Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters











Publication year range
1.
Colloids Surf B Biointerfaces ; 245: 114281, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39362072

ABSTRACT

Natural rubber originates from the coagulation of rubber particles (RP) from Hevea brasiliensis latex. The size distribution of Hevea RP is bimodal with the presence of small rubber particles (SRP) and large rubber particles (LRP). This study aims at getting a better understanding of the early coagulation steps of Hevea RP taking into account the particle size. SRP and LRP were obtained by centrifugation of freshly tapped ammonia-free latex from RRIM600 clone. Size and zeta potential measurements showed that both RP fractions were efficiently separated and stable in basic buffer. SRP and LRP dispersions were placed in a Langmuir trough and RP were let to adsorb at the air-liquid interface to form interfacial films. Surface tension and ellipsometry indicate that the formation kinetics and the stabilization of the film at the air-liquid interface are faster for SRP than LRP. Moreover, the arrangement of RP at the interface differs between SRP and LRP, as shown by Brewster angle microscopy, atomic force microscopy and confocal laser scanning microscopy. First, the RP membrane and cis-1,4-polyisoprene core spread at the air-liquid interface before clustering. Then, while the SRP fuse, the LRP keep their structure in individual particles in floating aggregate. The role of the non-isoprene molecules on the different organization of SRP and LRP films is discussed, the one of the two major RP proteins, SRPP1 (Small Rubber Particle Protein) and Rubber Elongation Factor (REF1) in the early coagulation steps.

2.
Article in English | MEDLINE | ID: mdl-38662963

ABSTRACT

The stripping reaction of lithium (Li) will greatly impact the cyclability and safety of Li-metal batteries. However, Li pits' nucleation and growth, the origin of uneven stripping, are still poorly understood. In this study, we analyze the nucleation mechanism of Li pits and their morphology evolution with a large population and electrode area (>0.45 cm2). We elucidate the dependence of the pit size and density on the current density and overpotential, which are aligned with classical nucleation theory. With a confocal laser scanning microscope, we reveal the preferential stripping on certain crystal grains and a new stripping mode between pure pitting and stripping without pitting. Descriptors like circularity and the aspect ratio (R) of the pit radius to depth are used to quantify the evolution of Li pits in three dimensions. As the pits grow, growth predominates along the through-planedirection, surpassing the expanding rate in the in-plane direction. After analyzing more than 1000 pits at each condition, we validate that the overpotential is inversely related to the pit radius and exponentially related to the rate of nucleation. With this established nucleation-overpotential relationship, we can better understand and predict the evolution of the surface area and roughness of Li electrodes under different stripping conditions. The knowledge and methodology developed in this work will significantly benefit Li-metal batteries' charging/discharging profile design and the assessment of large-scale Li-metal foils.

3.
Small Methods ; : e2301713, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564783

ABSTRACT

The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.

4.
Front Microbiol ; 15: 1327913, 2024.
Article in English | MEDLINE | ID: mdl-38426054

ABSTRACT

Numerous studies have investigated the effects of stannous ions on specific microbes and their efficacy in reducing dental plaque. Nonetheless, our understanding of their impact on the oral microbiome is still a subject of ongoing exploration. Therefore, this study sought to evaluate the effects of a stannous-containing sodium fluoride dentifrice in comparison to a zinc-containing sodium fluoride dentifrice and a control group on intact, healthy oral biofilms. Utilizing the novel 2bRAD-M approach for species-resolved metagenomics, and FISH/CLSM with probes targeting periodontal and caries associated species alongside Sn2+ and Zn2+ ions, we collected and analyzed in situ biofilms from 15 generally healthy individuals with measurable dental plaque and treated the biofilms with dentifrices to elucidate variations in microbial distribution. Although significant shifts in the microbiome upon treatment were not observed, the use of a stannous-containing sodium fluoride dentifrice primarily led to an increase in health-associated commensal species and decrease in pathogenic species. Notably, FISH/CLSM analysis highlighted a marked reduction in representative species associated with periodontitis and caries following treatment with the use of a stannous-containing sodium fluoride dentifrice, as opposed to a zinc-containing sodium fluoride dentifrice and the control group. Additionally, Sn2+ specific intracellular imaging reflected the colocalization of Sn2+ ions with P. gingivalis but not with other species. In contrast, Zn2+ ions exhibited non-specific binding, thus suggesting that Sn2+ could exhibit selective binding toward pathogenic species. Altogether, our results demonstrate that stannous ions could help to maintain a healthy oral microbiome by preferentially targeting certain pathogenic bacteria to reverse dysbiosis and underscores the importance of the continual usage of such products as a preventive measure for oral diseases and the maintenance of health.

