ABSTRACT
Polyergus kidnapper ants are widely distributed, but relatively uncommon, throughout the Holarctic, spanning an elevational range from sea level to over 3000 m. These species are well known for their obligate social parasitism with various Formica ant species, which they kidnap in dramatic, highly coordinated raids. Kidnapped Formica larvae and pupae become integrated into the Polyergus colony where they develop into adults and perform nearly all of the necessary colony tasks for the benefit of their captors. In California, Polyergus mexicanus is the most widely distributed Polyergus, but recent evidence has identified substantial genetic polymorphism within this species, including genetically divergent lineages associated with the use of different Formica host species. Given its unique behavior and genetic diversity, Polyergus mexicanus plays a critical role in maintaining ecosystem balance by influencing the population dynamics and genetic diversity of its host ant species, Formica, highlighting its conservation value and importance in the context of biodiversity preservation. Here, we present a high-quality genome assembly of P. mexicanus from a sample collected in Plumas County, CA, USA, in the foothills of the central Sierra Nevada. This genome assembly consists of 364 scaffolds spanning 252.31 Mb, with contig N50 of 481,250 kb, scaffold N50 of 10.36 Mb, and BUSCO completeness of 95.4%. We also assembled the genome of the Wolbachia endosymbiont of P. mexicanus - a single, circular contig spanning 1.23 Mb. These genome sequences provide essential resources for future studies of conservation genetics, population genetics, speciation, and behavioral ecology in this charismatic social insect.
ABSTRACT
Population genetics theory predicts a relationship between fitness, genetic diversity (H0) and effective population size (Ne), which is often tested through heterozygosity-fitness correlations (HFCs). We tested whether population and individual fertility and heterozygosity are correlated in two endangered Mexican spruces (Picea martinezii and Picea mexicana) by combining genomic, demographic and reproductive data (seed development and germination traits). For both species, there was a positive correlation between population size and seed development traits, but not germination rate. Individual genome-wide heterozygosity and seed traits were only correlated in P. martinezii (general-effects HFC), and none of the candidate single nucleotide polymorphisms (SNPs) associated with individual fertility showed heterozygote advantage in any species (no local-effects HFC). We observed a single and recent (c. 30 thousand years ago (ka)) population decline for P. martinezii; the collapse of P. mexicana occurred in two phases separated by a long period of stability (c. 800 ka). Recruitment always contributed more to total population census than adult trees in P. mexicana, while this was only the case in the largest populations of P. martinezii. Equating fitness to either H0 or Ne, as traditionally proposed in conservation biology, might not always be adequate, as species-specific evolutionary factors can decouple the expected correlation between these parameters.
Subject(s)
Biological Evolution , Endangered Species , Forests , Genetic Fitness , Reproduction , Seeds , Trees , Trees/genetics , Trees/physiology , Seeds/genetics , Seeds/physiology , Seeds/growth & development , Reproduction/genetics , Picea/genetics , Picea/physiology , Picea/growth & development , Heterozygote , Germination/genetics , Polymorphism, Single Nucleotide/genetics , Population Density , Genetic VariationABSTRACT
Climate change and land use change are two main drivers of global biodiversity decline, decreasing the genetic diversity that populations harbour and altering patterns of local adaptation. Landscape genomics allows measuring the effect of these anthropogenic disturbances on the adaptation of populations. However, both factors have rarely been considered simultaneously. Based on a set of 3660 SNPs from which 130 were identified as outliers by a genome-environment association analysis (LFMM), we modelled the spatial turnover of allele frequencies in 19 localities of Pinus leiophylla across the Avocado Belt in Michoacán state, Mexico. Then, we evaluated the effect of climate change and land use change scenarios, in addition to evaluating assisted gene flow strategies and connectivity metrics across the landscape to identify priority conservation areas for the species. We found that localities in the centre-east of the Avocado Belt would be more vulnerable to climate change, while localities in the western area are more threatened by land conversion to avocado orchards. Assisted gene flow actions could aid in mitigating both threats. Connectivity patterns among forest patches will also be modified by future habitat loss, with central and eastern parts of the Avocado Belt maintaining the highest connectivity. These results suggest that areas with the highest priority for conservation are in the eastern part of the Avocado Belt, including the Monarch Butterfly Biosphere Reserve. This work is useful as a framework that incorporates distinct layers of information to provide a more robust representation of the response of tree populations to anthropogenic disturbances.
