Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.233
Filter
1.
Environ Pollut ; 363(Pt 1): 125056, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374756

ABSTRACT

The widespread and extensive use of pesticides in European crop production to reduce losses from weeds, diseases, and insects may have serious consequences on the ecosystem and human health. This study aimed to identify 20 active substances of high health risk, based on their detection frequency within and across the environmental matrices (soil, crop, water, and sediment) and to identify their associated hazardous effects. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina and included conventional and organic farming systems. In 31% of cases, the detected substances were found at a higher concentration in the soil than in the corresponding crops, 93% of the compounds were fungicides, and the remainder were insecticides. 43% of the substances, 57% of which were insecticides, were detected only in soil. There was a clear relationship between soils and crops in terms of contamination, but not between water and sediment. Portuguese soil (wine grapes) had the highest number of substances (12) with average concentrations (AC) varying between 1 and 162 µg/kg, followed by French (11 substances in wine grapes) (1≤AC≤64 µg/kg) and Spanish soils (9 substances in vegetables) (3≤AC≤59 µg/kg). The crops corresponding to these soils contained a relatively high number of detected substances and several in high average concentrations (AC). The risk quotient was consistently higher for conventional farms than for organic farms. For the soils from conventional farms, 5 active substances (chlorpyrifos, glyphosate, boscalid, difenoconazole, lambda-cyhalothrin, and one metabolite: AMPA) were considered high risk. For water samples, 2 substances (dieldrin and terbuthylazine) found were high risk, and for sediment, there were 3 substances (metalaxyl-M, spiroxamine, and lambda-cyhalothrin). There were 6 substances detected in crops that are suspected to cause human health effects. Uncontaminated soil is a prerequisite for the adoption of sustainable alternatives to pesticides. Efforts are needed to elucidate the unknown effects of mixtures, including biocides and banned compounds in addition to the substances used in agriculture.

2.
Plant Dis ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352507

ABSTRACT

Forestry constitutes an important agronomical activity in Uruguay, involving the cultivation of exotic trees mainly for cellulose pulp production with Eucalyptus species. Over the last decade, E. smithii emerged as a species of interest for cellulose pulping. However, its rapid expansion has coincided with high mortality rates among young trees ranging from 5 to 85%, especially during the first and second summer after plantation. Disease surveys conducted on nine E. smithii commercial fields and three nurseries in southern and eastern Uruguay, yielded a collection of 25 isolates from E. smithii root rot belonging to the Nectriaceae family. In this study, we aimed to identify and characterize these isolates employing phenotypical and molecular studies and to assess their pathogenicity on E. smithii seedlings. Based on morphological features, the Nectriaceae isolates were subdivided into two groups, one resembling Calonectria (n=15) and another Cylindrocarpon-like (n=10). DNA sequences of the partial histone H3 (his3), actine, calmodulin, RNA polymerase II second largest subunit, translation elongation factor 1-alpha (tef1) and ß-tubulin (tub2) genes were amplified for Calonectria, as well as partial his3, tef1, tub2 and internal-transcribed spacer and intervening 5.8S (ITS) for the Cylindrocarpon-like group. Based on phylogenetic analysis and phenotypical features three species were identified and characterized; Calonectria pauciramosa (n=15), Dactylonectria novozelandica (n=2), and a novel taxon which we describe here as Ilyonectria charruensis sp. nov. (n=8). The pathogenicity trials revealed that isolates from the three species significantly reduced both shoot and root dry weights of inoculated E. smithii seedlings compared to control plants.

3.
J Econ Entomol ; 117(5): 2135-2142, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39255407

ABSTRACT

Rachiplusia nu Guenée is a polyphagous species able to develop on several cultivated and non-cultivated host plants. However, basic life history information about this pest on hosts is scarce. In this study, R. nu larvae did not survive on leaves of non-Bt corn, wheat, Bt cotton that expresses proteins Cry1Ac+Cry2Ab2 or on Intacta2 Xtend soybean that expresses the Cry1A.105/Cry2Ab2/Cry1Ac proteins. Rachiplusia nu showed a viable egg-to-adult biological cycle (54%-66.3%) on non-Bt soybean, sunflower, canola, vetch, Persian clover, alfalfa, bean, and forage turnip hosts, similar to larvae raised on the artificial diet. In addition, R. nu was unable to complete larval development on non-Bt cotton, and only 45.2% of R. nu larvae reached the pupal stage when fed leaves of intacta RR2 PRO soybean that expresses the Cry1Ac protein. Larval and pupal mass of surviving insects on Cry1Ac soybean leaves were also lower (larval: 0.104 g; pupal: 0.099 g) in relation to other food sources (larval: 0.165-0.189 g; pupal: 0.173-0.192 g). The total fecundity of R. nu on Cry1Ac soybean leaves was ≈65% lower in relation to other food sources. This fact caused ≈60% the net reproductive rate (Ro) and intrinsic rate of increase (rm) when compared to other food sources. Our findings indicate that the Cry1Ac soybean negatively affects the biological parameters of R. nu. Non-Bt soybean, sunflower, canola, vetch, Persian clover, alfalfa, bean, and forage turnip are viable food sources for the survival and development of R. nu.