5.
Biotechnol Prog ; 40(1): e3389, 2024.
Article in English | MEDLINE | ID: mdl-37747847

ABSTRACT

Tangential flow filtration (TFF) through a 30 kDa nominal molecular weight cut-off (MWCO) ultrafiltration membrane is widely employed to concentrate purified monoclonal antibodies (mAbs) to levels required for their formulation into injectable biologics. While TFF has been used to remove casein from milk for cheese production for over 35 years, and in pharmaceutical manufacture of biotherapeutic proteins for 20 years, the rapid decline in filtration rate (i.e., flux) at high protein concentrations is a limitation that still needs to be addressed. This is particularly important for mAbs, many of which are 140-160 kDa immunoglobulin G (IgG) type proteins recovered at concentrations of 200 mg/mL or higher. This work reports the direct measurement of local transmembrane pressure drops and off-line confocal imaging of protein accumulation in stagnant regions on the surface of a 30 kDa regenerated cellulose membrane in a flat-sheet configuration widely used in manufacture of biotherapeutic proteins. These first-of-a-kind measurements using 150 kDa bovine IgG show that while axial pressure decreases by 58 psi across a process membrane cassette, the decrease in transmembrane pressure drop is constant at about 1.2 psi/cm along the 20.7 cm length of the membrane. Confocal laser scanning microscopy of the membrane surface at the completion of runs where retentate protein concentration exceeds 200 mg/mL, shows a 50 µm thick protein layer is uniformly deposited. The localized measurements made possible by the modified membrane system confirm the role of protein deposition on limiting ultrafiltration rate and indicate possible targets for improving membrane performance.


Subject(s)
Filtration , Ultrafiltration , Animals , Cattle , Filtration/methods , Ultrafiltration/methods , Milk , Antibodies, Monoclonal/metabolism , Membranes, Artificial , Immunoglobulin G
6.
Front Cell Infect Microbiol ; 13: 1200923, 2023.
Article in English | MEDLINE | ID: mdl-37469594

ABSTRACT

Staphylococcus epidermidis is a commensal skin bacterium that forms host- and antibiotic-resistant biofilms that are a major cause of implant-associated infections. Most research has focused on studying the responses to host-imposed stresses on planktonic bacteria. In this work, we addressed the open question of how S. epidermidis thrives on toxic concentrations of nitric oxide (NO) produced by host innate immune cells during biofilm assembly. We analyzed alterations of gene expression, metabolism, and matrix structure of biofilms of two clinical isolates of S. epidermidis, namely, 1457 and RP62A, formed under NO stress conditions. In both strains, NO lowers the amount of biofilm mass and causes increased production of lactate and decreased acetate excretion from biofilm glucose metabolism. Transcriptional analysis revealed that NO induces icaA, which is directly involved in polysaccharide intercellular adhesion (PIA) production, and genes encoding proteins of the amino sugar pathway (glmM and glmU) that link glycolysis to PIA synthesis. However, the strains seem to have distinct regulatory mechanisms to boost lactate production, as NO causes a substantial upregulation of ldh gene in strain RP62A but not in strain 1457. The analysis of the matrix components of the staphylococcal biofilms, assessed by confocal laser scanning microscopy (CLSM), showed that NO stimulates PIA and protein production and interferes with biofilm structure in a strain-dependent manner, but independently of the Ldh level. Thus, NO resistance is attained by remodeling the staphylococcal matrix architecture and adaptation of main metabolic processes, likely providing in vivo fitness of S. epidermidis biofilms contacting NO-proficient macrophages.