Subject(s)
Climate Change , Gene Flow , Persea , Pinus , Polymorphism, Single Nucleotide , Pinus/genetics , Persea/genetics , Mexico , Gene Frequency , Adaptation, Physiological/genetics , Genetics, Population , Conservation of Natural Resources , Ecosystem , Genetic VariationABSTRACT
BACKGROUND: Phylogenetic gaps of public databases of reference sequences are a major obstacle for comparative genomics and management of marine resources, particularly in the Global South, where economically important fisheries and conservation flagship species often lack closely-related references. We applied target-enrichment to obtain complete mitochondrial genomes of marine ichthyofauna from the Brazilian coast selected based on economic significance, conservation status and lack of phylogenetically-close references. These included sardines (Dorosomatidae, Alosidae), mackerels (Scombridae) croakers (Sciaenidae), groupers (Epinephelidae) and snappers (Lutjanidae). RESULTS: Custom baits were designed to enrich mitochondrial DNA across a broad phylogenetic range of fishes. Sequencing generated approximately 100k reads per sample, which were assembled in a total of 70 complete mitochondrial genomes and include fifty-two new additions to GenBank, including five species with no previous mitochondrial data. Departures from the typical gene content and order occurred in only three taxa and mostly involved tRNA gene duplications. Start-codons for all genes, except Cytochrome C Oxidase subunit I (COI), were consistently ATG, whilst a wide range of stop-codons deviated from the prevailing TAA. Phylogenetic analysis confirmed assembly accuracy and revealed signs of cryptic diversification within the Mullus genus. Lineage delimitation methods using Sardinella aurita and S. brasiliensis mitochondrial genomes support a single Operational Taxonomic Unit. CONCLUSIONS: Target enrichment was highly efficient, providing complete novel mitochondrial genomes with little sequencing effort. These sequences are deposited in public databases to enable subsequent studies in population genetics and adaptation of Latin American fish species and serve as a vital resource for conservation and management programs that rely on molecular data for species and genus-level identification.
Subject(s)
Genome, Mitochondrial , Perciformes , Animals , Phylogeny , Fisheries , Fishes/genetics , Perciformes/genetics , DNA, Mitochondrial/genetics , CodonABSTRACT
Island oak (Quercus tomentella) is a rare relictual island tree species that exists only on six islands off the coast of California and Mexico, but was once widespread throughout mainland California. Currently, this species is endangered by threats such as non-native plants, grazing animals, and human removal. Efforts for conservation and restoration of island oak currently underway could benefit from information about its range-wide genetic structure and evolutionary history. Here we present a high-quality genome assembly for Q. tomentella, assembled using PacBio HiFi and Omni-C sequencing, developed as part of the California Conservation Genomics Project (CCGP). The resulting assembly has a length of 781 Mb, with a contig N50 of 22.0 Mb and a scaffold N50 of 63.4 Mb. This genome assembly will provide a resource for genomics-informed conservation of this rare oak species. Additionally, this reference genome will be the first one available for a species in Quercus section Protobalanus, a unique oak clade present only in western North America.
Subject(s)
Quercus , Trees , Animals , Humans , Trees/genetics , Genomics , Mexico , North AmericaABSTRACT
We conducted a population genomic study of the crested caracara (Caracara plancus) using samples (n = 290) collected from individuals in Florida, Texas, and Arizona, United States. Crested caracaras are non-migratory raptors ranging from the southern tip of South America to the southern United States, including a federally protected relict population in Florida long thought to have been isolated since the last ice age. Our objectives were to evaluate genetic diversity and population structure of Florida's apparently isolated population and to evaluate taxonomic relationships of crested caracaras at the northern edge of their range. Using DNA purified from blood samples, we conducted double-digest restriction site associated DNA sequencing and sequenced the mitochondrial ND2 gene. Analyses of population structure using over 9,000 SNPs suggest that two major clusters are best supported, one cluster including only Florida individuals and the other cluster including Arizona and Texas individuals. Both SNPs and mitochondrial haplotypes reveal the Florida population to be highly differentiated genetically from Arizona and Texas populations, whereas, Arizona and Texas populations are moderately differentiated from each other. The Florida population's mitochondrial haplotypes form a separate monophyletic group, while Arizona and Texas populations share mitochondrial haplotypes. Results of this study provide substantial genetic evidence that Florida's crested caracaras have experienced long-term isolation from caracaras in Arizona and Texas and thus, represent a distinct evolutionary lineage possibly warranting distinction as an Evolutionarily Significant Unit (ESU) or subspecies. This study will inform conservation strategies focused on long-term survival of Florida's distinct, panmictic population.