Subject(s)
Bacillus thuringiensis Toxins , Endotoxins , Hemolysin Proteins , Larva , Moths , Animals , Moths/growth & development , Larva/growth & development , Larva/physiology , Diet , Female , Pupa/growth & development , Plants, Genetically Modified , Bacterial Proteins , Male , Life Tables , Life History Traits
4.
J Agric Food Chem ; 72(40): 22385-22397, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39324627

ABSTRACT

Peanut production could be increased through plant growth-promoting rhizobacteria (PGPR). In this regard, the present field research aimed at elucidating the impact of PGPR on peanut yield, soil enzyme activity, microbial diversity, and structure. Three PGPR strains (Bacillus velezensis, RI3; Bacillus velezensis, SC6; Pseudomonas psychrophila, P10) were evaluated, along with Bradyrhizobium japonicum (BJ), taken as a control. PGPR increased seed yield by 8%, improving the radiation use efficiency (4-14%). PGPR modified soil enzymes (fluorescein diacetate activity by 17% and dehydrogenase activity by 28%) and microbial abundance (12%). However, PGPR did not significantly alter microbial diversity; nonetheless, it modified the relative abundance of key phyla (Actinobacteria > Proteobacteria > Firmicutes) and genera (Bacillus > Arthrobacter > Pseudomonas). PGPRs modified the relative abundance of genes associated with N-fixation and nitrification while increasing genes related to N-assimilation and N-availability. PGPR improved agronomic traits without altering rhizosphere diversity.


Subject(s)
Arachis , Bacillus , Bradyrhizobium , Metagenomics , Pseudomonas , Rhizosphere , Soil Microbiology , Soil , Arachis/microbiology , Arachis/growth & development , Arachis/metabolism , Arachis/genetics , Bacillus/genetics , Bacillus/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Bradyrhizobium/growth & development , Bradyrhizobium/physiology , Pseudomonas/genetics , Pseudomonas/physiology , Pseudomonas/growth & development , Soil/chemistry , Crop Production/methods , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/enzymology , Bacteria/isolation & purification , Biodiversity , Nitrogen Fixation , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/metabolism
5.
Sci Rep ; 14(1): 22309, 2024 09 27.
Article in English | MEDLINE | ID: mdl-39333380

ABSTRACT

Animal pollination is crucial for the reproduction and economic viability of a wide range of crops. Despite the existing data, the extent to which citrus crops depend on pollinators to guarantee fruit production still needs to be determined. Here, we described the composition of potential pollinators in citrus (Citrus spp.) from the main growing areas of Argentina; moreover, we combined Bayesian models and empirical simulations to assess the contribution of animal pollination on fruit set and yield ha-1 in different species and cultivars of lemons, grapefruits, mandarins, and oranges. Honeybee (A. mellifera L.) was the most commonly observed potential pollinator, followed by a diverse group of insects, mainly native bees. Regardless of citrus species and cultivars, the probability of flowers setting fruit in pollinated flowers was 2.4 times higher than unpollinated flowers. Furthermore, our simulations showed that about 60% of the citrus yield ha-1 can be attributable to animal pollination across all species and cultivars. Therefore, it is crucial to maintain environments that support pollinator diversity and increase consumer and to producer awareness and demand in order to ensure the significant benefits of animal pollination in citrus production.


Subject(s)
Citrus , Flowers , Pollination , Pollination/physiology , Animals , Flowers/growth & development , Bees/physiology , Fruit , Argentina , Bayes Theorem , Crops, Agricultural/growth & development
6.
Plant Dis ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306685