Subject(s)
Staphylococcal Infections , Staphylococcus epidermidis , Humans , Staphylococcus epidermidis/genetics , Nitrosative Stress , Staphylococcal Infections/microbiology , Biofilms , Staphylococcus/genetics
7.
Curr Protoc ; 3(6): e820, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37338194

ABSTRACT

The use of polychromatic immunofluorescent staining on whole-mount skin enables cell type characterization and aids in the delineation of the physiological and immunological strategies used by the skin to combat pathogens. Using whole-mount skin for polychromatic immunofluorescent staining removes the need for histological sectioning and enables the visualization of anatomical structures and immune cell types in three dimensions. Here we present a detailed protocol for immunostaining with fluorescence-conjugated primary antibodies in whole-mount skin to reveal structural landmarks and specific immune cell types using confocal laser scanning microscopy (CLSM) (Basic Protocol 1). The optimized staining panel reveals structural features such as blood vessels (CD31 antibody) and the lymphatic network (LYVE-1 antibody), in combination with MHCII antibodies for antigen-presenting cells (APCs), CD64 for macrophages and monocytes, CD103 for dendritic epidermal T cells (DETC), and CD326 for Langerhans cells (LC). Basic Protocol 2 describes image visualization pipelines using open-source software (ImageJ/FIJI), enabling four visualization options (z-projections, orthogonal views, 3D visualization, and animation). Basic Protocol 3 describes a quantitative analysis pipeline using CellProfiler to characterize the spatial relationship between cell types using mathematical indices such as Spatial Distribution Index (SDI), Neighborhood Frequency (NF), and Normalized Median Evenness (NME). These protocols will enable researchers to stain, record, analyze, and interpret data from whole-mount skin using commercially available reagents in a CLSM-equipped laboratory and freely available analysis software. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Immunofluorescent staining and imaging for whole-mount mouse skin Basic Protocol 2: File rendering and visualization using FIJI Basic Protocol 3: Spatial image analysis using CellProfiler.


Subject(s)
Imaging, Three-Dimensional , Skin , Animals , Mice , Imaging, Three-Dimensional/methods , Skin/diagnostic imaging , Staining and Labeling , Coloring Agents , Microscopy, Confocal/methods
8.
Beilstein J Nanotechnol ; 14: 603-615, 2023.
Article in English | MEDLINE | ID: mdl-37228744

ABSTRACT

Suspension feeding via setae collecting particles is common within Crustacea. Even though the mechanisms behind it and the structures themselves have been studied for decades, the interplay between the different setae types and the parameters contributing to their particle collecting capacities remain partly enigmatic. Here, we provide a numerical modeling approach to understand the relationship among the mechanical property gradients, the mechanical behavior and the adhesion of setae, and the feeding efficiency of the system. In this context, we set-up a simple dynamic numerical model that takes all of these parameters into account and describes the interaction with food particles and their delivery into the mouth opening. By altering the parameters, it was unraveled that the system performs best when the long and short setae have different mechanical properties and different degrees of adhesion since the long setae generate the feeding current and the short ones establish the contact with the particle. This protocol can be applied to any system in the future as the parameters (i.e., properties and arrangement of particles and setae) can be easily altered. This will shed light on the biomechanical adaptations of these structures to suspension feeding and provide inspiration for biomimetics in the field of filtration technologies.

9.
Int J Pharm X ; 5: 100174, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36908304

ABSTRACT

The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.

10.
Front Cell Infect Microbiol ; 13: 1130255, 2023.
Article in English | MEDLINE | ID: mdl-36798085

ABSTRACT

For centuries, diverse mouthrinses have been applied for medicinal purposes in the oral cavity. In view of the growing resistance of oral microorganisms against conventional antimicrobial agents e.g. chlorhexidine, the implementation of alternative treatments inspired by nature has lately gained increasing interest. The aim of the present study was to compare in vitro biofilm models with in situ biofilms in order to evaluate the antimicrobial potential of different natural mouthrinses. For the in vitro study a six-species supragingival biofilm model containing A. oris, V. dispar, C. albicans, F. nucleatum, S. mutans and S. oralis was used. Biofilms were grown anaerobically on hydroxyapatite discs and treated with natural mouthrinses Ratanhia, Trybol and Tebodont. 0.9% NaCl and 10% ethanol served as negative controls, while 0.2% CHX served as positive control. After 64h hours, biofilms were harvested and quantified by cultural analysis CFU. For the in situ study, individual test splints were manufactured for the participants. After 2h and 72h the biofilm-covered samples were removed and treated with the mouthrinses and controls mentioned above. The biofilms were quantified by CFU and stained for vitality under the confocal laser scanning microscope. In the in vitro study, 0.2% CHX yielded the highest antimicrobial effect. Among all mouthrinses, Tebodont (4.708 ± 1.294 log10 CFU, median 5.279, p<0.0001) compared with 0.9% NaCl showed the highest antimicrobial potential. After 72h there was no significant reduction in CFU after 0.2% CHX treatment. Only Trybol showed a statistically significant reduction of aerobic growth of microorganisms in situ (5.331 ± 0.7350 log10 CFU, median 5.579, p<0.0209). After treatment with the positive control 0.2% CHX, a significant percentage of non-vital bacteria (42.006 ± 12.173 log10 CFU, median 42.150) was detected. To sum up, a less pronounced effect of all mouthrinses was shown for the in situ biofilms compared to the in vitro biofilms.


