Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 607
Filter
1.
Article in Chinese | MEDLINE | ID: mdl-38964903

ABSTRACT

Objective: To investigate the role of connective tissue growth factor (CTGF) and PI3K/Akt signaling pathways in paraquat (PQ) -induced alterations in alveolar epithelial cell mesenchymalization (EMT) . Methods: In February 2023, RLE-6TN cells were divided into 2 groups, which were set as uncontaminated group and contaminated group (200 µmol/L PQ), and cellular EMT alteration, CTGF and PI3K/Akt signaling pathway related molecules expression were detected by cell scratch assay, qRT-PCR and western-blot assay. Using shRNA interference technology to specifically inhibit the expression of CTGF, RLE-6TN cells were divided into four groups: control group, PQ group (200 µmol/L PQ), interference group (transfected with a plasmid with shRNA-CTGF+200 µmol/L PQ), and null-loaded group (transfected with a plasmid with scramble- CTGF+200 µmol/L PQ), qRT-PCR and western blot were used to examine the alteration of the cellular EMT and the expression of molecules related to the activity of PI3K/Akt pathway. The PI3K/Akt signaling pathway was blocked by the PI3K inhibitor LY294002, and the expression of EMT-related molecules in cells of the control group, PQ group (200 µmol/L PQ), and inhibitor group (200 µmol/L PQ+20 µmol/L LY294002) was examined by qRT-PCR and western blot.The t-test was used to compare the differences between the two groups, while the analysis of variance (ANOVA) was applied to compare the differences among multiple groups. For further pairwise comparisons, the Bonferroni method was adopted. Results: The results of cell scratch test showed that compared with the uncontaminated group, RLE-6TN cells in the contaminated group had faster migration rate, lower mRNA and protein expression levels of E-Cadherin, and higher mRNA and protein expression levels of α-SMA, CTGF, PI3K and Akt, with statistical significance (P<0.05). After specific inhibition of CTGF expression, the mRNA and protein expression of CTGF, PI3K, Akt, and α-SMA in the cells of the interference group were significantly lower than that of the PQ group and the null-loaded group (P<0.05/6), whereas that of E-Cadherin was higher than that of the PQ group and the null-loaded group (P<0.05/6). Specifically blocking the PI3K/Akt signaling pathway, the mRNA and protein expression of PI3K, Akt and α-SMA in the cells of the inhibitor group was decreased compared with that of the PQ group (P<0.05/3), while the expression of E-Cadherin was elevated compared with that of the PQ group (P<0.05/3) . Conclusion: CTGF may promote PQ-induced alveolar epithelial cell EMT through activation of the PI3K/Akt signaling pathway. Inhibition of CTGF expression or blockade of PI3K/Akt signaling pathway activity can alleviate the extent of PQ-induced alveolar epithelial cell EMT.


Subject(s)
Connective Tissue Growth Factor , Epithelial-Mesenchymal Transition , Paraquat , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Connective Tissue Growth Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Epithelial-Mesenchymal Transition/drug effects , Paraquat/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Animals , Rats , Cell Line , Morpholines/pharmacology , Chromones/pharmacology , Cadherins/metabolism
2.
Article in English | MEDLINE | ID: mdl-38954823

ABSTRACT

Crohn's disease (CD) is an inflammatory bowel disease characterized by transmural inflammation and intestinal fibrosis. Mechanisms of fibrosis in CD are not well understood. Transmural inflammation is associated with inflammatory cell infiltration, stenosis, and distention, which present mechanical stress (MS) to the bowel wall. We hypothesize that MS induces gene expression of pro-fibrotic mediators such as connective tissue growth factor (CTGF), which may contribute to fibrosis in CD. A rodent model of CD was induced by intracolonic instillation of TNBS to the distal colon. TNBS instillation induced a localized transmural inflammation (site I), with a distended colon segment (site P) proximal to site I. We detected significant fibrosis and collagen content not only in site I, but also in site P in CD rats by day 7. CTGF expression increased significantly in sites P and I, but not in the segment distal to the inflammation site. Increased CTGF expression was detected mainly in the smooth muscle cells (SMC). When rats were fed exclusively with clear liquid diet to prevent mechanical distention in colitis, expression of CTGF in sites P and I was blocked. Direct stretch led to robust expression of CTGF in colonic SMC. Treatment of CD rats with anti-CTGF antibody FG-3149 reduced fibrosis and collagen content in both sites P and I and exhibited consistent trends towards normalizing expression of collagen mRNAs. In conclusion, our studies suggest that mechanical stress, by up-regulating pro-fibrotic mediators i.e. CTGF, may play a critical role in fibrosis in CD.

