Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Cytotherapy ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38958627

ABSTRACT

Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.

2.
J Pharm Biomed Anal ; 248: 116301, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38901155

ABSTRACT

Early-stage cell line screening is a vital step in developing biosimilars of therapeutic monoclonal antibodies (mAbs). While the quality of the manufactured antibodies is commonly assessed by charge-based separation methods employing UV absorbance detection, these methods lack the ability to identify resolved mAb variants. We evaluated the performance of microfluidic capillary electrophoresis coupled to mass spectrometry (MCE-MS) as a rapid tool for profiling mAb biosimilar candidates from clonal cell lines. A representative originator sample was used to develop the MCE-MS method. The addition of dimethylsulfoxide (DMSO) to the background electrolyte yielded up to 60-fold enhancement of the protein MS signal. The resulting electropherograms consistently provided resolution of mAb charge variants within 10 min. Deconvoluted mass spectra facilitated the identification of basic variants such as C-terminal lysine and proline amidation, while the acidic variants could be assigned to deamidated forms. The MCE-MS method also allowed the identification of 18 different glycoforms in biosimilar samples. To mimic early-stage cell line selection, samples from five clonal cell lines that all expressed the same biosimilar candidate mAb were compared to their originator mAb. Based on the similarity observed in charge variants and glycoform profiles acquired by MCE-MS, the most promising candidate could be selected. The MCE-MS method demonstrated good overall reproducibility, as confirmed by a transferability study involving two separate laboratories. This study highlights the efficacy of the MCE-MS method for rapid proteoform screening of clonal cell line samples, underscoring its potential significance as an analytical tool in biosimilar process development.

3.
J Pharm Sci ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880302

ABSTRACT

There are many factors to consider when selecting a container closure system for parenteral drug products to maintain their quality, efficacy, and safety. One aspect to consider for products stored in glass vials is the glass type. Although the glass vials in which most parenteral products are stored are classified as Type I by the United States Pharmacopoeia, Chapter <660>, not all glass vials that meet the glass performance characteristics of Type I are equivalent. In the study presented here, Type I glass vials from three suppliers of three different Type I glass vials (standard, delamination control, and coated) were investigated to evaluate the impact that each Type I glass vial had on the stability of a drug product under development. To evaluate this impact, a three-phase study was conducted in which the compatibility between the drug product and each vial was assessed through the measurement of the critical quality attributes of the product, extractable and leachable inorganic elements were analyzed for each vial, and finally a stability study under accelerated conditions was conducted for the drug product in the most compatible vial based on the aforementioned experiments. Results from this study demonstrated that there are, in fact, significant differences in glass vials regardless of their classification as Type I. In the study conducted here, delamination control Type I glass vials were found to be superior to both Standard Type I and coated Type I vials for the drug product under investigation.

4.
Pharmaceutics ; 16(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931917

ABSTRACT

In the past several decades, polymeric microparticles (MPs) have emerged as viable solutions to address the limitations of standard pharmaceuticals and their corresponding delivery methods. While there are many preclinical studies that utilize polymeric MPs as a delivery vehicle, there are limited FDA-approved products. One potential barrier to the clinical translation of these technologies is a lack of understanding with regard to the manufacturing process, hindering batch scale-up. To address this knowledge gap, we sought to first identify critical processing parameters in the manufacturing process of blank (no therapeutic drug) and protein-loaded double-emulsion poly(lactic-co-glycolic) acid MPs through a quality by design approach. We then utilized the design of experiments as a tool to systematically investigate the impact of these parameters on critical quality attributes (e.g., size, surface morphology, release kinetics, inner occlusion size, etc.) of blank and protein-loaded MPs. Our results elucidate that some of the most significant CPPs impacting many CQAs of double-emulsion MPs are those within the primary or single-emulsion process (e.g., inner aqueous phase volume, solvent volume, etc.) and their interactions. Furthermore, our results indicate that microparticle internal structure (e.g., inner occlusion size, interconnectivity, etc.) can heavily influence protein release kinetics from double-emulsion MPs, suggesting it is a crucial CQA to understand. Altogether, this study identifies several important considerations in the manufacturing and characterization of double-emulsion MPs, potentially enhancing their translation.

