provide valuable insights into the factors influencing energetic barriers and, consequently, reaction yields. These insights enable the rational modification of reactants to optimize the N-arylation process.

3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473777

ABSTRACT

Thiophene-containing photosensitizers are gaining recognition for their role in photodynamic therapy (PDT). However, the inherent reactivity of the thiophene moiety toward singlet oxygen threatens the stability and efficiency of these photosensitizers. This study presents a novel mathematical model capable of predicting the reactivity of thiophene toward singlet oxygen in PDT, using Conceptual Density Functional Theory (CDFT) and genetic programming. The research combines advanced computational methods, including various DFT techniques and symbolic regression, and is validated with experimental data. The findings underscore the capacity of the model to classify photosensitizers based on their photodynamic efficiency and safety, particularly noting that photosensitizers with a constant rate 1000 times lower than that of unmodified thiophene retain their photodynamic performance without substantial singlet oxygen quenching. Additionally, the research offers insights into the impact of electronic effects on thiophene reactivity. Finally, this study significantly advances thiophene-based photosensitizer design, paving the way for therapeutic agents that achieve a desirable balance between efficiency and safety in PDT.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/therapeutic use , Singlet Oxygen , Models, Theoretical
4.
Molecules ; 29(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202857

ABSTRACT

This work highlights the significant potential of marine toxins, particularly saxitoxin (STX) and its derivatives, in the exploration of novel pharmaceuticals. These toxins, produced by aquatic microorganisms and collected by bivalve mollusks and other filter-feeding organisms, offer a vast reservoir of chemical and biological diversity. They interact with sodium channels in physiological processes, affecting various functions in organisms. Exposure to these toxins can lead to symptoms ranging from tingling sensations to respiratory failure and cardiovascular shock, with STX being one of the most potent. The structural diversity of STX derivatives, categorized into carbamate, N-sulfocarbamoyl, decarbamoyl, and deoxydecarbamoyl toxins, offers potential for drug development. The research described in this work aimed to computationally characterize 18 STX derivatives, exploring their reactivity properties within marine sponges using conceptual density functional theory (CDFT) techniques. Additionally, their pharmacokinetic properties, bioavailability, and drug-likeness scores were assessed. The outcomes of this research were the chemical reactivity parameters calculated via CDFT as well as the estimated pharmacokinetic and ADME properties derived using computational tools. While they may not align directly, the integration of these distinct datasets enriches our comprehensive understanding of the compound's properties and potential applications. Thus, this study holds promise for uncovering new pharmaceutical candidates from the considered marine toxins.


Subject(s)
Marine Toxins , Saxitoxin , Biodiversity , Biological Availability , Pharmaceutical Preparations
5.
Front Chem ; 11: 1286804, 2023.
Article in English | MEDLINE | ID: mdl-38025068

ABSTRACT

Marine toxins, produced by various marine microorganisms, pose significant risks to both marine ecosystems and human health. Understanding their diverse structures and properties is crucial for effective mitigation and exploration of their potential as therapeutic agents. This study presents a comparative analysis of two hydrophilic and two lipophilic marine toxins, examining their reactivity properties and bioavailability scores. By investigating similarities among these structurally diverse toxins, valuable insights into their potential as precursors for novel drug development can be gained. The exploration of lipophilic and hydrophilic properties in drug design is essential due to their distinct implications on drug distribution, elimination, and target interaction. By elucidating shared molecular properties among toxins, this research aims to identify patterns and trends that may guide future drug discovery efforts and contribute to the field of molecular toxinology. The findings from this study have the potential to expand knowledge on toxins, facilitate a deeper understanding of their bioactivities, and unlock new therapeutic possibilities to address unmet biomedical needs. The results showcased similarities among the studied systems, while also highlighting the exceptional attributes of Domoic Acid (DA) in terms of its interaction capabilities and stability.