3.
Eur J Pharmacol ; 977: 176711, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38839029

ABSTRACT

Histone deacetylase (HDAC) inhibitors are potential candidates for treating pulmonary fibrosis. MPT0E028, a novel pan-HDAC inhibitor, has been reported to exhibit antitumor activity in several cancer cell lines. In this study, we investigated the mechanism underlying the inhibitory effects of MPT0E028 on the expression of fibrogenic proteins in human lung fibroblasts (WI-38). Our results revealed that MPT0E028 inhibited transforming growth factor-ß (TGF-ß)-, thrombin-, and endothelin 1-induced connective tissue growth factor (CTGF) expression in a concentration-dependent manner. In addition, MPT0E028 suppressed TGF-ß-stimulated expression of fibronectin, collagen I, and α-smooth muscle actin (α-SMA). Furthermore, MPT0E028 inhibited the TGF-ß-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). MPT0E028 reduced the increase in SMAD3 and c-Jun phosphorylation, and SMAD3-and activator protein-1 (AP-1)-luciferase activities under TGF-ß stimulation. Transfection with mitogen-activated protein kinase phosphatase-1 (MKP-1) siRNA reversed the suppressive effects of MPT0E028 on TGF-ß-induced increases in CTGF expression; JNK, p38, and ERK phosphorylation; and SMAD3 and AP-1 activation. Moreover, MPT0E028 increased MKP-1 acetylation and activity in WI-38 cells. Pretreatment with MPT0E028 reduced the fibrosis score and fibronectin, collagen, and α-SMA expression in bleomycin-induced pulmonary fibrosis mice. In conclusion, MPT0E028 induced MKP-1 acetylation and activation, which in turn inhibited TGF-ß-stimulated JNK, p38, and ERK phosphorylation; SMAD3 and AP-1 activation; and subsequent CTGF expression in human lung fibroblasts. Thus, MPT0E028 may be a potential drug for treating pulmonary fibrosis.


Subject(s)
Connective Tissue Growth Factor , Dual Specificity Phosphatase 1 , Fibroblasts , Histone Deacetylase Inhibitors , Lung , Pulmonary Fibrosis , Transforming Growth Factor beta , Connective Tissue Growth Factor/metabolism , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/drug therapy , Animals , Histone Deacetylase Inhibitors/pharmacology , Mice , Lung/drug effects , Lung/pathology , Lung/cytology , Lung/metabolism , Transforming Growth Factor beta/metabolism , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Cell Line , Smad3 Protein/metabolism , Phosphorylation/drug effects , Male , Enzyme Activation/drug effects , Mice, Inbred C57BL
4.
Biomed Pharmacother ; 175: 116750, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749174

ABSTRACT

Connective tissue growth factor (CTGF) holds great promise for enhancing the wound healing process; however, its clinical application is hindered by its low stability and the challenge of maintaining its effective concentration at the wound site. Herein, we developed novel double-emulsion alginate (Alg) and heparin-mimetic alginate sulfate (AlgSulf)/polycaprolactone (PCL) nanoparticles (NPs) for controlled CTGF delivery to promote accelerated wound healing. The NPs' physicochemical properties, cytocompatibility, and wound healing activity were assessed on immortalized human keratinocytes (HaCaT), primary human dermal fibroblasts (HDF), and a murine cutaneous wound model. The synthesized NPs had a minimum hydrodynamic size of 200.25 nm. Treatment of HaCaT and HDF cells with Alg and AlgSulf2.0/PCL NPs did not show any toxicity when used at concentrations <50 µg/mL for up to 72 h. Moreover, the NPs' size was not affected by elevated temperatures, acidic pH, or the presence of a protein-rich medium. The NPs have slow lysozyme-mediated degradation implying that they have an extended tissue retention time. Furthermore, we found that treatment of HaCaT and HDF cells with CTGF-loaded Alg and AlgSulf2.0/PCL NPs, respectively, induced rapid cell migration (76.12% and 79.49%, P<0.05). Finally, in vivo studies showed that CTGF-loaded Alg and AlgSulf2.0/PCL NPs result in the fastest and highest wound closure at the early and late stages of wound healing, respectively (36.49%, P<0.001 on day 1; 90.45%, P<0.05 on day 10), outperforming free CTGF. Double-emulsion NPs based on Alg or AlgSulf represent a viable strategy for delivering heparin-binding GF and other therapeutics, potentially aiding various disease treatments.