ABSTRACT

English walnut (Juglans regia) cultivation has been expanding in recent years in Chile, with a surface of 9,000 ha planted in the Maule Region (35° 26' S, 71° 40' W), central Chile. In a field survey conducted between August (2022) and January (2023) in three localities of the Maule Region, several declined trees were observed. English walnuts exhibited small chlorotic leaves, cankers, dead twigs, and dieback of branches, with an incidence of 10 to 35% of trees affected per orchard. Internally, diseased branches exhibit brown to dark brown wood cankers. Symptomatic branches (n = 30) were collected and surface disinfected with 96% ethanol, and flamed. Pieces of wood (approximately 5 mm) were placed on potato dextrose agar (PDA), supplemented with 0.005% tetracycline, 0.01% streptomycin, and 0.1% Igepal CO-630 (Díaz et al. 2018), and incubated at 22°C for 5 days in darkness. Four isolates (VLC-1-6-20, VLC-1-10-20, VLC-1-12-20, and VLC-1-15-20) exhibited moderate growth rates (16.4 mm/day), developing a white hue to olivaceous black colonies after 7 days at 22°C on PDA. Chlamydospores were absent. Black pycnidia were formed individually or in clusters. The isolates produced aseptate, hyaline, and fusiform, with base truncate conidia measuring 24.8 ± 1.6 x 6.8 ± 0.63 µm (l/w = 3.1; n = 50). The four isolates characterized were amplified using of the internal transcribed spacer (ITS1/ITS4), a portion of beta-tubulin (Bt2a/Bt2b), and part of the translation elongation factor 1- α (EF1-728/EF1-968) genes (Phillips et al. 2013). Blast analyses showed 100, 99 and 100 % identity with ex-type isolate PD-484 of Neofusicoccum nonquaesitum for ITS (deposited as GenBank accession no. PP697845 to PP697848), Bt (PP789576 to PP789579) and EF1 (PP830824 to PP830827) regions, respectively. Combined phylogenetic analysis using MEGA 7 software and the maximum likelihood test clustered the four isolates with ex-type of N. nonquaesitum. Pathogenicity was performed using two isolates (VLC-1-6-20 and VLC-1-10-20), which were inoculated in healthy tree walnuts cv. Chandler (8 years old), using 40 µl of mycelial suspension (105 fragments of mycelium/ml) on rounded wounds in the middle of each attached young branch (n=30 branches) (Twizeyimana et al. 2013). Sterile distilled water was used as a control treatment. Pathogenicity tests were repeated twice. After 6 months, necrotic streaks with mean lengths of 13 mm and 28 mm were observed in the middle of wounded young branches. No necrotic lesions were observed in the control treatments. Reisolation of N. nonquaesitum was positive (100%) only from inoculated branches and molecularly identified (EF1-a), fulfilling Koch's postulates. Previously, N. nonquaesitum has been reported causing dieback on English walnut in California (Chen et al. 2014). To our knowledge, this is the first report of N. nonquaesitum causing canker and branch dieback of English walnut in central Chile. Previously, Diplodia mutila, Dothiorella sarmentorum, and N. austral have been associated with walnut dieback in Chile (Díaz et al. 2018; Iqbal et al. 2023; Barcos et al. 2023). In conclusion, it is imperative to implement epidemiological studies to avoid the spread and severity of branch dieback of walnuts in the Maule region, central Chile.

7.
Plants (Basel) ; 13(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273931

ABSTRACT

Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country's special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil's diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil's agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage.

8.
Chem Biodivers ; : e202401259, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141524

ABSTRACT

Efforts are intensifying to identify bioactive microbial metabolites from biocontrol agents to manage plant pathogens in critical crops. This study examined both volatile organic compounds (VOCs) and non-volatile compounds from Metarhizium carneum and Lecanicillium uredinophilum strains for their antimicrobial effects against various phytopathogens and analyzed their exo-metabolomes. M. carneum VOCs inhibited four bacterial and eight fungal species by up to 45.45 %, while L. uredinophilum VOCs inhibited five bacterial and eight fungal species by up to 50.91 %. Additionally, n-BuOH extracts from both biocontrol agents effectively targeted three fungi and five bacteria. The exo-metabolomes of M. carneum and L. uredinophilum included 125 and 102 spectrometric features, respectively, primarily consisting of polyketides, alkaloids, lipids, organic aromatic compounds, terpenoids, and peptides. Our findings revealed a correlation between the phylogenetic relationships of M. carneum strains, their bioactivity patterns against phytopathogens, and their metabolomic profiles. Notably, some compounds detected in both fungi previously demonstrated biological activity against plant pathogens, enhancing their biocontrol potential. This study not only evidences the antimicrobial properties of diffusible compounds from M. carneum and L. uredinophilum, but also documents the antimicrobial potential of their VOCs for the first time, supporting their use in sustainable agricultural practices, reducing reliance on chemical inputs.

9.
Chem Biodivers ; : e202400945, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106337

ABSTRACT

Chalcone (E)-1,3-diphenyl-prop-2-en-1-one and a series of 14 methoxylated derivatives have been synthesized via Claisen-Schmidt aldol condensation and characterized by FTIR, CG/MS/DIC, 1D (1H and 13C), 2D (COSY, HSQC, and HMBC) NMR, and EMAR techniques. All molecules were tested at 1 mM concentration for antifungal (Sclerotium sp., Macrophomina phaesolina and Colletotrichum gloeosporioides), antibacterial (Acidovorax citrulli two strains), and antiprotozoal (Phytomonas serpens) activities. Unmodified chalcone (CH0) and derivatives CH1, CH2, CH8 stood out in terms of antifungal activity. CH0 presented IC50 values of 47.3 µM (9.8 µg/mL) for the fungus C. gloeosporioides. In addition, fluorescence microscopy indicated that CH0 promoted loss of hyphal cell membrane integrity. The CH1 and CH2 derivatives promoted the inhibition of Sclerotium sp. with IC50 of 127.5 µM (32.9 µg/mL) and 110.4 µM (29.6 µg/mL), respectively. All molecules showed high activity against the phytoparasite P. serpens with IC50 values of 0.98, 2.40, 10.25, and 3.11 µM for the derivatives CH2, CH3, CH5 and CH14 respectively. The results demonstrated that derivatives methoxylated in both rings (CH2) as well as derivatives with a furan ring associated with the methoxy group in ring A, as well as unmodified chalcone can be promising agricultural fungicides for controlling the fungi studied.