6.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37895848

ABSTRACT

Stellatolides are natural compounds that have shown promising biological activities, including antitumor, antimicrobial, and anti-inflammatory properties, making them potential candidates for drug development. Chemical Reactivity Theory (CRT) is a branch of chemistry that explains and predicts the behavior of chemical reactions based on the electronic structure of molecules. Conceptual Density Functional Theory (CDFT) and Computational Peptidology (CP) are computational approaches used to study the behavior of atoms, molecules, and peptides. In this study, we present the results of our investigation of the chemical reactivity and ADMET properties of Stellatolides A-H using a novel computational approach called Conceptual DFT-based Computational Peptidology (CDFT-CP). Our study uses CDFT and CP to predict the reactivity and stability of molecules and to understand the behavior of peptides at the molecular level. We also predict the ADMET properties of the Stellatolides A-H to provide insight into their effectiveness, potential side effects, and optimal dosage and route of administration, as well as their biological targets. This study sheds light on the potential of Stellatolides A-H as promising candidates for drug development and highlights the potential of CDFT-CP for the study of other natural compounds and peptides.

7.
Molecules ; 28(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37764483

ABSTRACT

Molecules sourced from marine environments hold immense promise for the development of novel therapeutic drugs, owing to their distinctive chemical compositions and valuable medicinal attributes. Notably, Talarolide A and Talaropeptides A-D have gained recent attention as potential candidates for pharmaceutical applications. This study aims to explore the chemical reactivity of Talarolide A and Talaropeptides A-D through the application of molecular modeling and computational chemistry techniques, specifically employing Conceptual Density Functional Theory (CDFT). By investigating their chemical behaviors, the study seeks to contribute to the understanding of the potential pharmacological uses of these marine-derived compounds. The molecular geometry optimizations and frequency calculations were conducted using the Density Functional Tight Binding (DFTBA) method. This was followed by a subsequent round of geometry optimization, frequency analysis, and computation of electronic properties and chemical reactivity descriptors. We employed the MN12SX/Def2TZVP/H2O model chemistry, utilizing the Gaussian 16 program and the SMD solvation model. The analysis of the global reactivity descriptors arising from CDFT was achieved as well as the graphical comparison of the dual descriptor DD revealing the areas of the molecules with more propensity to suffer a nucleophilic or electrophilic attack. Additionally, Molinspiration and SwissTargetPrediction were considered for the calculation of molecular characteristics and predicted biological targets. These include enzymes, nuclear receptors, kinase inhibitors, GPCR ligands, and ion channel modulators. The graphical results show that Talarolide A and the Talaropeptides A-D are likely to behave as protease inhibitors.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Density Functional Theory , Ligands , Peptides/pharmacology
9.
Front Chem ; 10: 920661, 2022.
Article in English | MEDLINE | ID: mdl-35910732

ABSTRACT

The anandamide is a relevant ligand due to its capacity of interacting with several proteins, including the T-type calcium channels, which play an important role in neuropathic pain and depression disorders. Hence, a detailed characterization of the chemical properties and conformational stability of anandamide may provide valuable information to understand its behavior in a biological context. Herein, conceptual DFT and QTAIM analyses were performed to theoretically characterize the chemical reactivity properties and the structural stability of conformations of anandamide, using the BP86/cc-pVTZ level of theory. Global reactivity description, based on conceptual DFT, indicates that the hardness increases and the electrophilicity index decreases for both, the hairpin and U-shape conformers relative to the extended conformers. Also, an increase in the chemical potential value and a decrease in the electronegativity and the electrophilicity index is observed in the ethanolamide open ring conformers in comparison with the corresponding closed ring structures. In addition, regarding the characterization of local reactivity descriptors, the maximum values of the Fukui and Parr functions indicate that the most probable location for a nucleophilic attack is either the hydroxyl oxygen located in the ethanolamide closed ring conformers or the carbonyl oxygen present in the open ring conformers. The most probable location for an electrophilic attack is in the alkyl double bond region in all anandamide conformers. According to the QTAIM results, the intramolecular hydrogen bond formation stabilizing the structure of anandamide has interaction energy values for the closed ring conformations of 12.33-12.46 kcal mol-1, indicating a strong interaction. Lastly, molecular docking calculations determined that a region in the pore, denominate as pore-blocking, is a probable site for the interaction of anandamide with the human Cav3.2 isoform of the T-type calcium channel family. The pore-blocking site contains hydrophobic residues where the non-polar part in the final alkyl region of anandamide established mainly alkyl-alkyl interactions, while the polar part (the ethanolamide group) interacts with the polar residue S900. The information based on conceptual DFT presented may aid in the design of drugs with similar chemical characteristics as those identified in anandamide so as to bind anandamide-interacting proteins, including the T-type calcium channels.