Subject(s)
Anti-Infective Agents , Saline Solution , Humans , Saline Solution/pharmacology , Anti-Infective Agents/pharmacology , Chlorhexidine/pharmacology , Ethanol , Biofilms
11.
Front Plant Sci ; 13: 998960, 2022.
Article in English | MEDLINE | ID: mdl-36340392

ABSTRACT

Organelles contribute to plant growth via their movements and interactions, which ensure efficient metabolic flow and help plants adapt to environmental stress. Live-cell imaging of the interactions of organelles has been performed in yeast, plant, and animal cells. However, high-throughput quantitative methods are needed to simultaneously analyze the interactions of many organelles in living plant cells. Here, we developed a semi-automatic high-throughput method to quantitatively evaluate the interactions between peroxisomes and chloroplasts using a distance transformation algorithm and high-resolution 3D fluorescent images taken by confocal laser scanning microscopy. Using this method, we measured the 3D distance between the center of peroxisome and chloroplast surface in Arabidopsis thaliana. We then compared the distances between these organelles in leaf mesophyll cells under light and dark conditions. This distance was shorter in the light than in the dark, which is in agreement with the findings of previous studies. We used our method to evaluate peroxisome-chloroplast (plastid) interactions in different cell types in the light and dark, including guard, stem, and root cells. Like in mesophyll cells, the distance between the peroxisome and chloroplast was shorter in the light in guard and stem cells, but not in root cells, suggesting that photosynthetic plastids (chloroplasts) play important roles in these interactions. When leaf mesophyll cells were incubated under high-intensity light, the frequency of shorter distances between peroxisomes and chloroplasts significantly increased. Our high-throughput, semi-automatic method represents a powerful tool for evaluating peroxisome-chloroplast interactions in different types of plant cells under various environmental conditions.

12.
Drug Deliv ; 29(1): 2868-2882, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36065090

ABSTRACT

Loratadine (LORA), is a topical antihistamine utilized in the treatment of ocular symptoms of COVID-19. The study aimed to develop a Loratadine Nanostructured Lipid Carriers Ocugel (LORA-NLCs Ocugel), enhance its solubility, trans-corneal penetrability, and bioavailability. full-factorial design was established with 24 trials to investigate the impact of several variables upon NLCs properties. LORA-NLCs were fabricated by using hot melt emulsification combined with high-speed stirring and ultrasonication methods. All obtained formulae were assessed in terms of percent of entrapment efficiency (EE%), size of the particle (PS), zeta potential (ZP), as well as in-vitro release. Via using Design Expert® software the optimum formula was selected, characterized using FTIR, Raman spectroscopy, and stability studies. Gel-based of optimized LORA-NLCs was prepared using 4% HPMC k100m which was further evaluated in terms of physicochemical properties, Ex-vivo, and In-vivo studies. The optimized LORA-NLCs, comprising Compritol 888 ATO®, Labrasol®, and Span® 60 showed EE% of 95.78 ± 0.67%, PS of 156.11 ± 0.54 nm, ZP of -40.10 ± 0.55 Mv, and Qh6% of 99.67 ± 1.09%, respectively. Additionally, it illustrated a spherical morphology and compatibility of LORA with other excipients. Consequently, gel-based on optimized LORA-NLCs showed pH (7.11 ± 0.52), drug content (98.62%± 1.31%), viscosity 2736 cp, and Q12% (90.49 ± 1.32%). LORA-NLCs and LORA-NLCs Ocugel exhibited higher ex-vivo trans-corneal penetrability compared with the aqueous drug dispersion. Confocal laser scanning showed valuable penetration of fluoro-labeled optimized formula and LORA-NLCs Ocugel through corneal. The optimized formula was subjected to an ocular irritation test (Draize Test) that showed the absence of any signs of inflammation in rabbits, and histological analysis showed no effect or damage to rabbit eyeballs. Cmax and the AUC0-24 were higher in LORA-NLCs Ocugel compared with pure Lora dispersion-loaded gel The research findings confirmed that NLCs could enhance solubility, trans-corneal penetrability, and the bioavailability of LORA.