10.
Plants (Basel) ; 13(16)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39204653

ABSTRACT

Most soybean producers in the Cerrado biome use the direct seeding system, making it essential to cultivate cash or cover crops in the off-season, to promote soil protection, as well as increase organic matter, which is directly related to improvements in the chemical and physical characteristics of these soils. In this sense, this work was conducted in Jataí, state of Goias, Brazil, to evaluate the physical-chemical attributes of the soil and the performance of soybeans cultivated in different crop succession systems cultivated for 6 years in the region of Jataí, GO. The experimental design was randomized blocks with four plots and four replications; the crops that followed soybeans were arranged as follows: T1-corn (Zea mays); T2-pearl millet (Pennisetum glaucum); T3-Urochloa ruziziensis; and T4-corn + Urochloa ruziziensis. Soybean yield components and grain yield were evaluated in two harvests (2020/2021 and 2021/2022). Deformed and undisturbed soil samples were collected in 2022 to assess soil fertility and for physical analysis. The data were subjected to analysis of variance (F test) and the means were compared using the Tukey test at 5% probability. The soybean-millet succession system stood out for the chemical and physical attributes of the soil: calcium, magnesium, base saturation, hydrogen + aluminum, and total porosity. The crop succession system did not affect yield for the two years analyzed, but the accumulated grain yields were higher in the crop succession soybean/corn intercropped. The results highlight the importance of using cover crops in improving the physical and chemical qualities of the soil in the long term. However, in the Cerrado, there is a predominance of the soybean/corn succession system motivated by financial issues to the detriment of the qualitative aspects of the soil, in which the introduction of Urochloa ruziziensis in intercropping with corn would improve the chemical attributes of the soil and have a long-term impact on the accumulated grain production.

11.
J Imaging ; 10(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39194976

ABSTRACT

This study focuses on semantic segmentation in crop Opuntia spp. orthomosaics; this is a significant challenge due to the inherent variability in the captured images. Manual measurement of Opuntia spp. vegetation areas can be slow and inefficient, highlighting the need for more advanced and accurate methods. For this reason, we propose to use deep learning techniques to provide a more precise and efficient measurement of the vegetation area. Our research focuses on the unique difficulties posed by segmenting high-resolution images exceeding 2000 pixels, a common problem in generating orthomosaics for agricultural monitoring. The research was carried out on a Opuntia spp. cultivation located in the agricultural region of Tulancingo, Hidalgo, Mexico. The images used in this study were obtained by drones and processed using advanced semantic segmentation architectures, including DeepLabV3+, UNet, and UNet Style Xception. The results offer a comparative analysis of the performance of these architectures in the semantic segmentation of Opuntia spp., thus contributing to the development and improvement of crop analysis techniques based on deep learning. This work sets a precedent for future research applying deep learning techniques in agriculture.

12.
Plant Dis ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115955

ABSTRACT

Vasconcellea x heilbornii, known as babaco, is a hybrid native to Ecuador grown in small orchards in sub-tropical highland regions. Over the last decade, several viruses have been identified in babaco using high-throughput sequencing (HTS) (Cornejo-Franco et al. 2020, (Reyes-Proaño et al. 2023). In 2021, total RNA from a babaco plant showing distinctive leaf yellowing was extracted using the PureLink RNA Mini Kit (Thermo Fischer Scientific, USA) and subjected to HTS on an Illumina NovaSeq6000 system as 150 paired-end reads (Macrogen Inc., South Korea). Library construction was done using the TruSeq Stranded Total RNA Sample kit with Plant Ribo-Zero, as described (Villamor et al. 2022). Reads were processed using BBDuk and de novo assembled using SPAdes 3.15. both implemented in Geneious 2022. Contig analysis was done by BLASTx using the NCBI viral sequence database (as of November 2022). HTS generated 54 million reads, of which 12% assembled into contigs corresponding to genomes of previously reported babaco viruses including babaco virus Q (BabVQ), babaco nucleorhabdovirus 1 (BabRV1) and babaco ilarvirus 1 (BabIV1). Interestingly, 144 reads (0.0003%) assembled into seven contigs ranging from 100 to 480 nucleotides (nt) in length. These contigs showed homology, with 97% amino acid (aa) identity (100% query coverage), to regions of the RNA-dependent-RNA-polymerase (RdRp) of beet western yellows virus (BWYV, Acc. No. NC_004756), a member of the Polerovirus genus. To confirm the occurrence of BWYV in babaco, double-stranded RNA (dsRNA) was extracted from 15 g of leaf tissue from the original sample as described (Dodds et al. 1984) and used as template for reverse-transcription (RT)-PCR using overlapping primers designed to span all short contigs. RT-PCR amplified fragments were cloned into a pGEM®T-easy vector (Promega, USA) and sequenced by the Sanger method (Macrogen Inc., South Korea). The sequences were assembled into a single 2.7 kbp BWYV genome fragment comprising the complete protein 1 (P1) and partial RdRp gene (GenBank Acc. No. PP480670). Sequence alignments between the partially sequenced genome of the babaco isolate and its corresponding fragment from the closest BWYV isolate (NC_004756) revealed 94% and 97% identities at the nt and aa levels, respectively. To assess the prevalence of BWYV in babaco, 30 leaf samples showing yellowing symptoms from Pichincha (n=15) and Azuay (n=15) provinces were tested by RT-PCR using total RNA. Total RNA extraction and reverse transcription were done using the methodology described by Halgren et al. (2007). For RT-PCR, the primer set BWYV_Bab_F: 5'-CAGTGTCCTCCAAGTGCAACAT-3' / BWYV_Bab_R: 5'GGTTCCTTCCCAGTTTGGTGGT-3', which amplifies a 235 nt-long P1 region, was used. Three RT-PCR products from each positive sample were purified using the GeneJET PCR clean-up kit (Thermo Scientific, USA) and sequenced. BWYV was confirmed in 9 out of 15 samples (60%) from Pichincha, and in 10 out of 15 samples (64%) from Azuay. Samples were also tested for additional babaco viruses as described (Reyes-Proaño et al. 2023). All BWYV-infected plants turned out positive for papaya ringspot virus (PRSV), babaco mosaic virus (BabMV), BabVQ, and BabIV1. Hence, the impact of BWYV infection on babaco plants in single and mixed infections warrants further investigation. To the best of our knowledge, this is the first report of BWYV in a crop in Ecuador, and the first time it has been found in a Caricaceae species.