10.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35631336

ABSTRACT

Bioactive peptides are chemical compounds created through the covalent bonding of amino acids, known as amide or peptide bonds. Due to their unusual chemistry and various biological effects, marine bioactive peptides have garnered considerable research. The effectiveness of a bioactive marine peptide is attributed to its structural features, such as amino acid content and sequence, which vary depending on the degree of action. Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that render them an attractive modality for the development of therapeutics. The apratoxins are a class of molecules formed by a series of cyclic depsipeptides with potent cytotoxic activities. The objective of this research is to pursue a computational prospection of the molecular structures and properties of several cylopeptides of marine origin with potential therapeutic applications. The methodology will be based on the determination of the chemical reactivity descriptors of the studied molecules through the consideration of the Conceptual DFT model and validation of a particular model chemistry, MN12SX/Def2TZVP/H2O. These studies will be complemented by a determination of the pharmacokinetics and ADMET parameters by resorting to certain cheminformatics tools.

11.
Mar Drugs ; 20(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35200627

ABSTRACT

As a continuation of our research on the chemical reactivity, pharmacokinetics and ADMET properties of cyclopeptides of marine origin with potential therapeutic abilities, in this work our already presented integrated molecular modeling protocol has been used for the study of the chemical reactivity and bioactivity properties of the Veraguamides A-G family of marine natural drugs. This protocol results from the estimation of the conceptual density functional theory (CDFT) chemical reactivity descriptors together with several chemoinformatics tools commonly considered within the process of development of new therapeutic drugs. CP-CDFT is a branch of computational chemistry and molecular modeling dedicated to the study of peptides, and it is a protocol that allows the estimation with great accuracy of the CDFT-based reactivity descriptors and the associated physical and chemical properties, which can aid in determining the ability of the studied peptides to behave as potential useful drugs. Moreover, the superiority of the MN12SX density functional over other long-range corrected density functionals for the prediction of chemical and physical properties in the presence of water as the solvent is clearly demonstrated. The research was supplemented with an investigation of the bioactivity of the molecular systems and their ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, as is customary in medicinal chemistry. Some instances of the CDFT-based chemical reactivity descriptors' capacity to predict the pKas of peptides as well as their potential as AGE inhibitors are also shown.


Subject(s)
Aquatic Organisms/metabolism , Biological Products/pharmacokinetics , Depsipeptides/pharmacokinetics , Biological Products/chemistry , Biological Products/toxicity , Cheminformatics , Density Functional Theory , Depsipeptides/chemistry , Depsipeptides/toxicity , Models, Molecular
12.
ChemistryOpen ; 10(11): 1142-1149, 2021 11.
Article in English | MEDLINE | ID: mdl-34806828

ABSTRACT

Homophymines A-E and A1-E1 are bioactive natural cyclodepsipeptides with a complex molecular architecture. These molecules could have a potential use as antimicrobial, antiviral, and anticancer substances. We have carried out a computational study of the properties of this family of marine peptides using a CDFT-based Computational Peptidology (CDFT-CP) methodology that results from the combination of the chemical reactivity descriptors that arise from conceptual Density Functional Theory (CDFT) together with cheminformatics tools. The latter can be used to estimate the associated physicochemical parameters and to improve the process of virtual screening through a similarity search. Using this approach, the ability of the peptides to behave as a potentially useful drugs can be investigated. An analysis of their bioactivity and pharmacokinetics indices related to the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) features has also been carried out.