Subject(s)
Alginates , Connective Tissue Growth Factor , Nanoparticles , Polyesters , Wound Healing , Wound Healing/drug effects , Alginates/chemistry , Polyesters/chemistry , Humans , Connective Tissue Growth Factor/metabolism , Animals , Nanoparticles/chemistry , Mice , HaCaT Cells , Fibroblasts/drug effects , Male , Drug Carriers/chemistry , Cell Line , Drug Delivery Systems/methods , Keratinocytes/drug effects , Particle Size , Sulfates/chemistry , Sulfates/pharmacology
5.
Oncol Lett ; 27(6): 241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618645

ABSTRACT

Connective tissue growth factor (CTGF) is a target gene of the Hippo signaling pathway. Its differential role in the histological types of gastric cancer (GC) remains unknown; therefore, the present study aimed to confirm the clinical significance of CTGF expression in cancer and stromal cells in patients with GC depending on the histological type. The present study enrolled 589 patients with GC. Immunohistochemistry was used to analyze CTGF expression in cancer and stromal cells. CTGF mRNA expression data and the corresponding clinical information of GC samples were collected from The Cancer Genome Atlas (TCGA) database. Subsequently, the associations between CTGF expression and several clinicopathological factors were investigated. In the present study, CTGF expression was mainly observed in the cytoplasm of cancer and stromal cells. CTGF expression in stromal cells was significantly associated with CTGF expression in cancer cells (P<0.001). CTGF positivity in stromal cells was also significantly associated with intestinal type, non-scirrhous type, tumor depth (T1-2), lymph node metastasis (negative), lymphatic invasion (negative) and tumor size (<5 cm). Low CTGF expression in stromal cells was independently associated with worse overall survival (OS). Furthermore, the OS of patients with low CTGF expression in stromal cells, especially in patients with diffuse-type GC, was significantly worse than patients with high CTGF expression (P=0.022). This trend was similar to that revealed by TCGA data analysis. In conclusion, low CTGF expression was associated with a significantly worse OS in patients with diffuse-type GC. These data indicated that CTGF, and its control by the Hippo pathway, may be considered potential treatment targets in diffuse-type GC.

6.
Virchows Arch ; 484(5): 837-845, 2024 May.
Article in English | MEDLINE | ID: mdl-38602559

ABSTRACT

The classical BCR::ABL1-negative myeloproliferative neoplasms (MPN) form a group of bone marrow (BM) diseases with the potential to progress to acute myeloid leukemia or develop marrow fibrosis and subsequent BM failure. The mechanism by which BM fibrosis develops and the factors that drive stromal activation and fibrosis are not well understood. Cellular Communication Network 2 (CCN2), also known as CTGF (Connective Tissue Growth Factor), is a profibrotic matricellular protein functioning as an important driver and biomarker of fibrosis in a wide range of diseases outside the marrow. CCN2 can promote fibrosis directly or by acting as a factor downstream of TGF-ß, the latter already known to contribute to myelofibrosis in MPN.To study the possible involvement of CCN2 in BM fibrosis in MPN, we assessed CCN2 protein expression by immunohistochemistry in 75 BM biopsies (55 × MPN and 20 × normal controls). We found variable expression of CCN2 in megakaryocytes with significant overexpression in a subgroup of 7 (13%) MPN cases; 4 of them (3 × essential thrombocytemia and 1 × prefibrotic primary myelofibrosis) showed no fibrosis (MF-0), 2 (1 × post-polycythemic myelofibrosis and 1 × primary myelofibrosis) showed moderate fibrosis (MF-2), and 1 (primary myelofibrosis) severe fibrosis (MF-3). Remarkably, CCN2 expression did not correlate with fibrosis or other disease parameters such as platelet count or thrombovascular events, neither in this subgroup nor in the whole study group. This suggests that in BM of MPN patients other, CCN2-independent pathways (such as noncanonical TGF-ß signaling) may be more important for the development of fibrosis.


Subject(s)
Connective Tissue Growth Factor , Myeloproliferative Disorders , Primary Myelofibrosis , Signal Transduction , Transforming Growth Factor beta , Humans , Connective Tissue Growth Factor/metabolism , Transforming Growth Factor beta/metabolism , Primary Myelofibrosis/pathology , Primary Myelofibrosis/metabolism , Middle Aged , Male , Female , Aged , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , Adult , Bone Marrow/pathology , Bone Marrow/metabolism , Aged, 80 and over , Immunohistochemistry , Fibrosis/pathology
7.
Biomedicines ; 12(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38540101

ABSTRACT

Dysregulation of cell cycle, proliferation, and autophagy plays a pivotal role in diabetic kidney disease. In this study, we assessed urinary excretion of molecular regulators of these processes that mediate their effects via the PI3K/AKT/mTOR pathway in subjects with long-term type 2 diabetes (T2D) and different patterns of chronic kidney disease (CKD). We included 140 patients with T2D and 20 non-diabetic individuals in a cross-sectional study. Urinary PTEN, Beclin-1, sirtuin 1 (SIRT1), Klotho, fibroblast growth factor 21 (FGF21), and connective tissue growth factor (CTGF) were assessed using ELISA. Patients with T2D, when compared to control, demonstrated increased excretion of PTEN, Beclin-1, SIRT1, FGF21, CTGF, and decreased urinary Klotho (all p < 0.05). In the diabetic group, PTEN, FGF21, and CTGF were significantly higher in patients with declined renal function, while Klotho was lower in those with elevated albuminuria. FGF21 and PTEN correlated inversely with the estimated glomerular filtration rate. There was a negative correlation between Klotho and urinary albumin-to-creatinine ratio. In multivariate models, Klotho and PTEN were associated with albuminuric CKD independently. The results provide further support for the role of PTEN, BECN1, FGF21, Klotho, and CTGF in development albuminuric and non-albuminuric CKD in diabetes.