Subject(s)
COVID-19 Drug Treatment , Loratadine , Animals , Drug Carriers/chemistry , Lipids/chemistry , Particle Size , Rabbits
13.
Acta Parasitol ; 67(3): 1307-1328, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35796913

ABSTRACT

BACKGROUND: The most convincing species of Allopodocotyle Pritchard, 1966 (Digenea: Opecoelidae) are known overwhelmingly from groupers (Serranidae: Epinephelinae). Six species of Allopodocotyle have been reported, collectively, from species of Cromileptes Swainson, 1839, Epinephelus Bloch, 1793 and Plectropomus Oken, 1817. These are A. epinepheli (Yamaguti, 1942), A. heronensis Downie & Cribb, 2011, A. manteri (Saoud & Ramadan, 1984), A. mecopera (Manter, 1940), A. plectropomi (Manter, 1963) and A. serrani (Yamaguti, 1952). In addition, a not yet fully described and unnamed seventh species, morphologically and phylogenetically close to A. epinepheli, was isolated from the orange-spotted grouper Epinephelus coioides (Hamilton, 1822) off Bali, Indonesia in 2016. An eighth species, again from E. coioides off Bali is described herein. METHODS: Morphological and phylogenetic analyses justify the recognition of A. palmi sp. nov., which is also genetically different from the as yet unnamed congener from the same host and locality. For the first time, 3D confocal laser scanning microscopy was applied to study and distinguish Digenea taxonomically. We introduce the 'Palm pattern', a new simplified way to visualise morphometric differences of related digenean taxa. RESULTS: Allopodocotyle palmi sp. nov. is distinguished from its congeners that infect groupers by its elongate body with a size > 2.7 mm and diagonal testes. The ovary is located mainly, and the anterior testis completely, in the posterior half of the body; the uterine coils are in the fourth eighth of the body. The cirrus-sac is 0.75-1.4 (1.1) mm long, its posterior extremity is well separated from the anterior extent of the vitelline fields, just reaching the anterior border of uterine coils. In addition, Prosorhynchus maternus Bray & Justine, 2006 (Bucephalidae) was isolated from E. coioides, representing the first record in Indonesia and the third record for this fish species. CONCLUSION: The biodiversity research in Indonesia is enhanced with a new species description based on modern and newly applied techniques.


Subject(s)
Bass , Fish Diseases , Trematoda , Animals , Female , Indonesia , Male , Phylogeny , Seafood
14.
New Phytol ; 235(6): 2481-2495, 2022 09.
Article in English | MEDLINE | ID: mdl-35752974

ABSTRACT

Fluorescence microscopy is common in bacteria-plant interaction studies. However, strong autofluorescence from plant tissues impedes in vivo studies on endophytes tagged with fluorescent proteins. To solve this problem, we developed a deep-learning-based approach to eliminate plant autofluorescence from fluorescence microscopy images, tested for the model endophyte Azoarcus olearius BH72 colonizing Oryza sativa roots. Micrographs from three channels (tdTomato for gene expression, green fluorescent protein (GFP) and AutoFluorescence (AF)) were processed by a neural network based approach, generating images that simulate the background autofluorescence in the tdTomato channel. After subtracting the model-generated signals from each pixel in the genuine channel, the autofluorescence in the tdTomato channel was greatly reduced or even removed. The deep-learning-based approach can be applied for fluorescence detection and quantification, exemplified by a weakly expressed, a cell-density modulated and a nitrogen-fixation gene in A. olearius. A transcriptional nifH::tdTomato fusion demonstrated stronger induction of nif genes inside roots than outside, suggesting extension of the rhizosphere effect for diazotrophs into the endorhizosphere. The pre-trained convolutional neural network model is easily applied to process other images of the same plant tissues with the same settings. This study showed the high potential of deep-learning-based approaches in image processing. With proper training data and strategies, autofluorescence in other tissues or materials can be removed for broad applications.