5.
Electrophoresis ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700202

ABSTRACT

Current postexposure prophylaxis of rabies includes vaccines, human rabies immunoglobulin (RIG), equine RIG, and recombinant monoclonal antibodies (mAb). In the manufacturing of rabies recombinant mAb, charge variants are the most common source of heterogeneity. Charge variants of rabies mAb were isolated by salt gradient cation exchange chromatography (CEX) to separate acidic and basic and main charge variants. Separated variants were further extensively characterized using orthogonal analytical techniques, which include secondary and tertiary structure determination by far and near ultraviolet circular dichroism spectroscopy. Charge and size heterogeneity were evaluated using CEX, isoelectric focusing (IEF), capillary-IEF, size exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and western blotting. Antigen binding affinity was assessed by enzyme linked immuno-sorbent assay and rapid florescence foci inhibition test. Results from structural and physicochemical characterizations concluded that charge variants are formed due to posttranslational modification demonstrating that the charge heterogeneity, these charge variants did neither show any considerable physicochemical change nor affect its biological function. This study shows that charge variants are effective components of mAb and there is no need of deliberate removal, until biological functions of rabies mAb will get affected.

6.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2299-2307, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812130

ABSTRACT

In the traditional Chinese medicine(TCM) manufacturing industry, quality control determines the safety, effectiveness, and quality stability of the final product. The traditional quality control method generally carries out sampling off-line testing of drugs after the end of the batch production, which is incomprehensive, and it fails to find the problems in the production process in time. Process analysis technology(PAT) uses process testing, mathematical modeling, data analysis, and other technologies to collect, analyze, feedback, control, and continuously improve the critical quality attributes(CQA) in all aspects of the production of TCM preparations in real time. The application of PAT in the TCM manufacturing industry is one of the research hotspots in recent years, which has the advantages of real-time, systematic, non-destructive, green, and rapid detection for the production quality control of TCM preparations. It can effectively ensure the stability of the quality of TCM preparations, improve production efficiency, and play a key role in the study of the quantity and quality transfer law of TCM. Commonly used PAT includes near-infrared spectroscopy, Raman spectroscopy, online microwave, etc. In addition, the establishment of an online detection model by PAT is the key basic work to realize intelligent manufacturing in TCM production. Obtaining real-time online detection data through PAT and establishing a closed-loop control model on this basis are a key common technical difficulty in the industry. This paper adopted systematic literature analysis to summarize the relevant Chinese and foreign literature, policies and regulations, and production applications, and it introduced the development trend and practical application of PAT, so as to provide references for accelerating the application of PAT in the TCM manufacturing industry, the intelligent transformation and upgrading, and high-quality development of the TCM industry.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Quality Control , Medicine, Chinese Traditional/standards , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/analysis , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/standards , Drug Industry/standards
7.
Pharmaceutics ; 16(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38794251

ABSTRACT

Hydrophobic ion pairing (HIP) complexation was found to be an efficient approach in modulating the release and enhancing the stability and encapsulation of hydrophilic macromolecules such as proteins in hydrophobic nano/microcarriers. The present work strives to develop and optimize the preparation of the HIP complex of the antimicrobial enzyme lysozyme (LYZ) with the ion-pairing agent (IPA) sodium dodecyl sulphate (SDS) relying on the quality-by-design (QbD) approach. The quality target product profile (QTPP) includes the achievement of maximal lipophilicity in a reversible manner to enable the maintenance of biological activity. The related critical quality attributes (CQAs) were defined as complexation efficacy, complex stability, enzyme recovery and activity. Three risk assessment (RA) tools were used to identify and rank the critical process parameters (CPPs) and critical material attributes (CMAs). From this assessment, the pH of the medium, LYZ:SDS molar ratio and drying conditions were determined as high-risk factors that need to be investigated. To the best of our knowledge, for the first time, electrostatic titration was used as a smart approach to determine the optimum molar ratio at different pH values. Based on the predefined CQAs, pH 8 with an LYZ/SDS molar ratio of 1:8 was found to be the optimal condition for complexation efficiency and recovery (%) of a biologically active enzyme. A cost-effective drying process based on a ventilated oven was developed, which resulted in complex qualities comparable to those obtained by the commonly used freeze-drying method. In a nutshell, the optimum conditions for the preparation of the LYZ/SDS HIP complex were efficiently facilitated by the rational application of QbD principles and the utilization of efficient electrostatic titration and ventilated oven-drying methods.