8.
J Ocul Pharmacol Ther ; 40(4): 246-252, 2024 05.
Article in English | MEDLINE | ID: mdl-38517736

ABSTRACT

Purpose: To investigate the effect of yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) on connective tissue growth factor (CTGF) expression in adult retinal pigment epithelial (ARPE)-19 cells. We also studied the inhibitory effect of K-975, a new pan-transcriptional enhanced associate domain (TEAD) inhibitor, and luteolin, a plant-derived flavonoid on CTGF expression. Methods: ARPE-19 cells were transfected with either YAP or TAZ overexpression plasmid or treated with transforming growth factor (TGF)-ß2. The cells were cultured either with or without K-975 or luteolin. The expression of YAP, TAZ, and CTGF was examined using real-time PCR. Results: ARPE-19 cells overexpressing YAP or TAZ exhibited significantly increased CTGF expression. This increase was attenuated by K-975 or luteolin alone. TGF-ß2 treatment significantly raised the expression of not just YAP and TAZ, but also CTGF in ARPE-19 cells. TGF-ß2 treatment-enhanced CTGF expression was considerably lowered by the addition of K-975 or luteolin. Conclusions: Overexpression of YAP or TAZ and treatment with TGF-ß2 led to an increase in the expression of CTGF in ARPE-19 cells. These increases were attenuated by treatment with K-975 and luteolin. These findings suggest that YAP and TAZ may be related to the expression of CTGF in ARPE-19 cells and that K-975 and luteolin can be explored as potential therapeutic agents for preventing CTGF production in vitreoretinal fibrosis.


Subject(s)
Connective Tissue Growth Factor , Luteolin , Retinal Pigment Epithelium , Transcription Factors , Connective Tissue Growth Factor/metabolism , Humans , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Luteolin/pharmacology , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Cell Line , Trans-Activators/metabolism , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/pharmacology , Transforming Growth Factor beta2/antagonists & inhibitors , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
9.
Hum Cell ; 37(2): 465-477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218753

ABSTRACT

Lymphedema, resulting from impaired lymphatic drainage, causes inflammation, fibrosis and tissue damage leading to symptoms such as limb swelling and restricted mobility. Despite various treatments under exploration, no standard effective therapy exists. Here a novel technique using the pyro-drive jet injection (PJI) was used to create artificial clefts between collagen fibers, which facilitated the removal of excess interstitial fluid. The PJI was used to deliver a mixture of lactated Ringer's solution and air into the tail of animals with secondary skin edema. Edema levels were assessed using micro-CT scanning. Histopathological changes and neovascularization were evaluated on the injury-induced regenerative tissue. Regarding tissue remodeling, we focused on connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF)-C. PJI markedly diminished soft tissue volume in the experimental lymphedema animals compared to the non-injected counterparts. The PJI groups exhibited a significantly reduced proportion of inflammatory granulation tissue and an enhanced density of lymphatic vessels and α-smooth muscle actin (αSMA)-positive small vessels in the fibrous granulation tissue compared to the controls. In addition, PJI curtailed the prevalence of CTGF- and VEGF-C-positive cells in regenerative tissue. In a lymphedema animal model, PJI notably ameliorated interstitial edema, promoted lymphatic vessel growth, and bolstered αSMA-positive capillaries in fibrous granulation tissue. PJI's minimal tissue impact post-lymph node dissection indicates significant potential as an early, standard preventative measure. Easily applied in general clinics without requiring specialized training, it offers a cost-effective and highly versatile solution to the management of lymphedema.


Subject(s)
Lymphatic Vessels , Lymphedema , Animals , Vascular Endothelial Growth Factor A/metabolism , Lymphedema/therapy , Lymphedema/etiology , Lymphedema/pathology , Lymphatic Vessels/diagnostic imaging , Lymphatic Vessels/pathology , Skin/metabolism , Edema/complications , Edema/metabolism , Edema/pathology
10.
Cell Commun Signal ; 22(1): 8, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167009