13.
Plant Dis ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110614

ABSTRACT

European chestnut (Castanea sativa Mill.) currently reaches 1,470 ha, distributed from the Maule region to the Los Rios region in Chile. Almost 3000 tons of fruit have been exported in the last three years. A survey was carried out in January 2023 in an eight-year-old orchard located in Vilcún (38°34'46.22"S 72° 9'58.61"O), Araucanía Region. Chestnut trees with branch die back and reduced growth and vigor were detected. The incidence in the orchard was 3% (6 out of 200 trees) estimated by visual observation. Cross and longitudinal sections of the woody trunk of two trees were collected and examined, and an internal dark-brown discoloration to partial necrosis lesion was observed. To identify the causal agent, small pieces of wood from the edge of the symptomatic area were surface sterilized with 70% ethanol, rinsed twice with sterile distilled water, blotted on dry sterile filter paper, plated on potato dextrose agar (PDA) and incubated at 22°C. Fungal colonies were consistently isolated, and after 5 days, pure cultures were obtained by transferring mycelium to new PDA plates, preliminarily identified as Gnomoniopsis sp. (Visentin et al. 2012, Shuttleworth 2012). All cultures exhibited characteristics consistent with the description of G. castaneae (Syn. G. smithogilvyi), such as concentric development of greyish-brown mycelium, abundant stroma, hyaline conidia of 7.2 ±0.54 (6.1-8.1) X 2.3 ±0.26 (1.5-2.9) µm (n= 30), mainly biguttulate and fusoid. Total DNA was extracted, rDNA amplified using ITS1/ITS4 primers (White et al. 1990), and the fragment was Sanger sequenced and the sequence was deposited in GenBank (OR665735). BLAST analysis revealed a 99% identity to G. castaneae (MH384925). In addition, the DNA of the isolate was evaluated in a species-specific multiplex PCR (Silva-Campos et al. 2022), and the amplicons were electrophoretically separated, giving a similar band profile to G. smithogilvyi RGM 2903 and RGM 2904 strain from Chilean Collection of Microbial Genetic Resources. Pathogenicity of G. castaneae isolate (CV-11) was tested on ten replicates of 3-year-old C. sativa plants. Two wounds were made on the same season growing shoot and two on the previous season shoot. Longitudinal wounds (5 mm long, 4 mm wide and 2 mm depth) were made using a scalpel without removing the outer bark to inoculate the plants. Each wound was inoculated with a 5-mm mycelium plug, covered with the outer bark, and wrapped with Parafilm. Plugs of PDA were placed onto the wounds of two plants as control. The plants were kept in a growth chamber (22 ±1 0C and 90± 5% RH). All plants showed dark brown cankers measuring 20 to 40 mm long two weeks after inoculation. Also, most plants inoculated in the same season shoot presented wilted and chlorotic foliage. Mature conidiomata with cirri developed in most of the cankers. No symptoms were observed in the control. Fungal colonies of G. castaneae were reisolated on PDA from all inoculated chestnut plants and were not recovered from the controls. Recently, G. smithogilvyi has been identified as the causal agent of brown rot on chestnut nuts in Chile (Cisterna Oyarce et al. 2022); however, in several countries, it has also been associated as the causal agent of cankers in branch and stem of chestnut, as well as an endophyte in different hardwood species. Future studies on the incidence of this pathogen and its impact on chestnut yield should be carried out in the producing regions because it represents an emerging threat to Chilean chestnut production.

