Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Chem ; 10: 870137, 2022.
Article in English | MEDLINE | ID: mdl-35494653

ABSTRACT

The incorporation of a guest, with different basic sites, into an organized system (host), such as macrocycles, could stabilize, detect, or promote the formation of a certain protomer. In this context, this work aimed to study the influence of cucurbit[7]uril (CB7) on dyes such as 7-(dimethylamino)-aza-coumarins, which have more than one basic site along their molecular structure. For this, three 3-styryl derivatives of 7-(dialkylamino)-aza-coumarin dyes (SAC1-3) were synthesized and characterized by NMR, ESI-HRMS and IR. The spectral behaviour of the SACs in the absence and presence of CB7 was studied. The results showed large shifts in the UV-vis spectrum in acid medium: a hypsochromic shift of ≈5400 cm-1 (SAC1-2) and ≈3500 cm-1 (SAC3) in the absence of CB7 and a bathochromic shift of ≈4500 cm-1 (SAC1-3) in the presence of CB7. The new absorptions at long and short wavelengths were assigned to the corresponding protomers by computational calculations at the density functional theory (DFT) level. Additionally, the binding mode was corroborated by molecular dynamics simulations. Findings revealed that in the presence of CB7 the heterocyclic nitrogen was preferably protonated instead of the dialkylamino group. Namely, CB7 induces a change in the protonation preference at the basic sites of the SACs, as consequence of the molecular recognition by the macrocycle.

2.
J Biomol Struct Dyn ; 40(20): 9602-9612, 2022.
Article in English | MEDLINE | ID: mdl-34042019

ABSTRACT

In this study, comparable molecular dynamic (MD) simulations of 1.2 microseconds were performed to clarify the prevention of the ß-amyloid peptide (Aß1-42) aggregation by cucurbit[7]uril (CB[7]). The accumulation of this peptide in the brain is one of the most harmful in Alzheimer's disease. The inhibition mechanism of Aß1-42 aggregation by different molecules is attributed to preventing of Aß1-42 conformational transition from α-helix to the ß-sheet structure. However, our structural analysis shows that the pure water and aqueous solution of the CB[7] denature the native Aß1-42 α-helix structure forming different compactness and unfolded conformations, not in ß-sheet form. On the other hand, in the three CB[7]@Aß1-42 complexes, it was observed the encapsulation of N-terminal (Asp1), Lys16, and Val36 by CB[7] along the MD trajectory, and not with aromatic residues as suggested by the literature. Only in one CB[7]@Aß1-42 complex was observed stable Asp23-Lys28 salt bridge with an average distance of 0.36 nm. All CB[7]@Aß1-42 complexes are very stable with binding free energy lowest than ∼-50 kcal/mol between the CB[7] and Aß1-42 monomer from MM/PBSA calculation. Therefore, herein we show that the mechanism of the prevention of elongation protofibril by CB[7] is due to the disruption of the Asp23-Lys28 salt bridge and steric effects of CB[7]@Aß1-42 complex with the fibril lattice, and not due to the transition from α-helix to ß-sheet following the dock-lock mechanism.Communicated by Ramaswamy H. Sarma.


Subject(s)
Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Protein Conformation, beta-Strand
SELECTION OF CITATIONS
SEARCH DETAIL