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME) that play an important role in cancer progression. Although the mechanism by which CAFs promote tumorigenesis has been well investigated, the underlying mechanism of CAFs activation by neighboring cancer cells remains elusive. In this study, we aim to investigate the signaling pathways involved in CAFs activation by gastric cancer cells (GC) and to provide insights into the therapeutic targeting of CAFs for overcoming GC. METHODS: Alteration of receptor tyrosine kinase (RTK) activity in CAFs was analyzed using phospho-RTK array. The expression of CAFs effector genes was determined by RT-qPCR or ELISA. The migration and invasion of GC cells co-cultured with CAFs were examined by transwell migration/invasion assay. RESULTS: We found that conditioned media (CM) from GC cells could activate multiple receptor tyrosine kinase signaling pathways, including ERK, AKT, and STAT3. Phospho-RTK array analysis showed that CM from GC cells activated PDGFR tyrosine phosphorylation, but only AKT activation was PDGFR-dependent. Furthermore, we found that connective tissue growth factor (CTGF), a member of the CCN family, was the most pronouncedly induced CAFs effector gene by GC cells. Knockdown of CTGF impaired the ability of CAFs to promote GC cell migration and invasion. Although the PDGFR-AKT pathway was pronouncedly activated in CAFs stimulated by GC cells, its pharmacological inhibition affected neither CTGF induction nor CAFs-induced GC cell migration. Unexpectedly, the knockdown of SRC and SRC-family kinase inhibitors, dasatinib and saracatinib, significantly impaired CTGF induction in activated CAFs and the migration of GC cells co-cultured with CAFs. SRC inhibitors restored the reduced expression of epithelial markers, E-cadherin and Zonula Occludens-1 (ZO-1), in GC cells co-cultured with CAFs, as well as CAFs-induced aggregate formation in a 3D tumor spheroid model. CONCLUSIONS: This study provides a characterization of the signaling pathways and effector genes involved in CAFs activation, and strategies that could effectively inhibit it in the context of GC. Video Abstract.


Subject(s)
Cancer-Associated Fibroblasts , Connective Tissue Growth Factor , Stomach Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Connective Tissue Growth Factor/metabolism , Fibroblasts/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stomach Neoplasms/metabolism , Tumor Microenvironment
11.
Int J Ophthalmol ; 17(1): 7-15, 2024.
Article in English | MEDLINE | ID: mdl-38239942

ABSTRACT

AIM: To investigate the impact of niosome nanoparticles carrying umbelliprenin (UMB), an anti-angiogenic and anti-inflammatory plant compound, on the expression of vascular endothelial growth factor (VEGF-A) and connective tissue growth factor (CTGF) genes in a human retinal pigment epithelium (RPE)-like retina-derived cell line. METHODS: UMB-containing niosomes were created, optimized, and characterized. RPE-like cells were treated with free UMB and UMB-containing niosomes. The IC50 values of the treatments were determined using an MTT assay. Gene expression of VEGF-A and CTGF was evaluated using real-time polymerase chain reaction after RNA extraction and cDNA synthesis. Niosomes' characteristics, including drug entrapment efficiency, size, dispersion index, and zeta potential were assessed. Free UMB had an IC50 of 96.2 µg/mL, while UMB-containing niosomes had an IC50 of 25 µg/mL. RESULTS: Treatment with UMB-containing niosomes and free UMB resulted in a significant reduction in VEGF-A expression compared to control cells (P=0.001). Additionally, UMB-containing niosomes demonstrated a significant reduction in CTGF expression compared to control cells (P=0.05). However, there was no significant reduction in the expression of both genes in cells treated with free UMB. CONCLUSION: Both free UMB and niosome-encapsulated UMB inhibits VEGF-A and CTGF genes expression. However, the latter demonstrates significantly greater efficacy, potentially due to the lower UMB dosage and gradual delivery. These findings have implications for anti-angiogenesis therapeutic approaches targeting age-related macular degeneration.

12.
Cytokine ; 174: 156460, 2024 02.
Article in English | MEDLINE | ID: mdl-38134555

ABSTRACT

OBJECTIVE: Connective tissue growth factor (CTGF) exhibits potent proliferative, differentiated, and mineralizing effects, and is believed to be contribute to cartilage mineralization in Osteoarthritis (OA). However, the underlying mechanism of chondrocyte mineralization induced by CTGF remains obscure. As a key regulator of mineral responses, type III phosphate transporter 1 (Pit-1) has been associated with the pathogenesis of articular mineralization. Therefore, the primary objective of this study was to investigate whether CTGF influences the development of mature chondrocyte mineralization and the underlying mechanisms governing such mineralization. METHODS: The effect of Connective tissue growth factor (CTGF) on human C-28/I2 chondrocytes were investigated. The chondrocytes were treated with CTGF or related inhibitors, and transfected with Overexpression and siRNA transfection of Type III Phosphate Transporter 1(Pit-1). Subsequently, the cells were subjected to Alizarin red S staining, PiPer Phosphate Assay Kit, Alkaline Phosphatase Diethanolamine Activity Kit, ELISA, RT-PCR or Western blot analysis. RESULTS: Stimulation with Connective tissue growth factor (CTGF) significantly upregulated the expression of the Type III Phosphate Transporter 1(Pit-1) and mineralization levels in chondrocytes through activation of α5ß1 integrin and BMP/Samd1/5/8 signaling pathways. Furthermore, treatment with overexpressed Pit-1 markedly increased the expression of Multipass Transmembrane Ankylosis (ANK) transporter in the cells. The inhibitory effect of CTGF receptor blockade using α5ß1 Integrin blocking antibody was demonstrated by significantly suppressed the expression of Pit-1 and ANK transporter, as well as chondrocyte mineralization. CONCLUSIONS: Our data indicate that Connective tissue growth factor (CTGF) plays a critical role inchondrocyte mineralization, which is dependent on the expression of the Type III Phosphate Transporter 1(Pit-1) and Multipass Transmembrane Ankylosis (ANK) transporter. Consequently, inhibition of CTGF activity may represent a novel therapeutic approach for the management of Osteoarthritis (OA).