14.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124176

ABSTRACT

The growth of cover crops can contribute to the increase in phosphorus content at depth by root decomposition. The aim of this work was to verify the effect of cover crops on soil phosphorus availability and use by successive plants, and the accumulation of soil P in a no-tillage system conducted for 14 years. This research was carried out during the 2016/2017 and 2017/2018 crop seasons, whose treatments have been installed and maintained since 2003. The experimental design was a randomized block design, and the plots consisted of spring crops: pearl millet, forage sorghum, sunn hemp, and additionally, a fallow/chiseling area. The evaluation of available P was determined by P fractionation. In general, in the two years of evaluation, the accumulation of P in the shoot dry matter was higher in sunn hemp growth, on average 25% higher than pearl millet in 2016 and 40% higher than sorghum in 2017. The highest contents of labile inorganic P were in the sorghum-soybean and fallow/chiseling-soybean successions, with values higher than 50 mg kg-1 of P in the 0-0.1 m soil layer. However, in the other layers analyzed, the cover crops obtained higher availability of labile inorganic P. The systems using cover crops recovered 100% of the P fertilized in soybean.

15.
Plant Dis ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146004

ABSTRACT

Cultivation of yellow dragon fruit (Selenicereus megalanthus) in Peru has recently expanded (Verona-Ruiz et al. 2020). In August 2021, approximately 170 of 1,110 dragon fruit cuttings (15.3%) in the university's nursery (6°26'10'' S; 77°31'25'' W) showed basal rot symptoms. Initial symptoms included small brown spots on the base of stems, expanding towards the top that became soft and watery. All symptomatic plants eventually died, i.e., a severity of 100%. The disease was more prevalent on cuttings during the rooting phase than on well-established cuttings. We collected five symptomatic cuttings from throughout the nursery. Four sections of 1 × 1 cm2 of tissue adjacent to the diseased area were excised from each cutting, immersed for 1 min in 2% NaClO, rinsed twice with sterile distilled water, placed on potato dextrose agar (PDA) medium (four sections per Petri plate, five plates), and incubated at 25°C for 7 days. Morphologically similar mycelia grew from all sections, and five monosporic isolates were obtained, one per plate. Colonies grew fast, reaching 60 to 64 mm in 7 days, and produced violet-white cottony aerial mycelia with orange sporodochia on PDA, and abundant macro- and microconidia on synthetic nutrient-poor agar. Macroconidia were straight to slightly curved, typically with 2 to 3 septa, 16.6 to 23.3 × 1.7 to 3.7 µm (n = 30); microconidia were oval or kidney-shaped, and commonly hyaline, 6.7 to 16.4 × 2.5 to 4.7 µm (n = 40). Genomic DNA was extracted from isolate AFHP-100, then the ITS region and the TEF1 and RPB2 partial genes were amplified and sequenced (Accession numbers PP977433, OR437358, PP537149) following Gardes and Bruns (1993) and O'Donnell et al. (1998). We conducted a BLASTn search of ITS sequence against the NCBI "nr" database and local 'megablast' searches of TEF1 and RPB2 sequences against FUSARIUM-ID v.3.0 (Torres-Cruz et al. 2022). We found 100%, 98.19 to 99.84%, and 98.81 to 99.76% identities in ITS, TEF1, and RPB2 sequences, respectively, to the ex-epitype and other reference strains of Fusarium oxysporum (CBS 144134, NRRL26406, among others). A maximum likelihood phylogenetic analysis with a TEF1-RPB2 concatenated dataset with FUSARIUM-ID sequences also showed isolate AFHP-100 was F. oxysporum. A pathogenicity test was carried out by inoculating wounded healthy roots of three cuttings with submersion in a 5 × 106 conidia/ml suspension for 25 min. Then, the inoculated plants were planted in sterile soil. One cutting with wounded roots submerged in sterile water served as a control. In parallel, sterile soil was inoculated with 20 mL of the conidial suspension, and another three healthy cuttings were planted. A cutting planted in noninoculated soil also served as a control. Basal rot symptoms developed in all inoculated plants after 25 days. After re-isolation, the same fungus, corroborated based on micromorphology and TEF1 sequence (PP335689), was recovered, fulfilling Koch's postulates. The isolate was deposited in the KUELAP Herbarium (voucher KUELAP-3214), located and administered by the National University Toribio Rodriguez de Mendoza de Amazonas, in Chachapoyas, Peru. Fusarium oxysporum has been reported to cause basal stem rot in Bangladesh and Argentina (Mahmud et al. 2021; Wright et al. 2007), and stem blight in Malaysia (Mohd Hafifi et al. 2019) on dragon fruit. This is the first report of F. oxysporum causing basal rot in S. megalanthus in Peru. This fungus is among the most destructive plant pathogens, and the rapid expansion of the crop in Peru requires a comprehensive knowledge of the biotic factors influencing production. Therefore, this report is foundational to implementing proper control strategies.