Subject(s)
Genomics , Mitochondria , Humans , United States , Florida/epidemiology , South America , Base SequenceABSTRACT
The comparative phylogeography of marine species with contrasting dispersal potential across the southern Caribbean Sea was evaluated by the presence of two putative barriers: the Magdalena River plume (MRP) and the combination of the absence of a rocky bottom and the almost permanent upwelling in the La Guajira Peninsula (ARB + PUG). Three species with varying biological and ecological characteristics (i.e., dispersal potentials) that inhabit shallow rocky bottoms were selected: Cittarium pica (PLD < 6 days), Acanthemblemaria rivasi (PLD < 22 days), and Nerita tessellata (PLD > 60 days). We generated a set of SNPs for the three species using the ddRad-seq technique. Samples of each species were collected in five locations from Capurganá to La Guajira. For the first time, evidence of a phylogeographic break caused by the MRP is provided, mainly for A. rivasi (AMOVA: ΦCT = 0.420). The ARB + PUG barrier causes another break for A. rivasi (ΦCT = 0.406) and C. pica (ΦCT = 0.224). Three populations (K = 3) were identified for A. rivasi and C. pica, while N. tessellata presented one population (K = 1). The Mantel correlogram indicated that A. rivasi and C. pica fit the hierarchical population model, and only the A. rivasi and C. pica comparisons showed phylogeographic congruence. Our results demonstrate how the biological traits of these three species and the biogeographic barriers have influenced their phylogeographic structure.
ABSTRACT
Genomic data and machine learning approaches have gained interest due to their potential to identify adaptive genetic variation across populations and to assess species vulnerability to climate change. By identifying gene-environment associations for putatively adaptive loci, these approaches project changes to adaptive genetic composition as a function of future climate change (genetic offsets), which are interpreted as measuring the future maladaptation of populations due to climate change. In principle, higher genetic offsets relate to increased population vulnerability and therefore can be used to set priorities for conservation and management. However, it is not clear how sensitive these metrics are to the intensity of population and individual sampling. Here, we use five genomic datasets with varying numbers of SNPs (NSNPs = 7006-1,398,773), sampled populations (Npop = 23-47) and individuals (Nind = 185-595) to evaluate the estimation sensitivity of genetic offsets to varying degrees of sampling intensity. We found that genetic offsets are sensitive to the number of populations being sampled, especially with less than 10 populations and when genetic structure is high. We also found that the number of individuals sampled per population had small effects on the estimation of genetic offsets, with more robust results when five or more individuals are sampled. Finally, uncertainty associated with the use of different future climate scenarios slightly increased estimation uncertainty in the genetic offsets. Our results suggest that sampling efforts should focus on increasing the number of populations, rather than the number of individuals per populations, and that multiple future climate scenarios should be evaluated to ascertain estimation sensitivity.
ABSTRACT
Rattlesnakes play important roles in their ecosystems by regulating prey populations, are involved in complex coevolutionary dynamics with their prey, and exhibit a variety of unusual adaptations, including maternal care, heat-sensing pit organs, hinged fangs, and medically-significant venoms. The western rattlesnake (Crotalus oreganus) is one of the widest ranging rattlesnake species, with a distribution from British Columbia, where it is listed as threatened, to Baja California and east across the Great Basin to western Wyoming, Colorado and New Mexico. Here, we report a new reference genome assembly for one of six currently recognized subspecies, C. oreganus helleri, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomic sequencing strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 698 scaffolds spanning 1,564,812,557 base pairs, has a contig N50 of 64.7 Mb, a scaffold N50 of 110.8 Mb, and BUSCO complete score of 90.5%. This reference genome will be valuable for studies on the genomic basis of venom evolution and variation within Crotalus, in resolving the taxonomy of C. oreganus and its relatives, and for the conservation and management of rattlesnakes in general.