Subject(s)
Ankylosis , Calcinosis , Osteoarthritis , Humans , Ankylosis/metabolism , Ankylosis/pathology , Calcinosis/pathology , Cells, Cultured , Chondrocytes/metabolism , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Integrins/metabolism , Osteoarthritis/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism
13.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003505

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by aggressive behavior and limited treatment options, necessitating the identification of novel therapeutic targets. In this study, we investigated the clinical significance of connective tissue growth factor (CTGF) as a prognostic marker and explored the potential therapeutic effects of kahweol, a coffee diterpene molecule, in TNBC treatment. Initially, through a survival analysis on breast cancer patients from The Cancer Genome Atlas (TCGA) database, we found that CTGF exhibited significant prognostic effects exclusively in TNBC patients. To gain mechanistic insights, we performed the functional annotation and gene set enrichment analyses, revealing the involvement of CTGF in migratory pathways relevant to TNBC treatment. Subsequently, in vitro experiments using MDA-MB 231 cells, a representative TNBC cell line, demonstrated that recombinant CTGF (rCTGF) administration enhanced cell motility, whereas CTGF knockdown using CTGF siRNA resulted in reduced motility. Notably, rCTGF restored kahweol-reduced cell motility, providing compelling evidence for the role of CTGF in mediating kahweol's effects. At the molecular level, kahweol downregulated the protein expression of CTGF as well as critical signaling molecules, such as p-ERK, p-P38, p-PI3K/AKT, and p-FAK, associated with cell motility. In summary, our findings propose CTGF as a potential prognostic marker for guiding TNBC treatment and suggest kahweol as a promising antitumor compound capable of regulating CTGF expression to suppress cell motility in TNBC. These insights hold promise for the development of targeted therapies and improved clinical outcomes for TNBC patients.


Subject(s)
Diterpenes , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Pharmaceutical Preparations , Phosphatidylinositol 3-Kinases/genetics , Connective Tissue Growth Factor/genetics , Diterpenes/pharmacology , Diterpenes/therapeutic use , Cell Line, Tumor , Cell Proliferation
14.
J Hand Surg Glob Online ; 5(5): 682-688, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37790821

ABSTRACT

Dupuytren disease is a progressive, benign fibroproliferative disorder of the hands that can lead to debilitating hand contractures. Once symptomatic, treatment involves either surgical intervention, specifically fasciectomy or percutaneous needle aponeurotomy, or enzymatic degradation with clostridial collagenase. Currently, collagenase is the only pharmacotherapy that has been approved for the treatment of Dupuytren contracture. There is a need for a pharmacotherapeutic that can be administered to limit disease progression and prevent recurrence after treatment. Targeting the underlying fibrotic pathophysiology is critical. We propose a novel target to be considered in Dupuytren disease-cell communication network factor 2/connective tissue growth factor-an established mediator of musculoskeletal tissue fibrosis.

15.
Open Life Sci ; 18(1): 20220743, 2023.
Article in English | MEDLINE | ID: mdl-37791063

ABSTRACT

The aim of this study was to analyze the role of Ezrin in esophageal squamous cell carcinoma (ESCC) and investigate potential therapeutic targets for ESCC by interfering with Ezrin expression. Bioinformatics analysis revealed that Ezrin expression differed significantly among patients with different clinical stage ESCC. Moreover, there was a significant correlation between Ezrin and yes-associated protein/connective tissue growth factor (YAP1/CTGF) levels in esophageal cancer. Sixty paraffin-embedded ESCC tissue samples were examined and Ezrin and YAP1/CTGF levels were determined using immunohistochemistry. The positive expression rates of Ezrin and YAP1/CTGF were significantly lower in adjacent tissues than in ESCC tissues. Furthermore, knockdown of Ezrin expression inhibited colony formation and reduced cell migration and invasion. Compared with control ESCC cells, protein expression levels of YAP1 and CTGF were significantly downregulated in cells with Ezrin knocked down. We conclude that Ezrin may be involved in ESCC progression through the Hippo signaling pathway.