16.
Sci Total Environ ; 951: 175655, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39173754

ABSTRACT

This study evaluated the potential for combining dehydrated human urine with one other form of organic waste to create circular fertilisers tailored to meet the macronutrient demand of 15 major crops cultivated globally. Through a reverse blending modelling approach, data on 359 different organic wastes were used to identify 38 fertiliser blends. Materials found to be particularly suitable as blending materials were various biochars and ashes, due to their low nitrogen and high phosphorus and/or potassium content, and byproduct concentrates, due to their high phosphorus content, since the nitrogen content of human urine is disproportionately higher than its phosphorus content. Several organic wastes were suitable for fertilising more than one crop. The macronutrient content of the simulated fertiliser blends was comparable to that of blended inorganic fertilisers, but only a few blends precisely matched the macronutrient demand of crops. Fertilising crops with some simulated fertilisers would potentially result in excess application of one or more macronutrients, and thus overfertilisation. For organic wastes with data available on their content of six or more heavy metals, it was found that the simulated fertilisers generally met European Union regulations on use of fertilisers of organic origin in agriculture. Overall, these findings suggest that fertiliser blends combining dehydrated human urine and organic wastes, both of which are widely available globally, could replace inorganic blended fertilisers in agriculture. Such recycling would help the global food system and water sector transition to circularity and promote better management of plant-essential nutrients in society.


Subject(s)
Agriculture , Crops, Agricultural , Fertilizers , Urine , Humans , Agriculture/methods , Urine/chemistry , Nitrogen , Phosphorus , Nutrients/analysis
17.
Sci Total Environ ; 950: 175218, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39097025

ABSTRACT

Ensuring the sustainability and circularity of mixed crop-ruminant livestock systems is essential if they are to deliver on the enhancement of long-term productivity and profitability with a smaller footprint. The objectives of this study were to select indicators in the environmental, economic and social dimensions of sustainability of crop-livestock systems, to assess if these indicators are relevant in the operational schedule of farmers, and to score the indicators in these farm systems. The scoring system was based on relevance to farmers, data availability, frequency of use, and policy. The study was successful in the assemblage of a suite of indicators comprising three dimensions of sustainability and the development of criteria to assess the usefulness of these indicators in crop-ruminant livestock systems in distinct agro-climatic regions across the globe. Except for ammonia emissions, indicators within the Emissions to air theme obtained high scores, as expected from mixed crop-ruminant systems in countries transitioning towards low emission production systems. Despite the inherent association between nutrient losses and water quality, the sum of scores was numerically greater for the former, attributed to a mix of economic and policy incentives. The sum of indicator scores within the Profitability theme (farm net income, expenditure and revenue) received the highest scores in the economic dimension. The Workforce theme (diversity, education, succession) stood out within the social dimension, reflecting the need for an engaged labor force that requires knowledge and skills in both crop and livestock husbandry. The development of surveys with farmers/stakeholders to assess the relevance of farm-scale indicators and tools is important to support direct actions and policies in support of sustainable mixed crop-ruminant livestock farm systems.


Subject(s)
Agriculture , Animal Husbandry , Farmers , Livestock , Animals , Animal Husbandry/methods , Agriculture/methods , Crops, Agricultural , Farms , Conservation of Natural Resources/methods , Environmental Monitoring/methods
18.
Plant Dis ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207337

ABSTRACT

Post-harvest diseases like fruit crown rot (CR) on bananas (Musa spp.) worldwide are mainly attributed to Colletotrichum gloeosporioides (Berk. & Curt.) von Arx and Lasiodiplodia theobromae (Pat.) Griff. & Maubl (Sangeetha et al., 2012; Riera et al., 2019). In April 2019, at a banana farm (cultivar Williams) located in El Oro province (location at 79° 54' 05" W; 03° 17' 16" S), thirty hands were randomly collected from the postharvest process and further placed in a humid chamber at 20 ºC until signs of the disease progressed and became more evident (from 3 days to 20 days). Ten hands presented initial symptoms related to CR during the postharvest process, which included crown or peduncle rot with mycelial development on the crown's surface, leading to the blackening of tissues at the site of the wound left when the cluster was cut. Crown fruit fragments (~0.5 cm) from the edge of healthy tissue and diseased tissue underwent a series of disinfection steps, initially in ethanol (70%) for 1 min, followed by sodium hypochlorite (1%) for 1 min, rinsed three times with sterile distilled water, and dried on sterile filter paper for 10 min. The fragments were placed onto Potato dextrose agar (PDA) + chloramphenicol (100 mg L-1) and incubated at 25°C in darkness for five days. Five isolates with different colony morphologies were obtained. An initial screen of the pathogenicity of all isolates showed that only one isolate showed disease activity in banana crowns. This isolate, C1, showed grayish-white aerial mycelium in culture as described above and, after ten days, became black. We did a full pathogenicity test with C1 using ten individual banana fruits (cv. Williams Cavendish). Briefly, one disc (Ø of 5 mm) of the fungus with agar was placed on the acropetal part of the banana fruit (on the peel) and another piece in the crown without wounding. Inoculated fruit were in a humid chamber at 20 °C for 20 days. Uninoculated fruits constituted the control. Isolate C1 caused 100% of the fruit and crowns to rot, with symptoms similar to those initially observed from fruit collected at the postharvest process (Fig. S1d). The fungus was re-isolated from symptomatic tissue, and its identity was confirmed through morphological characteristics consistent with Lasiodiplodia sp. Matured conidia of all mono hyphal strains (Fig. S1b) appeared dark brown with a single septum, having an ovate shape, and displayed longitudinal striations along their thickened walls (Fig. S1c). The dimensions of the mature conidia ranged from 16.02 - 26.85 x 11.09 - 16.74 µm (n = 60). Morphological characteristics showed similarity to Lasiodiplodia sp. (Alves et al., 2008). Microscopic observations were further confirmed by sequencing three loci: the internal transcribed spacer (ITS), ß-tubulin, and partial translation elongation factor-1α (TEF-1α). Fungal genomic DNA from the C1 isolate was PCR amplified using ITS5/ITS4, EF1-728F/986R, and Bt2A/Bt2B primers, respectively, according to Glass & Donaldson (1995) and Bautista-Cruz et al. (2019). The resulting amplicons were sequenced, and those sequences were deposited in GenBank with the accession numbers ITS: PP532861, TEF-1α: PP551938, and ß-tubulin: PP537587. Sequence alignment was conducted using ClustalW under the MEGA 11.0 software package (Tamura et al., 2021). Subsequently, phylogenetic analysis was performed using Bayesian inference using the BEAST v1.8.4 program (Drummond & Rambaut, 2007). The concatenated sequence of the isolate revealed clustering to the Lasiodiplodia theobromae clade, confirming its identity. To our knowledge, this is the first report of this pathogen causing CR on banana fruit in Ecuador. Based on the report of CR in the country, banana exporters and the Ecuadorian government should consider developing disease management methods that include the cultivation, shipping, ripening, and storage processes of the fruit.