8.
Article in English | MEDLINE | ID: mdl-38752641

ABSTRACT

Periodontitis, the burgeoning disease, is at an alarming stage. Although this has triggered dedicated research in this area, as the disease itself demands a multi-component therapy, there is an unmet need for a compartment and sequential drug delivery system to ameliorate disease symptoms completely. The hypothesized work consists of multitherapeutic agents such as an antibiotic, a COX-II inhibitor, an MMP inhibitor, and a bone regenerating agent in an insitu gel. However, for the development of the system, as mentioned above, a thorough investigation at each stage is necessary; therefore, the quality-by-design approach was adopted. Furthermore, the current work is a pursuit of studying the quality by design aspects for the fabrication of a compartment system, i.e., in-situ gel for periodontal delivery. The proposed system in-situ gel consists of antibiotic and nano-encapsulating microcapsules. Furthermore, the microcapsules contain a COX-II inhibitor and nanoparticles of MMP inhibitor and bone regenerating agent for complete amelioration of periodontitis. To develop the system as per the QbD approach, the first initial trials and runs were conducted, which helped to decide the quality target product profile (QTPP). However, based on QTPP, critical quality attributes (CQA), critical process parameters (CPP), and critical material attributes (CMAs) were decided for each stage product, i.e., in-situ gel, microcapsules, and nanoparticles. To assess the influence of CPPs and CMAs on CQAs, Pareto charts were constructed, and various risks, along with possible failure modes were studied. In conclusion, the above work will serve as a well-designed scientific mouthpiece for developing a compartment system for periodontotherapy.

9.
J Pharm Sci ; 113(7): 1711-1725, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570073

ABSTRACT

Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.


Subject(s)
Dependovirus , Genetic Therapy , Genetic Vectors , Dependovirus/genetics , Humans , Genetic Therapy/methods , Animals , Drug Compounding/methods , Genomics/methods
10.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474031

ABSTRACT

Gene therapy holds great promise for the treatment of severe diseases, and adeno-associated virus (AAV) vectors have emerged as valuable tools in this field. However, challenges such as immunogenicity and high production costs complicate the commercial viability of AAV-based therapies. To overcome these barriers, improvements in production yield, driven through the availability of robust and sensitive characterization techniques that allow for the monitoring of critical quality attributes to deepen product and process understanding are crucial. Among the main attributes affecting viral production and performance, the ratio between empty and full capsids along with capsid protein stoichiometry are emerging as potential parameters affecting product quality and safety. This study focused on the production of AAV vectors using the baculovirus expression vector system (BEVS) in Sf9 cells and the complete characterization of AAV5 variants using novel liquid chromatography and mass spectrometry techniques (LC-MS) that, up to this point, had only been applied to reference commercially produced virions. When comparing virions produced using ATG, CTG or ACG start codons of the cap gene, we determined that although ACG was the most productive in terms of virus yield, it was also the least effective in transducing mammalian cells. This correlated with a low VP1/VP2 ratio and a higher percentage of empty capsids. Overall, this study provides insights into the impact of translational start codon modifications during rAAV5 production using the BEVS, the associated relationship with capsid packaging, capsid protein stoichiometry and potency. The developed characterization workflow using LC-MS offers a comprehensive and transferable analysis of AAV-based gene therapies, with the potential to aid in process optimization and facilitate the large-scale commercial manufacturing of these promising treatments.