16.
Toxicol Ind Health ; 39(12): 712-734, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871157

ABSTRACT

Green synthesis of silver nanoparticles (AgNPs) from aqueous silver nitrate has been achieved using an extract of Ferula communis leaf as a capping, reducing, and stabilizing agent. The formation and stability of the green synthesized silver nanoparticles in the colloidal solution were monitored by absorption measurements. Silver nanoparticles were characterized by different analyses such as X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and FT-IR spectroscopy. The average particle size of silver nanoparticles was determined by high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) analyses. In this experiment, pregnant female mice were divided into four groups (G); G1 was the control and received phosphate-buffered saline, G2 received orally aqueous extract of F. communis leaf, G3 received orally AgNPs chemically prepared by NaBH4, and G4 received orally AgNPs prepared by aqueous extract of F. communis leaf. The diameter of AgNPs was 20 nm. AgNPs exhibited good catalytic reduction ability toward methyl orange in the presence of sodium borohydride with a rate constant of 2.95 x 10-4 s-1. The results revealed the occurrence of resorbed embryos in G2, G3, and G4 with different percentages. The livers of mothers and embryos at E14.5 in G2, G3, and G4 showed different levels of histopathological alteration and increase in GFAP and CTGF expressions compared with the control group. The study concluded that the oral administration of small-sized AgNPs (20 nm) prepared by Ferula extract had less toxicity than those prepared by the chemical method.


Subject(s)
Ferula , Metal Nanoparticles , Female , Humans , Mice , Animals , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Maternal Exposure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Silver/toxicity , X-Ray Diffraction , Anti-Bacterial Agents
17.
Respir Res ; 24(1): 227, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741976

ABSTRACT

BACKGROUND: Functional alveolar regeneration is essential for the restoration of normal lung homeostasis after acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Lung is a relatively quiescent organ and a variety of stem cells are recruited to participate in lung repair and regeneration after lung tissue injury. However, there is still no effective method for promoting the proliferation of endogenous lung stem cells to promote repair and regeneration. METHODS: Using protein mass spectrometry analysis, we analyzed the microenvironment after acute lung injury. RNA sequencing and image cytometry were used in the alveolar epithelial type 2 cells (AEC2s) subgroup identification. Then we used Sftpc+AEC2 lineage tracking mice and purified AEC2s to further elucidate the molecular mechanism by which CTGF regulates AEC2s proliferation both in vitro and in vivo. Bronchoalveolar lavage fluid (BALF) from thirty ARDS patients who underwent bronchoalveolar lavage was collected for the analysis of the correlation between the expressing of Krt5 in BALF and patients' prognosis. RESULTS: Here, we elucidate that AEC2s are the main facultative stem cells of the distal lung after ALI and ARDS. The increase of connective tissue growth factor (CTGF) in the microenvironment after ALI promoted the proliferation of AEC2s subpopulations. Proliferated AEC2s rapidly expanded and differentiated into alveolar epithelial type 1 cells (AEC1s) in the regeneration after ALI. CTGF initiates the phosphorylation of LRP6 by promoting the interaction between Krt5 and LRP6 of AEC2s, thus activating the Wnt signaling pathway, which is the molecular mechanism of CTGF promoting the proliferation of AEC2s subpopulation. CONCLUSIONS: Our study verifies that CTGF promotes the repair and regeneration of alveoli after acute lung injury by promoting the proliferation of AEC2s subpopulation.


Subject(s)
Acute Lung Injury , Connective Tissue Growth Factor , Respiratory Distress Syndrome , Animals , Humans , Mice , Cell Proliferation , Connective Tissue Growth Factor/genetics , Pulmonary Alveoli , Regeneration
18.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37721785

ABSTRACT

The purpose of this study was to investigate whether prolactin (PRL) regulates the proliferation of pigeon crop epithelium through the Hippo signaling pathway during the breeding cycle. Twenty-four pairs of adult pigeons were allotted to four groups by different breeding stages, and their crops and serum were sampled. Eighteen pairs of young pigeons were selected and divided into three groups for the injection experiments. The results showed that the serum PRL content and crop epithelial thickness of pigeons increased significantly at day 17 of incubation (I17) and day 1 of chick-rearing (R1). In males, the mRNA levels of yes-associated transcriptional regulator (YAP) and snail family transcriptional repressor 2 (SNAI2) were peaked at I17, and the gene levels of large tumor suppressor kinase 1 (LATS1), serine/threonine kinase 3 (STK3), TEA domain transcription factor 3 (TEAD3), connective tissue growth factor (CTGF), MYC proto-oncogene (c-Myc) and SRY-box transcription factor 2 (SOX2) reached the maximum value at R1. In females, the gene expression of YAP, STK3, TEAD3, and SOX2 reached the greatest level at I17, the expression profile of SAV1, CTGF, and c-Myc were maximized at R1. In males, the protein levels of LATS1 and YAP were maximized at R1 and the CTGF expression was upregulated at I17. In females, LATS1, YAP, and CTGF reached a maximum value at I17, and the expression level of phosphorylated YAP was minimized at I17 in males and females. Subcutaneous injection of prolactin (injected for 6 d, 10 µg per kg body weight every day) on the left crop of pigeons can promote the proliferation of crop epithelium by increasing the CTGF level and reducing the phosphorylation level of YAP. YAP-TEAD inhibitor verteporfin (injection for 6 d, 2.5 mg per kg body weight every day) can inhibit the proliferation of crop epithelium induced by prolactin by inhibiting YAP and CTGF expression. In conclusion, PRL can participate in crop cell proliferation of pigeons by promoting the expression of YAP and CTGF in Hippo pathway.