Subject(s)
Depsipeptides , Peptides, Cyclic , Chemical Phenomena , Cheminformatics , Density Functional Theory
13.
Molecules ; 25(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932850

ABSTRACT

A methodology based on the concepts that arise from Density Functional Theory named Conceptual Density Functional Theory (CDFT) was chosen for the calculation of some global and local reactivity descriptors of the Discodermins A-H family of marine peptides through the consideration of the KID (Koopmans in DFT) technique that was successfully used in previous studies of this kind of molecular systems. The determination of active sites of the studied molecules for different kinds of reactivities was achieved by resorting to some CDFT-based descriptors like the Fukui functions as well as the Parr functions derived from Molecular Electron Density Theory (MEDT). A few properties identified with their ability to behave as a drug and the bioactivity of the peptides considered in this examination were acquired by depending on a homology model by studying the correlation with the known bioactivity of related molecules in their interaction with various biological receptors. With the further object of analyzing their bioactivity, some parameters of usefulness for future QSAR studies, their predicted biological targets, and the ADME (Absorption, Distribution, Metabolism, and Excretion) parameters related to the Discodermins A-H pharmacokinetics are also reported.


Subject(s)
Amphibian Proteins/chemistry , Antimicrobial Cationic Peptides/chemistry , Peptides/chemistry , Catalytic Domain , Cations , Computational Biology , Density Functional Theory , Electrons , Hydrogen-Ion Concentration , Models, Chemical , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Software , Solvents/chemistry
14.
Mar Drugs ; 18(9)2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32962305

ABSTRACT

This work presents the results of a computational study of the chemical reactivity and bioactivity properties of the members of the theopapuamides A-D family of marine peptides by making use of our proposed methodology named Computational Peptidology (CP) that has been successfully considered in previous studies of this kind of molecular system. CP allows for the determination of the global and local descriptors that come from Conceptual Density Functional Theory (CDFT) that can give an idea about the chemical reactivity properties of the marine natural products under study, which are expected to be related to their bioactivity. At the same time, the validity of the procedure based on the adoption of the KID (Koopmans In DFT) technique, as well as the MN12SX/Def2TZVP/H2O model chemistry is successfully verified. Together with several chemoinformatic tools that can be used to improve the process of virtual screening, some additional properties of these marine peptides are identified related to their ability to behave as useful drugs. With the further objective of analyzing their bioactivity, some useful parameters for future QSAR studies, their predicted biological targets, and the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) parameters related to the theopapuamides A-D pharmacokinetics are also reported.


Subject(s)
Cheminformatics/methods , Computational Biology/methods , Depsipeptides/chemistry , Aquatic Organisms , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacokinetics , Density Functional Theory , Depsipeptides/isolation & purification , Depsipeptides/pharmacokinetics , Models, Molecular , Quantitative Structure-Activity Relationship
15.
J Mol Model ; 26(7): 174, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32524215

ABSTRACT

A series of non-substituted 1,3,5-triaryl-2-pyrazolines and pyrazolines substituted with Fluoro (-F), Chloro (-Cl) and Bromo (-Br) groups at the 3-aryl position were studied. All calculations were done using the conceptual framework of density functional theory. The geometries and reactivity properties were analyzed according to an increase from one to twelve alkyl units in the 5-aryl of 2-pyrazoline ring. In order to be able to apply the particular methodology named KID procedure (for Koopmans in DFT), the KID descriptors were calculated and the results showed that the use of this approximation (Koopmans' theorem in DFT studies) is feasible. The results for the geometries determined that the increase of the chain with alkyl units does not affect the geometry of the systems. However, the solvation energy also calculated is affected by this increase in the allyl chain length. Due to this, as the chains increases, the solubility of the molecular systems diminishes. The chemical reactivity properties were determined by calculating the descriptors that arise from conceptual DFT and it could be demonstrated that they are not affected by the chain growth. Slight differences were found due to the different halogen substitutions. Finally, it could be observed that all the pyrazolines present an important electrophilic behavior. Graphical Abstract Properties changes in relation to the increasing alkyloxy chain length and halogens presence.