Subject(s)
Crotalus , Ecosystem , Venomous Snakes , Animals , Mexico , Crotalus/geneticsABSTRACT
Spiny lizards (genus Sceloporus) have long served as important systems for studies of behavior, thermal physiology, dietary ecology, vector biology, speciation, and biogeography. The western fence lizard, Sceloporus occidentalis, is found across most of the major biogeographical regions in the western United States and northern Baja California, Mexico, inhabiting a wide range of habitats, from grassland to chaparral to open woodlands. As small ectotherms, Sceloporus lizards are particularly vulnerable to climate change, and S. occidentalis has also become an important system for studying the impacts of land use change and urbanization on small vertebrates. Here, we report a new reference genome assembly for S. occidentalis, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomics strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 608 scaffolds spanning 2,856 Mb, has a contig N50 of 18.9 Mb, a scaffold N50 of 98.4 Mb, and BUSCO completeness score of 98.1% based on the tetrapod gene set. This reference genome will be valuable for understanding ecological and evolutionary dynamics in S. occidentalis, the species status of the California endemic island fence lizard (S. becki), and the spectacular radiation of Sceloporus lizards.
Subject(s)
Genome , Lizards , Animals , Mexico , Ecosystem , Genomics , Lizards/geneticsABSTRACT
Wide-ranging species are seldom considered conservation priorities, yet they have the potential to harbour genetically deeply differentiated units across environments or ecological barriers, including some that warrant taxonomic recognition. Documenting such cryptic genetic diversity is especially important for wide-ranging species that are in decline, as they may comprise a set of even more endangered lineages or species with small distributions. However, studies of wide-ranging species, particularly when they cross political borders, are extremely challenging. One approach to overcoming these challenges is to conduct detailed local analyses in combination with less detailed, range-wide studies. We used this approach with the red-footed tortoise (Chelonoidis carbonarius), a threatened species likely to contain cryptic diversity given its vast range and the distinctive ecoregions that it inhabits. Previous single-gene molecular studies indicated the presence of at least five lineages, two of which occur in different ecoregions separated by the Andes within Colombia. We used a comprehensive genomic analysis to test the hypothesis of cryptic diversity within the single jurisdiction of Colombia. We used a combination of restriction-site-associated DNA sequencing and environmental niche modelling to provide three independent lines of evidence that support the presence of important cryptic diversity that may deserve taxonomic recognition: allopatric reproductive isolation, local adaptation and ecological divergence. We also provide a fine-scale genetic map with the distribution of conservation units in Colombia. As we complete ongoing range-wide analyses and make taxonomic adjustments, we recommend that the two lineages in Colombia be treated as separate units for conservation purposes.
Las especies con distribuciones amplias rara vez son consideradas prioridades de conservación, sin embargo, tienen el potencial de albergar unidades genéticamente diferenciadas que en algunos casos justifican reconocimiento taxonómico. Documentar dicha diversidad genética críptica es especialmente importante para las especies de rangos amplios que ya están en peligro de extinción, pues pueden comprender un conjunto de linajes o especies aún más amenazadas y con distribuciones más pequeñas. Sin embargo, los estudios de especies de rangos amplios, particularmente cuando cruzan fronteras políticas, son extremadamente desafiantes. Un enfoque para superar estos desafíos es realizar análisis locales detallados en combinación con estudios en todo el rango de distribución menos detallados. Nosotros usamos este enfoque con la tortuga de patas rojas (Chelonoidis carbonarius), una especie amenazada que probablemente contiene diversidad genética críptica dada su amplia distribución y las distintas ecorregiones en las que habita. Estudios moleculares previos de un solo gen indicaron la presencia de al menos cinco linajes, dos de los cuales ocurren en diferentes ecorregiones separadas por los Andes en Colombia. En este estudio utilizamos una combinación de secuenciación de ADN asociada a sitios de restricción (RADseq) y modelamiento de nicho ecológico para proporcionar tres líneas independientes de evidencia que respaldan la presencia de diversidad críptica importante que puede merecer reconocimiento taxonómico: aislamiento reproductivo alopátrico, adaptación local y divergencia ecológica. También proporcionamos un mapa genético a escala fina con la distribución de unidades de conservación en Colombia. Mientras completamos análisis genómicos en todo el rango de distribución y hacemos ajustes taxonómicos, recomendamos que los dos linajes en Colombia se traten como unidades independientes para fines de conservación.