Subject(s)
Capsid Proteins , Dependovirus , Animals , Capsid Proteins/genetics , Dependovirus/genetics , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Workflow , Genetic Vectors , Tandem Mass Spectrometry , Baculoviridae/genetics , Mammals/metabolism
11.
Pharm Res ; 41(3): 419-440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38366236

ABSTRACT

Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.


Subject(s)
Immunoconjugates , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Antibodies/therapeutic use , Drug Industry , Commerce
12.
Pharmaceutics ; 16(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38399325

ABSTRACT

This research aimed to develop miconazole-based microemulsions using oleic acid as a natural lipophilic phase and a stabilizer mixture comprising Tween 20 and PEG 400 to solubilize miconazole as an antifungal agent known for its activity in oral candidiasis and to improve its bioavailability. The formulation and preparation process was combined with a mathematical approach using a 23-full factorial plan. Fluid and gel-like microemulsions were obtained and analyzed considering pH, conductivity, and refractive index, followed by extensive analyses focused on droplet size, zeta potential, rheological behavior, and goniometry. In vitro release tests were performed to assess their biopharmaceutical characteristics. Independent variables coded X1-Oleic acid (%, w/w), X2-Tween 20 (%, w/w), and X3-PEG 400 (%, w/w) were analyzed in relationship with three main outputs like mean droplet size, work of adhesion, and diffusion coefficient by combining statistical tools with response surface methodology. The microemulsion containing miconazole base-2%, oleic acid-5%, Tween 20-40%, PEG 400-20%, and water-33% exhibited a mean droplet size of 119.6 nm, a work of adhesion of 71.98 mN/m, a diffusion coefficient of 2.11·10-5 cm2/s, and together with remarked attributes of two gel-like systems formulated with higher oil concentrations, modeled the final optimization step of microemulsions as potential systems for buccal delivery.

13.
Zhongguo Zhong Yao Za Zhi ; 49(2): 403-411, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403316

ABSTRACT

Based on the concept of quality by design(QbD), this study optimized the processing technology of Ilicis Rotundae Cortex. According to the processing method and ingredient requirements of Ilicis Rotundae Cortex in the Chinese Pharmacopoeia, the content of syringin and pedunculoside, alcohol extract, fragmentation rate, and moisture content were taken as the critical quality attributes(CQAs). The soaking time, moistening time, and drying time were taken as critical process parameters(CPPs) by single factor tests. The weight coefficients of CQAs were determined by the analytic hierarchy process(AHP)-entropy weighting method, and the comprehensive score was calculated. With the comprehensive score as the response value, Box-Behnken design was employed to establish a mathematical model between CPPs and CQAs, and the design space for the processing of Ilicis Rotundae Cortex was built and verified. The results of ANOVA showed that the mathematical model had the P value below 0.05, the lack of fit greater than 0.05, adjusted R~2=0.910 5, and predicted R~2=0.831 0, which indicated that the proposed model had statistical significance and good prediction performance. Considering the factors in production, the best processing conditions of Ilicis Rotundae Cortex were decoction pieces of about 1 cm soaking for 1 h, moistening for 4 h, and drying at 60-70 ℃ in a blast drier for 2 h. The optimized processing technology of Ilicis Rotundae Cortex was stable and feasible, which can provide a reference for the standardized preparation and stable quality of Ilicis Rotundae Cortex.


Subject(s)
Drugs, Chinese Herbal , Plant Bark , Technology , Ethanol
14.
AAPS PharmSciTech ; 25(3): 39, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38366149

