Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Entropy (Basel) ; 24(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36359673

ABSTRACT

Cryptocurrency markets have attracted many interest for global investors because of their novelty, wide on-line availability, increasing capitalization, and potential profits. In the econophysics tradition, we show that many of the most available cryptocurrencies have return statistics that do not follow Gaussian distributions, instead following heavy-tailed distributions. Entropy measures are applied, showing that portfolio diversification is a reasonable practice for decreasing return uncertainty.

2.
Physica A ; 607: 128218, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36211219

ABSTRACT

We examine the price disorder and informational efficiency of five cryptocurrencies (Bitcoin, BNB, Cardano, Ethereum, and XRP) before and during the COVID-19 pandemic. In this sense, we estimate the permutation entropy and Fisher information measure (FIM). We use these complexity measures to construct the Shannon-Fisher causality plane (SFCP) to map these cryptocurrencies and their respective locations in a two-dimensional plane and then apply the sliding time window approach to study the temporal evolution of informational efficiency. All cryptocurrencies exhibit high but slightly varying informational efficiency during both periods. Cardano was the most efficient cryptocurrency. These results might point to the increasing maturity and lower potential for price predictability, which matter to cryptocurrencies' usage for liquidity risk diversification strategy.

3.
Entropy (Basel) ; 22(7)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-33286532

ABSTRACT

We investigate the effects of the recent financial turbulence of 2020 on the market of cryptocurrencies taking into account the hourly price and volume of transactions from December 2019 to April 2020. The data were subdivided into time frames and analyzed the directed network generated by the estimation of the multivariate transfer entropy. The approach followed here is based on a greedy algorithm and multiple hypothesis testing. Then, we explored the clustering coefficient and the degree distributions of nodes for each subperiod. It is found the clustering coefficient increases dramatically in March and coincides with the most severe fall of the recent worldwide stock markets crash. Further, the log-likelihood in all cases bent over a power law distribution, with a higher estimated power during the period of major financial contraction. Our results suggest the financial turbulence induce a higher flow of information on the cryptocurrency market in the sense of a higher clustering coefficient and complexity of the network. Hence, the complex properties of the multivariate transfer entropy network may provide early warning signals of increasing systematic risk in turbulence times of the cryptocurrency markets.

4.
Entropy (Basel) ; 21(6)2019 Jun 14.
Article in English | MEDLINE | ID: mdl-33267303

ABSTRACT

Cryptocurrencies are becoming increasingly relevant in the financial world and can be considered as an emerging market. The low barrier of entry and high data availability of the cryptocurrency market makes it an excellent subject of study, from which it is possible to derive insights into the behavior of markets through the application of sentiment analysis and machine learning techniques for the challenging task of stock market prediction. While there have been some previous studies, most of them have focused exclusively on the behavior of Bitcoin. In this paper, we propose the usage of common machine learning tools and available social media data for predicting the price movement of the Bitcoin, Ethereum, Ripple and Litecoin cryptocurrency market movements. We compare the utilization of neural networks (NN), support vector machines (SVM) and random forest (RF) while using elements from Twitter and market data as input features. The results show that it is possible to predict cryptocurrency markets using machine learning and sentiment analysis, where Twitter data by itself could be used to predict certain cryptocurrencies and that NN outperform the other models.

SELECTION OF CITATIONS
SEARCH DETAIL