Subject(s)
Turtles , Animals , Phylogeny , Turtles/genetics , Genetic Variation , Colombia , Sequence Analysis, DNAABSTRACT
We present the novel reference genome of the Versatile Fairy Shrimp, Branchinecta lindahli. The Versatile Fairy Shrimp is a freshwater anostracan crustacean found across the western United States from Iowa to Oregon and from Alberta to Baja California. It is an ephemeral pool specialist, living in prairie potholes, irrigation ditches, tire treads, vernal pools, and other temporary freshwater wetlands. Anostracan fairy shrimp are facing global declines with 3 species in California on the Endangered Species list. This species was included in the California Conservation Genomics Project to provide an easily accessible reference genome, and to provide whole-genome resources for a generalist species, which may lead to new insights into Anostracan resiliency in the face of climate change. The final gapped genome comprises 15 chromosome-length scaffolds covering 98.63% of the 384.8 Mb sequence length, and an additional 55 unscaffolded contigs.
Subject(s)
Anostraca , Endangered Species , Animals , United States , Anostraca/genetics , Mexico , Wetlands , Chromosomes/geneticsABSTRACT
Red abalone, Haliotis rufescens, are herbivorous marine gastropods that primarily feed on kelp. They are the largest and longest-lived of abalone species with a range distribution in North America from central Oregon, United States, to Baja California, MEX. Recently, red abalone have been in decline as a consequence of overharvesting, disease, and climate change, resulting in the closure of the commercial fishery in the 1990s and the recreational fishery in 2018. Protecting this ecologically and economically important species requires an understanding of their current population dynamics and connectivity. Here, we present a new red abalone reference genome as part of the California Conservation Genomics Project (CCGP). Following the CCGP genome strategy, we used Pacific Biosciences HiFi long reads and Dovetail Omni-C data to generate a scaffold-level assembly. The assembly comprises 616 scaffolds for a total size of 1.3 Gb, a scaffold N50 of 45.7 Mb, and a BUSCO complete score of 97.3%. This genome represents a significant improvement over a previous assembly and will serve as a powerful tool for investigating seascape genomic diversity, local adaptation to temperature and ocean acidification, and informing management strategies.
Subject(s)
Gastropoda , Seawater , Animals , Mexico , Hydrogen-Ion Concentration , Gastropoda/genetics , GenomicsABSTRACT
The sunburst anemone Anthopleura sola is an abundant species inhabiting the intertidal zone of coastal California. Historically, this species has extended from Baja California, Mexico to as far north as Monterey Bay, CA. However, recently the geographic range of this species has expanded to Bodega Bay, CA, possibly as far north as Salt Point, CA. This species also forms symbiotic partnerships with the dinoflagellate Breviolum muscatinei, a member of the family Symbiodiniaceae. These partnerships are analogous to those formed between tropical corals and dinoflagellate symbionts, making A. sola an excellent model system to explore how hosts will (co)evolve with novel symbiont populations they encounter as they expand northward. This assembly will serve as the foundation for identifying the population genomic patterns associated with range expansions, and will facilitate future work investigating how hosts and their symbiont partners will evolve to interact with one another as geographic ranges shift due to climate change.