ABSTRACT

Quantitative in silico tools may be leveraged to mechanistically predict the dermato-pharmacokinetics of compounds delivered from topical and transdermal formulations by integrating systems of rate equations that describe permeation through the formulation and layers of skin and pilo-sebaceous unit, and exchange with systemic circulation via local blood flow. Delivery of clobetasol-17 propionate (CP) from DermovateTM cream was simulated using the Transdermal Compartmental Absorption & Transit (TCATTM) Model in GastroPlus®. The cream was treated as an oil-in-water emulsion, with model input parameters estimated from publicly available information and quantitative structure-permeation relationships. From the ranges of values available for model input parameters, a set of parameters was selected by comparing model outputs to CP dermis concentration-time profiles measured by dermal open-flow microperfusion (Bodenlenz et al. Pharm Res. 33(9):2229-38, 2016). Predictions of unbound dermis CP concentrations were reasonably accurate with respect to time and skin depth. Parameter sensitivity analyses revealed considerable dependence of dermis CP concentration profiles on drug solubility in the emulsion, relatively less dependence on dispersed phase volume fraction and CP effective diffusivity in the continuous phase of the emulsion, and negligible dependence on dispersed phase droplet size. Effects of evaporative water loss from the cream and corticosteroid-induced vasoconstriction were also assessed. This work illustrates the applicability of computational modeling to predict sensitivity of dermato-pharmacokinetics to changes in thermodynamic and transport properties of a compound in a topical formulation, particularly in relation to rate-limiting steps in skin permeation. Where these properties can be related to formulation composition and processing, such a computational approach may support the design of topically applied formulations.


Subject(s)
Clobetasol , Skin , Humans , Clobetasol/pharmacokinetics , Emulsions/pharmacology , Computer Simulation , Water
15.
Eur J Pharm Biopharm ; 198: 114235, 2024 May.
Article in English | MEDLINE | ID: mdl-38401742

ABSTRACT

Nanotechnology-assisted RNA delivery has gotten a tremendous boost over the last decade and made a significant impact in the development of life-changing vaccines and therapeutics. With increasing numbers of emerging lipid- and polymer-based RNA nanoparticles progressing towards the clinic, it has become apparent that the safety and efficacy of these medications depend on the comprehensive understanding of their critical quality attributes (CQAs). However, despite the rapid advancements in the field, the identification and reliable quantification of CQAs remain a significant challenge. To support these efforts, this review aims to summarize the present knowledge on CQAs based on the regulatory guidelines and to provide insights into the available analytical characterization techniques for RNA-loaded nanoparticles. In this context, routine and emerging analytical techniques are categorized and discussed, focusing on the operation principle, strengths, and potential limitations. Furthermore, the importance of complementary and orthogonal techniques for the measurement of CQAs is discussed in order to ensure the quality and consistency of analytical methods used, and address potential technique-based differences.


Subject(s)
Nanoparticles , Nanotechnology , RNA, Messenger , Nanotechnology/methods
16.
Mol Ther Methods Clin Dev ; 32(1): 101170, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38268743

ABSTRACT

Cell and gene therapies (CGTs) have revolutionized patient outcomes and provided care options for previously untreatable conditions. The clinical and commercial progress of CGT therapies is hindered by chemistry, manufacturing, and control (CMC) challenges. This article summarizes recommendations from the 2023 Annual Meeting CMC sessions wherein speakers advocated for science-driven comparability strategies, proactive risk assessments, clearer regulatory guidance, and a shift from retrospective to prospective studies. Planning for manufacturing changes, statistical approaches, and consideration of multiple product versions also emerged as crucial elements to help sponsors navigate CMC hurdles for successful CGT clinical and commercial development.

17.
Anal Chim Acta ; 1287: 342074, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38182339

ABSTRACT

BACKGROUND: Therapeutic monoclonal antibodies (mAbs) comprise a large structural variability with respect to charge, size and post-translational modifications. These critical quality attributes (CQAs) need to be assessed during and after the production of mAbs. This normally requires off-line purification and sample preparation as well as several chromatographic selectivities, which makes the whole process time-consuming and error-prone. To improve on this, we developed an integrated and automated multi-dimensional analytical platform for the simultaneous assessment of multiple CQAs of mAbs in cell culture fluid (CCF) from upstream processes. RESULTS: The on-line system allows mAb characterization at the intact level, combining protein A affinity chromatography (ProtA) with size-exclusion, ion-exchange, and reversed-phase liquid chromatographic modes with UV and mass spectrometric detection. Multiple heart cuts of a single mAb elution band from ProtA are stored in 20-µL loops and successively sent to the multimethod options in the second dimension. ProtA loading and elution conditions and their compatibility with second-dimension LC modes were studied and optimized. Subsequently, heart-cutting and valve-switching schemes were investigated to achieve effective and reproducible analyses. The applicability of the developed workflow was demonstrated by the direct analysis (i.e. not requiring off-line sample preparation) of a therapeutic mAb in CCF, obtaining useful information on accurate molecular mass, glycosylation, and charge and size variants of the mAb product at the same time and in just over 1 h. SIGNIFICANCE: The developed multidimensional platform is the first system that allows for multiple fractions from a single ProtA band to be characterized using different chromatographic selectivities in a single run allowing direct correlation between CQAs. The performance of the system is comparable to established off-line methods, fully compatible with upstream process samples, and provides a significant time-reduction of the characterization procedure.