19.
Toxins (Basel) ; 16(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39195783

ABSTRACT

Approximately 25% of cereal grains present with contamination caused by fungi and the presence of mycotoxins that may cause severe adverse effects when consumed. Maize has been genetically engineered to present different traits, such as fungal or insect resistance and herbicide tolerance. This systematic review compared the observable quantities, via meta-analysis, of four mycotoxins (aflatoxins-AFL, fumonisins-FUM, deoxynivalenol-DON, zearalenone-ZEA) between genetically modified (GM) and conventional maize kernels. This study was conducted following the PRISMA guidelines, with searches performed using PubMed, Web of Science, Scopus, Google Scholar, and CAPES journals databases. Analyses were conducted using RevMan v.5.4 software. Transgenic maize showed a 58% reduction in total mycotoxins (p < 0.001) compared to conventional maize. FUM were the most impacted, with a 59% reduction (p < 0.001) in GM maize. AFL and ZEA levels were also lower in GM maize by 49% (p = 0.02) and 51% (p < 0.001), respectively. On the other hand, DON levels increased by 6% (p < 0.001) in GM maize compared to conventional maize. However, results for ZEA and DON were inconclusive due to the limited research and sample sizes. We conclude that transgenic maize reduces total mycotoxins by over 50%, primarily fumonisin and aflatoxin. Most studies presented maize varieties that were resistant to insects or herbicides, not fungal pathogens, showing a positive collateral effect of these genetic alterations. Therefore, transgenic maize appears to be a safer product for animal and human consumption from a toxicological point of view. Further studies with larger sample sizes are needed to confirm our findings for ZEA and DON in transgenic maize.


Subject(s)
Mycotoxins , Plants, Genetically Modified , Zea mays , Food Contamination/analysis , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Zea mays/genetics , Zea mays/microbiology
20.
Environ Sci Pollut Res Int ; 31(42): 54713-54728, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39210225

ABSTRACT

This study aimed to evaluate the impact of long-term liquid dairy manure (LDM) application on the activity and structure of soil bacterial and archaea communities in two cropping seasons over 1 year of a no-till crop rotation system. The experiment was run in a sandy clay loam texture Oxisol, in Brazil, including LDM doses of 60, 120, and 180 m3 ha-1 year-1, installed in 2005. Soil sampling was conducted during spring 2018 and autumn 2019 at 0-10-cm depth. Microbial biomass carbon and nitrogen, 16S rRNA gene sequencing, microbial respiration and quotient were performed. Over the 14-year period, LDM application increased soil microbial community activity. Analysis of 16S rRNA gene sequencing revealed dominance by Proteobacteria, Acidobacteria, and Actinobacteria phyla (67% in spring and 70% in autumn). Genera Pirulla and Nitrososphaera showed enrichment at LDM doses of 120 and 180 m3 ha-1 year-1 doses, respectively. During spring, following black oat cropping, shifts in the relative abundance of Bacteroidetes, Proteobacteria, Firmicutes, Gemmatimonadetes, Verrucomicrobia, Chloroflexi, Actinobacteria, and AD3 phyla were observed due to LDM application, correlating with soil chemical indicators such as pH, K, Ca, Mn, and Zn. Our findings indicate that plant development strongly influences microbial community composition, potentially outweighing the impact of LDM. Our findings indicate that the application of liquid dairy manure alters the soil bacterial activity and community; however, this effect depends on the developing plant.


Subject(s)
Archaea , Bacteria , Manure , Soil Microbiology , Soil , Manure/microbiology , Soil/chemistry , RNA, Ribosomal, 16S , Brazil , Agriculture/methods , Dairying
SELECTION OF CITATIONS
SEARCH DETAIL