Subject(s)
Anemone , Dinoflagellida , Sea Anemones , Animals , Mexico , Sea Anemones/genetics , Dinoflagellida/genetics , SymbiosisABSTRACT
Comparative whole-genome analyses hold great power to illuminate commonalities and differences in the evolution of related species that share similar ecologies. The mustelid subfamily Lutrinae includes 13 currently recognized extant species of otters,1-5 a semiaquatic group whose evolutionary history is incompletely understood. We assembled a dataset comprising 24 genomes from all living otter species, 14 of which were newly sequenced. We used this dataset to infer phylogenetic relationships and divergence times, to characterize patterns of genome-wide genealogical discordance, and to investigate demographic history and current genomic diversity. We found that genera Lutra, Aonyx, Amblonyx, and Lutrogale form a coherent clade that should be synonymized under Lutra, simplifying the taxonomic structure of the subfamily. The poorly known tropical African Aonyx congicus and the more widespread Aonyx capensis were found to be reciprocally monophyletic (having diverged 440,000 years ago), supporting the validity of the former as a distinct species. We observed variable changes in effective population sizes over time among otters within and among continents, although several species showed similar trends of expansions and declines during the last 100,000 years. This has led to different levels of genomic diversity assessed by overall heterozygosity, genome-wide SNV density, and run of homozygosity burden. Interestingly, there were cases in which diversity metrics were consistent with the current threat status (mostly based on census size), highlighting the potential of genomic data for conservation assessment. Overall, our results shed light on otter evolutionary history and provide a framework for further in-depth comparative genomic studies targeting this group.
Subject(s)
Otters , Animals , Base Sequence , Otters/genetics , PhylogenyABSTRACT
Marine species may exhibit genetic structure accompanied by phenotypic differentiation related to adaptation despite their high mobility. Two shape-based morphotypes have been identified for the green turtle (Chelonia mydas) in the Pacific Ocean: the south-central/western or yellow turtle and north-central/eastern or black turtle. The genetic differentiation between these morphotypes and the adaptation of the black turtle to environmentally contrasting conditions of the eastern Pacific region has remained a mystery for decades. Here we addressed both questions using a reduced-representation genome approach (Dartseq; 9473 neutral SNPs) and identifying candidate outlier loci (67 outlier SNPs) of biological relevance between shape-based morphotypes from eight Pacific foraging grounds (n = 158). Our results support genetic divergence between morphotypes, probably arising from strong natal homing behaviour. Genes and enriched biological functions linked to thermoregulation, hypoxia, melanism, morphogenesis, osmoregulation, diet and reproduction were found to be outliers for differentiation, providing evidence for adaptation of C. mydas to the eastern Pacific region and suggesting independent evolutionary trajectories of the shape-based morphotypes. Our findings support the evolutionary distinctness of the enigmatic black turtle and contribute to the adaptive research and conservation genomics of a long-lived and highly mobile vertebrate.
Subject(s)
Turtles , Adaptation, Physiological/genetics , Animals , Genetic Drift , Pacific Ocean , Turtles/geneticsABSTRACT
Conserving genetic diversity in rare and narrowly distributed endemic species is essential to maintain their evolutionary potential and minimize extinction risk under future environmental change. In this study we assess neutral and adaptive genetic structure and genetic diversity in Brasilianthus carajensis (Melastomataceae), an endemic herb from Amazonian Savannas. Using RAD sequencing we identified a total of 9365 SNPs in 150 individuals collected across the species' entire distribution range. Relying on assumption-free genetic clustering methods and environmental association tests we then compared neutral with adaptive genetic structure. We found three neutral and six adaptive genetic clusters, which could be considered management units (MU) and adaptive units (AU), respectively. Pairwise genetic differentiation (F ST) ranged between 0.024 and 0.048, and even though effective population sizes were below 100, no significant inbreeding was found in any inferred cluster. Nearly 10 % of all analysed sequences contained loci associated with temperature and precipitation, from which only 25 sequences contained annotated proteins, with some of them being very relevant for physiological processes in plants. Our findings provide a detailed insight into genetic diversity, neutral and adaptive genetic structure in a rare endemic herb, which can help guide conservation and management actions to avoid the loss of unique genetic variation.