Subject(s)
Antibodies, Monoclonal , Cell Culture Techniques , Workflow , Chromatography, Reverse-Phase , Glycosylation
18.
J Control Release ; 365: 491-506, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030083

ABSTRACT

Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.


Subject(s)
Nanoparticles , Polyethylene Glycols , Mice , Animals , Polyethylene Glycols/chemistry , Tissue Distribution , Polymers/chemistry , Polyesters/chemistry , Nanoparticles/chemistry , Particle Size , Drug Carriers/chemistry
19.
Eur J Pharm Biopharm ; 195: 114174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160986

ABSTRACT

Over the last years, the pharmaceutical industry has faced real challenges regarding quality assurance. In this context, the establishment of more holistic approaches to the pharmaceutical development has been encouraged. The emergence of the Quality by Design (QbD) paradigm as systematic, scientific and risk-based methodology introduced a new concept of pharmaceutical quality. In essence, QbD can be interpreted as a strategy to maximize time and cost savings. An in-depth understanding of the formulation and manufacturing process is demanded to optimize the safety, efficacy and quality of a drug product at all stages of development. This innovative approach streamlines the pharmaceutical Research and Development (R&D) process, provides greater manufacturing flexibility and reduces regulatory burden. To assist in QbD implementation, International Conference on Harmonisation (ICH), U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) organized and launched QbD principles in their guidance for industry, identifying key concepts and tools to design and develop a high-quality drug product. Despite the undeniable advantages of the QbD approach, and the widespread information on QbD regulatory expectations, its full implementation in the pharmaceutical field is still limited. The present review aims to establish a crosswise overview on the current application status of QbD within the framework of the ICH guidelines (ICH Q8(R2) - Q14 and ICH Q2(R2)). Moreover, it outlines the way information gathered from the QbD methodology is being harmonized in Marketing Authorization Applications (MAAs) for European market approval. This work also highlights the challenges that hinder the deployment of the QbD strategy as a standard practice.


Subject(s)
Drug Development , Drug Industry , Drug Industry/methods , United States , United States Food and Drug Administration
20.
Adv Mater ; 35(52): e2305834, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37950607

ABSTRACT

In this paper, a roadmap is provided for the regulatory approval of one of the exciting and dynamic drug delivery fields, microneedles, by using a Quality by Design approach to pharmaceutical product development. In this regard, a quality target product profile (QTPP) and the critical quality attributes (CQA) of microneedles are identified. A case study of the recently patented method of fabricating glass microneedles entirely from a therapeutic agent, thus eliminating the requirement for additional excipients is discussed. The glass microneedle, ArrayPatch, is a propriety wearable device with platform potential consisting of an array of sharp, but painless, dissolvable microneedles manufactured with 100% drug. The microneedles penetrate the skin on application and dissolve to deliver a locally effective dose. The in vitro characterization of the microneedle CQAs under WHO-guided stability conditions will be described to assess the manufacturing readiness of ArrayPatch.  A live technical video is also provided, presenting a unique procedure of jugular vein cannulation through the ear vein of a pig animal model to study the in vivo pharmacokinetics of ArrayPatch compared to standard-of-care marketed products.


Subject(s)
Needles , Skin , Animals , Swine , Administration, Cutaneous , Pharmaceutical Preparations , Drug Delivery Systems/methods , Microinjections
SELECTION OF CITATIONS
SEARCH DETAIL
...