This study evaluated whether prolactin (PRL) regulates the proliferation of pigeon crops through Hippo signaling pathway during the breeding cycle. Twenty-four pairs of adult pigeons were allotted to four groups by different breeding stages, and their crops and serum were sampled. Eighteen pairs of young pigeons were selected and divided into three groups for the injection experiments. The crop epithelial thickness and serum PRL content of pigeons increased significantly at day 17 of incubation (I17) and day 1 of chick-rearing (R1). In males and females, the mRNA and protein levels of yes-associated transcriptional regulator (YAP) reached the maximum value at R1 and I17, respectively, and phosphorylation level of YAP were minimized at I17. Subcutaneous injection of prolactin on pigeon crops can promote the proliferation of crop epithelium by increasing the connective tissue growth factor (CTGF) level and reducing the phosphorylation level of YAP. YAP-TEAD inhibitor verteporfin can inhibit the proliferation of crop epithelium induced by prolactin by inhibiting YAP and CTGF expression. In conclusion, PRL can participate in crop cell proliferation of pigeons by promoting the expression of YAP and CTGF in Hippo pathway.


Subject(s)
Columbidae , Hippo Signaling Pathway , Male , Female , Animals , Columbidae/physiology , Prolactin/pharmacology , Plant Breeding , Cell Proliferation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Body Weight
19.
Int J Nanomedicine ; 18: 5407-5422, 2023.
Article in English | MEDLINE | ID: mdl-37753068

ABSTRACT

Background: No agents are currently available for the treatment or reversal of liver fibrosis. Novel antifibrotic therapies for chronic liver diseases are thus urgently needed. Connective tissue growth factor (CTGF) has been shown to contributes profoundly to liver fibrogenesis, which makes CTGF as a promising target for developing antifibrotic agents. Methods: In this study, we identified a novel nanobody (Nb) against human CTGF (anti-CTGF Nb) by phage display using an immunized camel, which showed high affinity and specificity in vitro. LX-2 cells, the immortalized human hepatic stellate cells, were induced by transforming growth factor beta1 (TGFß1) as an in vitro model of liver fibrosis to verify the antifibrotic activity of the anti-CTGF Nb. Results: Our data demonstrated that anti-CTGF Nb effectively alleviated TGFß1-induced LX-2 cell proliferation, activation, and migration, and promoted the apoptosis of activated LX-2 cells in response to TGFß1. Moreover, the anti-CTGF Nb remarkably reduced the levels of TGFß1, Smad2, and Smad3 expression in LX-2 stellate cells stimulated by TGFß1. Conclusion: Taken together, we successfully identified a novel Nb against human CTGF, which exhibited antifibrotic effects in vitro by regulating the biological functions of human stellate cells LX-2.

20.
Respir Physiol Neurobiol ; 317: 104142, 2023 11.
Article in English | MEDLINE | ID: mdl-37625675

ABSTRACT

The mechanisms of fibrosis onset and development remain to be elucidated. However, it has been reported that mechanical stretch promotes fibrosis in various organs and cells, and may be involved in the pathogenesis of pulmonary fibrosis. We demonstrated that ventilator-induced lung hyperextension stimulation in mice increased the expression of connective tissue growth factor (CTGF), a profibrotic cytokine, in lung tissue. Increased CTGF expression induced by cyclic mechanical stretch (CMS) was also observed in vitro using A549 human alveolar epithelial cells. Pathway analysis revealed that the induction of CTGF expression by CMS involved MEK phosphorylation. Furthermore, early growth response 1 (Egr-1) was identified as a transcription factor associated with CTGF expression. Finally, the antifibrotic drug pirfenidone significantly reduced CTGF expression, MEK phosphorylation, and Egr-1 levels induced by CMS. Thus, our results demonstrated that profibrotic cytokine CTGF induced by CMS may be a therapeutic target of pirfenidone.


Subject(s)
Alveolar Epithelial Cells , Lung Injury , Humans , Animals , Mice , Connective Tissue Growth Factor , Cytokines , Mitogen-Activated Protein Kinase Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...