ABSTRACT
Human-induced transformations of ecosystems usually result in fragmented populations subject to increased extinction risk. Fragmentation is also often associated with novel environmental heterogeneity, which in combination with restricted gene flow may increase the opportunity for local adaptation. To manage at-risk populations in these landscapes, it is important to understand how gene flow is changing, and how populations respond to habitat loss. We conducted a landscape genomics analysis using Restriction-site Associated DNA sequencing to investigate the evolutionary response of the critically endangered Dahl's Toad-headed turtle (Mesoclemmys dahli) to severe habitat modification. The species has lost almost all of its natural habitat in the southwestern part of its range and about 70% in the northeast. Based on least cost path analysis across different resistance surfaces for 3,211 SNPs, we found that the landscape matrix is restricting gene flow, causing the fragmentation of the species into at least six populations. Genome scans and allele-environment association analyses indicate that the population fragments in the deforested grasslands of the southwest are adaptively different from those in the more forested northeast. Populations in areas with no forest had low levels of adaptive genetic diversity and the fixation of ancestrally-polymorphic SNPs, consistent with directional selection in this novel environment. Our results suggest that this forest-stream specialist is adapting to pond-grassland conditions, but it is also suffering from negative consequences of habitat loss, including genetic erosion, isolation, small effective population sizes, and inbreeding. We recommend gene flow restoration via genetic rescue to counteract these threats, and provide guidance for this strategy.
Subject(s)
Endangered Species , Forests , Gene Flow , Genetic Variation , Genomics , Tropical Climate , Turtles/genetics , Adaptation, Physiological/genetics , Animals , Colombia , Genetics, Population , Genotype , Geography , Heterozygote , Inbreeding , Population Density , Sequence Analysis, DNAABSTRACT
BACKGROUND AND AIMS: Jatropha curcas (jatropha) is an oil crop cultivated in (sub)tropical regions around the world, and holds great promise as a renewable energy source. However, efforts to fully commercialize jatropha are currently hampered by the lack of genetic diversity in the extant breeding germplasm, and by the toxicity of its seeds meaning that its seed cake cannot be used as a protein source in animal feed, among other constraints. In Mexico, the species' native range, there are jatropha plants whose seeds are used to prepare traditional meals. This non-toxic jatropha 'type' is considered to harbour low genetic variation due to a presumed domestication bottleneck and therefore to be of limited breeding value; yet, very little is known regarding its origin and genetic diversity. METHODS: Using genotyping-by-sequencing (GBS), we extensively genotyped both indigenous toxic and non-toxic jatropha collected along roads and home gardens throughout southern Mexico. KEY RESULTS: Single nucleotide polymorphism diversity in non-toxic jatropha is relatively high, particularly in northern Veracruz state, the probable origin of this germplasm. Genetic differences between toxic and non-toxic indigenous genotypes are overall quite small. A a genome-wide association study supported a genomic region (on LG 8, scaffold NW_012130064), probably involved in the suppression of seed toxicity. CONCLUSIONS: Conservation actions are urgently needed to preserve this non-toxic indigenous, relatively wild germplasm, having potential as a fuel feedstock, animal feed and food source among other uses. More generally, this work demonstrates the value of conservation genomic research on the indigenous gene pool of economically important plant species.
Subject(s)
Jatropha , Biofuels , Genome-Wide Association Study , Mexico , Polymorphism, Single Nucleotide , SeedsABSTRACT
Populations with limited ranges can be highly vulnerable to changes in their environment and are, thus, of high conservation concern. Populations that experience human-induced range reductions are often highly inbred and lack genetic diversity, but it is unknown whether this is also the case for populations with naturally small ranges. The fishes Poecilia sulphuraria (listed as critically endangered) and Poecilia thermalis, which are endemic to small hydrogen sulphide-rich springs in southern Mexico, are examples of such populations with inherently small habitats. We used geometric morphometrics and population genetics to quantify phenotypic and genetic variation within and among two populations of P. sulphuraria and one population of P. thermalis. Principal component analyses revealed phenotypic and genetic differences among the populations. Evidence for inbreeding was low compared to populations that have undergone habitat reduction. The genetic data were also used to infer the demographic history of these populations to obtain estimates for effective population sizes and migration rates. Effective population sizes were large given the small habitats of these populations. Our results imply that these three endemic extremophile populations should each be considered separately for conservation purposes. Additionally, this study suggests that populations in naturally small habitats may have lower rates of inbreeding and higher genetic diversity than expected, and therefore may be better equipped to handle environmental perturbations than anticipated. We caution, however, that the inferred lack of inbreeding and the large effective population sizes could potentially be a result of colonization by genetically diverse ancestors.