Subject(s)
Deep Learning , Nitrogen Fixation , Endophytes , Fluorescence , Nitrogen Fixation/genetics , Plant Roots/microbiology
15.
Diagnostics (Basel) ; 12(5)2022 May 09.
Article in English | MEDLINE | ID: mdl-35626335

ABSTRACT

Paclitaxel and trastuzumab have been associated with adverse effects including chemotherapy-induced peripheral neuropathy (CIPN) or ocular complications. In vivo confocal laser scanning microscopy (CLSM) of the cornea could be suitable for assessing side effects since the cornea is susceptible to, i.e., neurotoxic stimuli. The study represents a one-year follow-up of a breast cancer patient including large-area in vivo CLSM of the subbasal nerve plexus (SNP), nerve function testing, and questionnaires during paclitaxel and trastuzumab therapy. Six monitoring sessions (one baseline, four during, and one after therapy) over 58 weeks were carried out. Large-area mosaics of the SNP were generated, and identical regions within all sessions were assigned. While corneal nerve morphology did not cause alterations, the number of dendritic cells (DCs) showed dynamic changes with a local burst at 11 weeks after baseline. Simultaneously, paclitaxel treatment was terminated due to side effects, which, together with DCs, returned to normal levels as the therapy progressed. Longitudinal in vivo CLSM of the SNP could complement routine examinations and be helpful to generate a comprehensive clinical picture. The applied techniques, with corneal structures acting as biomarkers could represent a diagnostic tool for the objective assessment of the severity of adverse events and the outcome.

16.
MethodsX ; 8: 101480, 2021.
Article in English | MEDLINE | ID: mdl-34434878

ABSTRACT

Histological processing of mineralised tissue (e.g. bone) allows examining the anatomy of cells and tissues as well as the material properties of the tissue. However, resin-embedding offers limited control over the specimen position for cutting. Moreover, specific anatomical planes (coronal, sagittal) or defined landmarks are often missed with standard microtome sectioning. Here we describe a method to precisely locate a specific anatomical 2D plane or any anatomical feature of interest (e.g. bone lesions, newly formed bone, etc.) using 3D micro computed tomography (microCT), and to expose it using controlled-angle microtome cutting. The resulting sections and corresponding specimen's block surface offer correlative information of the same anatomical location, which can then be analysed using multiscale imaging. Moreover, this method can be combined with immunohistochemistry (IHC) to further identify any component of the bone microenvironment (cells, extracellular matrix, proteins, etc.) and guide subsequent in-depth analysis. Overall, this method allows to:•Cut your specimens in a consistent position and precise manner using microCT-based controlled-angle microtome sectioning.•Locate and expose a specific anatomical plane (coronal, sagittal plane) or any other anatomical landmarks of interest based on microCT.•Identify any cell or tissue markers based on IHC to guide further in-depth examination of those regions of interest.

17.
Foods ; 10(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062810

ABSTRACT

Lactic acid bacteria (LAB) have been studied for several decades to understand and determine their mechanism and interaction within the matrix into which they are introduced. This study aimed to determine the spatial distribution of Lacticaseibacillus rhamnosus GG (LGG) in a dairy matrix and to decipher its behaviour towards milk components, especially fat globules. Two strains of this widely studied bacterium with expected probiotic effects were used: LGG WT with pili on the cell surface and its pili-depleted mutant-LGG ΔspaCBA-in order to determine the involvement of these filamentous proteins. In this work, it was shown that LGG ΔspaCBA was able to limit creaming with a greater impact than the wild-type counterpart. Moreover, confocal imaging evidenced a preferential microbial distribution as aggregates for LGG WT, while the pili-depleted strain tended to be homogenously distributed and found as individual chains. The observed differences in creaming are attributed to the indirect implication of SpaCBA pili. Indeed, the bacteria-to-bacteria interaction surpassed the bacteria-to-matrix interaction, reducing the bacterial surface exposed to raw milk. Conversely, LGG ΔspaCBA may form a physical barrier responsible for preventing milk fat globules from rising to the surface.