16.
Heliyon ; 5(8): e02335, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31463408

ABSTRACT

A methodology based on the concepts that arise from Density Functional Theory (CDFT) was chosen for the calculation of the global and local reactivity descriptors of the Phallotoxin family of fungal peptides. The determination of the active sites for the molecules has been achieved by resorting some descriptors within Molecular Electron Density Theory (MEDT) like the Dual Descriptor and the Parr functions. Phallosacin has been found as the most reactive of the peptides on the basis of the calculated Global Reactivity Descriptors. The pKas of the seven studied peptides were established using a proposed relationship between this property and the calculated Global Hardness. The bioactivity properties of the peptides considered in this study were obtained by resorting to a homology model by comparison with the bioactivity of related molecules in their interaction with different receptors.

17.
BMC Res Notes ; 12(1): 442, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31324267

ABSTRACT

OBJECTIVE: A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structure of the Taltobulin anticancer peptide. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. RESULTS: The molecular active sites were associated with the active regions of the molecule were associated with the nucleophilic and electrophilic Fukui functions. Finally, the bioactivity scores for the Taltobulin peptide are predicted through a homology methodology relating them with the calculated reactivity descriptors.


Subject(s)
Antineoplastic Agents/chemistry , Cheminformatics/methods , Computational Biology/methods , Oligopeptides/chemistry , Peptides/chemistry , Amino Acid Sequence , Catalytic Domain , Models, Molecular , Molecular Structure , Protein Conformation
18.
Molecules ; 24(15)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349587

ABSTRACT

Virotoxins are monocyclic peptides formed by at least five different compounds: alaviroidin, viroisin, deoxoviroisin, viroidin and deoxovirodin. These are toxic peptides singularly found in Amanita virosa mushrooms. Here we perform computational studies on the structural and electronic conformations of these peptides using the MN12SX/Def2TZVP/H2O chemistry model to investigate their chemical reactivity. CDFT-based descriptors (for Conceptual Density Functional Theory) (e.g., Parr functions and Nucleophilicity) are also considered. At the same time, other properties (e.g., pKas) will be determined and used to study virotoxins solubility and to inform decisions about repurposing these agents in medicinal chemistry.


Subject(s)
Cheminformatics , Density Functional Theory , Fungal Proteins/chemistry , Models, Chemical , Peptides, Cyclic/chemistry , Cheminformatics/methods , Models, Molecular , Molecular Structure
19.
J Mol Model ; 24(9): 250, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30141089

ABSTRACT

The formation of electron donor-acceptor complexes is studied with global and local charge transfer partitionings. The 1-parabola model is applied to the bromination reaction of alkenes and the correlations found between the global and local charge transferred with the transition energy of the charge transfer bands and the kinetic rate constants indicate that the nucleophilic attack of alkenes to bromine is the electronic process controlling the reactivity in the formation of the electron donor-acceptor complexes in this reaction. The 2-parabolas model is used in studying the nitrosation of aromatic compounds where colorful electron donor-acceptor complexes are formed. In this case, and like previous applications of the 2-parabolas model, the consistent usage of the model mandates the explicit consideration of reaction conditions in preparing the reactants to have a direction of electron transfer that is consistent with the chemical potential differences. For the nitrosation reaction this implies considering the nitrosonium cation as the charge acceptor. Both applications support that the charge transferred predicted from chemical reactivity models can be used as a scale to measure the nucleophilicity in reactivity trends. Graphical Abstract ᅟ.

20.
J Mol Model ; 23(8): 236, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28735497

ABSTRACT

The regioselectivity of the 1,3-dipolar cycloaddition of a model nitrone with a set of dipolarophiles, presenting diverse electronic effects, is analyzed using conceptual density functional theory (DFT) methods. We deviate from standard approaches based on frontier molecular orbitals and formulations of the local hard/soft acid/base principle and use instead the dual descriptor. A detailed analysis is carried out to determine the influence of the way to calculate the dual descriptor, the computational procedure, basis set and choice of method to condensate the values of this descriptor. We show that the qualitative regioselectivity predictions depend on the choice of "computational conditions", something that indicates the danger of using black-box computational set-ups in conceptual DFT studies.

SELECTION OF CITATIONS
SEARCH DETAIL