18.
Quant Imaging Med Surg ; 11(5): 1737-1750, 2021 May.
Article in English | MEDLINE | ID: mdl-33936961

ABSTRACT

BACKGROUND: Regarding the growing interest and importance of understanding the cellular changes of the cornea in diseases, a quantitative cellular characterization of the epithelium is becoming increasingly important. Towards this, the latest research offers considerable improvements in imaging of the cornea by confocal laser scanning microscopy (CLSM). This study presents a pipeline to generate normative morphological data of epithelial cell layers of healthy human corneas. METHODS: 3D in vivo CLSM was performed on the eyes of volunteers (n=25) with a Heidelberg Retina Tomograph II equipped with an in-house modified version of the Rostock Cornea Module implementing two dedicated piezo actuators and a concave contact cap. Image data were acquired with nearly isotropic voxel resolution. After image registration, stacks of en-face sections were used to generate full-thickness volume data sets of the epithelium. Beyond that, an image analysis algorithm quantified en-face sections of epithelial cells regarding the depth-dependent mean of cell density, area, diameter, aggregation (Clark and Evans index of aggregation), neighbor count and polygonality. RESULTS: Imaging and cell segmentation were successfully performed in all subjects. Thereby intermediated cells were efficiently recognized by the segmentation algorithm while efficiency for superficial and basal cells was reduced. Morphological parameters showed an increased mean cell density, decreased mean cell area and mean diameter from anterior to posterior (5,197.02 to 8,190.39 cells/mm2; 160.51 to 90.29 µm2; 15.9 to 12.3 µm respectively). Aggregation gradually increased from anterior to posterior ranging from 1.45 to 1.53. Average neighbor count increased from 5.50 to a maximum of 5.66 followed by a gradual decrease to 5.45 within the normalized depth from anterior to posterior. Polygonality gradually decreased ranging from 4.93 to 4.64 sides of cells. The neighbor count and polygonality parameters exhibited profound depth-dependent changes. CONCLUSIONS: This in vivo study demonstrates the successful implementation of a CLSM-based imaging pipeline for cellular characterization of the human corneal epithelium. The dedicated hardware in combination with an adapted image registration method to correct the remaining motion-induced image distortions followed by a dedicated algorithm to calculate characteristic quantities of different epithelial cell layers enabled the generation of normative data. Further significant effort is necessary to improve the algorithm for superficial and basal cell segmentation.

19.
Adv Exp Med Biol ; 1310: 115-132, 2021.
Article in English | MEDLINE | ID: mdl-33834435

ABSTRACT

Various silica-based fluorescent nanoparticles ((Si-FNP)) with magnetic or metal cores represent a standard class of nanoparticles offering new opportunities for high-resolution cellular imaging and biomedicine applications, such as drug delivery. Their high solubility, homogeneity, biocompatibility, and chemical inertness Si-FNPs make them attractive probes for correlative light and electron microscopy (CLEM) studies, offering novel insights into nanoparticle-cell interactions in detail. In the present chapter, we present a procedure for imaging silica-based fluorescent magnetic core-shell nanoparticles (Si-FMNP) at the single-particle scale in cells. Our method facilitates the acquisition of information on the extracellular and intercellular distribution of nanoparticles and their various interactions with various cellular organelles when cells are cultured and electroporated by NPs. In addition, such information could facilitate the evaluation of the efficacy of nanocarriers designed for drug delivery.


Subject(s)
Nanoparticles , Cell Communication , Drug Delivery Systems , Microscopy, Electron , Silicon Dioxide
20.
Int J Mol Sci ; 22(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802057

ABSTRACT

Heavy metals polluting the 100-year-old waste heap in Boleslaw (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including Trifolium repens and its root nodule microsymbionts-rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, Rhizobium leguminosarum bv. trifolii strains originating from the waste heap area and a non-polluted reference site were investigated for the characteristics of the sugar fraction of their EPS using gas chromatography mass-spectrometry and also for biofilm formation and structural characteristics using confocal laser scanning microscopy under control conditions as well as when exposed to toxic concentrations of zinc, lead, and cadmium. Significant differences in EPS structure, biofilm thickness, and ratio of living/dead bacteria in the biofilm were found between strains originating from the waste heap and from the reference site, both without exposure to metals and under metal exposure. Received results indicate that studied rhizobia can be assumed as potentially useful in remediation processes.


Subject(s)
Biofilms , Metals, Heavy/metabolism , Polysaccharides, Bacterial/metabolism , Rhizobium leguminosarum/physiology , Soil Pollutants/metabolism , Trifolium/microbiology , Biofilms/drug effects , Biofilms/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL