Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
Br J Pharmacol ; 181(22): 4658-4676, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39142876

ABSTRACT

BACKGROUND AND PURPOSE: Prostate cancer remains a major public health burden worldwide. Polo like kinase 4 (PLK4) has emerged as a promising therapeutic target in prostate cancer due to its key roles in cell cycle regulation and tumour progression. This study aims to develop and characterize the novel curcumin analogue NL13 as a potential therapeutic agent and PLK4 inhibitor against prostate cancer. EXPERIMENTAL APPROACH: NL13 was synthesized and its effects were evaluated in prostate cancer cells and mouse xenograft models. Kinome screening and molecular modelling identified PLK4 as the primary target. Antiproliferative and proapoptotic mechanisms were explored via cell cycle, apoptosis, gene and protein analyses. KEY RESULTS: Compared with curcumin, NL13 exhibited much greater potency in inhibiting PC3 (IC50, 3.51 µM vs. 35.45 µM) and DU145 (IC50, 2.53 µM vs. 29.35 µM) prostate cancer cells viability and PLK4 kinase activity (2.32 µM vs. 246.88 µM). NL13 induced G2/M cell cycle arrest through CCNB1/CDK1 down-regulation and triggered apoptosis via caspase-9/caspase-3 cleavage. These effects were mediated by PLK4 inhibition, which led to the inactivation of the AKT signalling pathway. In mice, NL13 significantly inhibited tumour growth and modulated molecular markers consistent with in vitro findings, including decreased p-AKT and increased cleaved caspase-9/3. CONCLUSION AND IMPLICATIONS: NL13, a novel PLK4-targeted curcumin analogue, exerts promising anticancer properties against prostate cancer by disrupting the PLK4-AKT-CCNB1/CDK1 and apoptosis pathways. NL13 represents a promising new agent for prostate cancer therapy.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Cycle Checkpoints , Curcumin , Prostatic Neoplasms , Protein Serine-Threonine Kinases , Male , Humans , Apoptosis/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Animals , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemical synthesis , Curcumin/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mice , Cell Cycle Checkpoints/drug effects , Mice, Nude , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Cell Line, Tumor , Dose-Response Relationship, Drug , Mice, Inbred BALB C
2.
Int J Nanomedicine ; 19: 6643-6658, 2024.
Article in English | MEDLINE | ID: mdl-38979532

ABSTRACT

Purpose: Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods: Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results: H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion: These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Lipid Metabolism , Liver , Mesenchymal Stem Cells , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Humans , Lipid Metabolism/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Hep G2 Cells , Glucose/metabolism , Mice , Liver/metabolism , Liver/drug effects , Male , Mice, Inbred C57BL , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Insulin Resistance , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Experimental/metabolism
3.
Mol Neurobiol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080204

ABSTRACT

The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC50: 17.500 ± 0.267 µg/mL) compared to ascorbic acid (IC50: 38.858 ± 0.263 µg/mL) and curcumin (27.189 ± 0.192 µg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.

4.
Eur J Pharmacol ; 970: 176480, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38490468

ABSTRACT

The management and therapy of bone cancer pain (BCP) remain formidable clinical challenges. Curcumin and its analogues have been shown to have anti-inflammatory and analgesic properties. In the present study, we investigated the efficacy of curcumin analogue NL04 (NL04) in modulating inflammation in spinal dorsal horn (SDH), thereby exploring its potential to reduce central sensitization of BCP in a rat model. Differing doses of NL04 and curcumin were administered intrathecally either once (on day 12 of BCP) or over seven consecutive days (from day 6-12 of BCP). Results indicated that the ED50 for NL04 and curcumin ameliorating BCP-induced mechanical hyperalgesia is 49.08 µg/kg and 489.6 µg/kg, respectively. The analgesic effects at various doses of NL04 lasted between 4 and 8 h, with sustained administration over a week maintaining pain relief for 1-4 days, while also ameliorating locomotor gait via gait analysis and reducing depressive and anxiety-like behaviors via open-field and light-dark transition tests. The analgesic effects at various doses of curcumin lasted 4 h, with sustained administration over a week maintaining pain relief for 0-2 days. ELISA, Western blotting, qPCR, and immunofluorescence assays substantiated that intrathecal administration of NL04 on days 6-12 of BCP dose-dependently lowered spinal IL-1ß and IL-18 levels and significantly reduced the expression of IKKß genes and proteins, as well as the downstream cleavage of the trans-Golgi network (TGN). Whole-cell patch-clamp results demonstrated that NL04 inhibits potassium ion efflux in rat primary spinal neurons. Thus, NL04 exhibits significant analgesic effects in a BCP rat model by downregulating IKKß expression and inhibiting neuronal potassium ion efflux, which, in turn, suppresses the activation of NLRP3 inflammasomes and reduces IL-1ß production, potentially ameliorating pain management in BCP.


Subject(s)
Bone Neoplasms , Cancer Pain , Curcumin , Rats , Animals , Cancer Pain/drug therapy , Cancer Pain/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Central Nervous System Sensitization , I-kappa B Kinase/metabolism , Pain/drug therapy , Bone Neoplasms/complications , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Spinal Cord , Potassium/metabolism
5.
ACS Biomater Sci Eng ; 10(4): 2251-2269, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38450619

ABSTRACT

Diabetic wound healing remains a worldwide challenge for both clinicians and researchers. The high expression of matrix metalloproteinase 9 (MMP9) and a high inflammatory response are indicative of poor diabetic wound healing. H8, a curcumin analogue, is able to treat diabetes and is anti-inflammatory, and our pretest showed that it has the potential to treat diabetic wound healing. However, H8 is highly expressed in organs such as the liver and kidney, resulting in its unfocused use in diabetic wound targeting. (These data were not published, see Table S1 in the Supporting Information.) Accordingly, it is important to pursue effective carrier vehicles to facilitate the therapeutic uses of H8. The use of H8 delivered by macrophage membrane-derived nanovesicles provides a potential strategy for repairing diabetic wounds with improved drug efficacy and fast healing. In this study, we fabricated an injectable gelatin microsphere (GM) with sustained MMP9-responsive H8 macrophage membrane-derived nanovesicles (H8NVs) with a targeted release to promote angiogenesis that also reduces oxidative stress damage and inflammation, promoting diabetic wound healing. Gelatin microspheres loaded with H8NV (GMH8NV) stimulated by MMP9 can significantly facilitate the migration of NIH-3T3 cells and facilitate the development of tubular structures by HUVEC in vitro. In addition, our results demonstrated that GMH8NV stimulated by MMP9 protected cells from oxidative damage and polarized macrophages to the M2 phenotype, leading to an inflammation inhibition. By stimulating angiogenesis and collagen deposition, inhibiting inflammation, and reducing MMP9 expression, GMH8NV accelerated wound healing. This study showed that GMH8NVs were targeted to release H8NV after MMP9 stimulation, suggesting promising potential in achieving satisfactory healing in diabetic treatment.


Subject(s)
Diabetes Mellitus, Experimental , Gelatin , Mice , Animals , Gelatin/pharmacology , Gelatin/chemistry , Microspheres , Matrix Metalloproteinase 9/pharmacology , Matrix Metalloproteinase 9/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Wound Healing , Inflammation , Macrophages
6.
J Fluoresc ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906361

ABSTRACT

In this study, we conducted the synthesis and diagnosis of compound denoted as 1A3, specifically, (2E,4E,9E,11E)-7-chloro-2,12-diphenyltrideca-2,4,9,11-tetraene-6,8-dione. The photoluminescent and UV-vis spectral properties of this compound are investigated. The compound is dissolved in both chloroform and DMF for analysis purposes. Compound 1A3's nonlinear optical (NLO) characteristics when dissolved in DMF, are extensively studied through a series of experiments including diffraction patterns (DPs) and Z-scan. The optical limiting (OL) property of the 1A3 compound is tested and a threshold value of 12.4 mW at the wavelength 473 nm is obtained. Additionally, we explored its potential for all-optical switching utilizing two low-power visible laser beams. Notably, we achieved a significant nonlinear refractive index (NLRI) reaching up to 5.921 x 10-11 m2/W. To analyze the obtained diffraction patterns, we employed the Fresnel-Kirchhoff integral equation and conducted meticulous simulations. The numerical outcomes showed satisfactory agreement with the experimental observations.

7.
Diabetes Metab Syndr Obes ; 16: 2639-2650, 2023.
Article in English | MEDLINE | ID: mdl-37667770

ABSTRACT

Purpose: The objective of this study was to evaluate the therapeutic efficacy of the curcumin analogue L6H4 in attenuating liver fibrosis and alleviating insulin resistance in streptozotocin-induced diabetic rats. Methods: Male Sprague-Dawley rats were fed a high-fat diet to induce insulin resistance, followed by streptozotocin injection to induce diabetes. The rats were then treated with L6H4 for eight weeks. Body weight, metabolic parameters, liver function, and liver histopathology were evaluated. Immunohistochemistry was performed to assess the expression of TGF-ß1, TIMP-2, and MMP-2 in liver tissues. Statistical analysis was conducted using one-way ANOVA and Spearman rank correlation test. Results: L6H4 treatment effectively reversed the weight gain associated with a high-fat diet and improved metabolic parameters in diabetic rats. Liver function markers, such as ALT and AST, were reduced after L6H4 treatment. Histological analysis showed improved liver morphology and reduced fibrosis in L6H4-treated rats. Electron microscopy revealed improved ultrastructural features of hepatocytes. Immunohistochemistry demonstrated downregulation of TGF-ß1 and TIMP-2 expression and restoration of MMP-2 expression in the liver tissue of L6H4-treated rats. Correlation analysis showed a significant positive correlation between TGF-ß1 and TIMP-2 expression. Conclusion: The findings suggest that L6H4 has therapeutic potential in attenuating liver fibrosis and alleviating insulin resistance in streptozotocin-induced diabetic rats. The hepatoprotective effect of L6H4 may be attributed to its anti-inflammatory properties and its ability to target molecules involved in fibrosis. Further research is warranted to explore the potential of L6H4 as a treatment option for nonalcoholic fatty liver disease and type 2 diabetes.

8.
Int J Biol Macromol ; 253(Pt 4): 126989, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37739292

ABSTRACT

The current study aimed to design novel curcumin analogue inhibitors with antiproliferative and antitumor activity towards BRCA1 and TP53 tumor proteins and to study their therapeutic potential by computer-aided molecular designing and experimental investigations. Four curcumin analogues were computationally designed and their drug-likeness and pharmacokinetic properties were predicted. The binding of these analogues against six protein targets belonging to BRCA1 and TP53 tumor proteins were modelled by molecular docking and their binding energies were compared with that of curcumin and the standard drug cyclophosphamide and its validated target. The stabilities of selected docked complexes were confirmed by molecular dynamic simulation (MDS) and MMGBSA calculations. The best-docked analogue was chemically synthesized, characterized, and used for in vitro cytotoxic screening using DLA, EAC, and C127I cell lines. In vivo antitumor studies were carried out in Swiss Albino Mice. The study revealed that the designed analogues satisfied drug-likeness and pharmacokinetic properties and demonstrated better binding affinity to the selected targets than curcumin. Among the analogues, NLH demonstrated significant interaction with the BRCA1-BRCT-c domain (TG3; binding energy -8.3 kcal/mol) when compared to the interaction of curcumin (binding energy -6.19 kcal) and cyclophosphamide (binding energy -3.8 kcal/mol) and its usual substrate (TG7). The MDS and MM/GBSA studies revealed that the binding free energy of the NLH-TG3 complex (-61.24 kcal/mol) was better when compared to that of the cyclophosphamide-TG7 complex (-21.67 kcal/mol). In vitro, cytotoxic studies showed that NLH demonstrated significant antiproliferative activities against tumor cell lines. The in vivo study depicted NLH possesses the potential for tumor inhibition. Thus, the newly synthesized curcumin analogue is probably used to develop novel therapeutic agents against breast cancer.


Subject(s)
Antineoplastic Agents , Curcumin , Animals , Mice , Humans , Curcumin/pharmacology , Curcumin/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cyclophosphamide , Tumor Suppressor Protein p53 , BRCA1 Protein/genetics
9.
J Drug Target ; 31(8): 867-877, 2023 09.
Article in English | MEDLINE | ID: mdl-37577780

ABSTRACT

Hypopharyngeal carcinoma is notorious for its poor prognosis among all head and neck cancers, posing a persistent challenge in clinical settings. The continuous hyperactivation of the NFκB signalling pathway has been noted in various cancer types, including hypopharyngeal carcinoma. In our quest to develop a novel drug that targets hypopharyngeal cancer via the NFκB pathway, we employed curcumin, a well-known lead compound, and performed chemical modifications to create a mono-carbonyl analogue called L42H17. This compound exhibited exceptional stability and displayed an enhanced binding affinity to myeloid differentiation protein 2 (MD2). Consistent with expectations, L42H17 demonstrated the ability to inhibit TNF-α-induced phosphorylation of inhibitor of κB (IκB) kinase (IKK), prevent IκB degradation, and subsequently impede NFκB-p65 nuclear translocation in hypopharyngeal cancer cells. Additionally, L42H17 exhibited a remarkable capacity to induce cell cycle arrest at the G2-M phase by inactivating the cdc2-cyclin B1 complex. Moreover, it facilitated cell apoptosis by reducing Bcl-2 levels and augmenting the expression of cle-PARP and cle-caspase3. Importantly, we observed a significant enhancement in the anti-cancer efficacy of L42H17 in a patient-derived tumour xenograft (PDTX) model of hypopharyngeal carcinoma. In conclusion, our findings strongly suggest that L42H17 holds promise as a potential candidate drug for the treatment of hypopharyngeal carcinoma in the future.


Subject(s)
Curcumin , Hypopharyngeal Neoplasms , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Hypopharyngeal Neoplasms/drug therapy , Hypopharyngeal Neoplasms/metabolism , Hypopharyngeal Neoplasms/pathology , Cell Line, Tumor , NF-kappa B/metabolism , Signal Transduction , Apoptosis
10.
Eur J Pharmacol ; 946: 175629, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36868294

ABSTRACT

Myocardial infarction contributes to the development of cardiovascular disease, and leads to severe inflammation and health hazards. Our previous studies identified C66, a novel curcumin analogue, had pharmacological benefits in suppressing tissue inflammation. Therefore, the present study hypothesized C66 might improve cardiac function and attenuate structural remodeling after acute myocardial infarction. Administration of 5 mg/kg C66 for 4-week significantly improved cardiac function and decreased infarct size after myocardial infarction. C66 also effectively reduced cardiac pathological hypertrophy and fibrosis in non-infarct area. In vitro H9C2 cardiomyocytes, C66 also exerted the pharmacological benefits of anti-inflammatory and anti-apoptosis under hypoxic conditions Mechanistically, C66 inhibited cardiac inflammation and cardiomyocyte apoptosis by targeting on JNK phosphorylation, whereas replenishment of JNK activation abolished the cardioprotective benefits of C66 treatment. Taken together, curcumin analogue C66 inhibited the activation of JNK signaling, and possessed pharmacological benefits in alleviating myocardial infarction-induced cardiac dysfunction and pathological tissue injuries.


Subject(s)
Curcumin , Myocardial Infarction , Animals , Mice , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/chemistry , Inflammation/drug therapy , Myocardial Infarction/complications , Myocardial Infarction/drug therapy , Myocytes, Cardiac , MAP Kinase Kinase 4/drug effects , MAP Kinase Kinase 4/metabolism
11.
FEBS Open Bio ; 13(3): 434-446, 2023 03.
Article in English | MEDLINE | ID: mdl-36648092

ABSTRACT

Cancer stem cells (CSCs) are proposed to be involved in tumor initiation and play important roles in cancer relapse, metastasis, and drug resistance. Therefore, the targeting of CSCs has potential for effective anticancer therapies. Curcumin is one of the most widely characterized phytochemicals with tumor-suppressive potential. GO-Y030 is a novel curcumin analogue exhibiting a much stronger growth-inhibitory effect than curcumin. In the present study, we verified the potency of GO-Y030 against a CSC population. We observed that GO-Y030 suppressed CSC sphere-forming ability in several cancer cell lines. Interestingly, a specific inhibitor of heat shock protein (HSP) 70 also exhibited effects similar to GO-Y030 (i.e. inhibition of CSC sphere formation and upregulation of HSP70 and HSP40 protein expression), suggesting that HSP70 and/or HSP40 might be target molecules of GO-Y030. We then performed an in vitro HSP70/HSP40-mediated refolding activity assay and observed that chaperone activity was efficiently inhibited by GO-Y030. Finally, we performed a substrate-binding assay to show that GO-Y030 reduced the binding of both HSP70 and HSP40 with their substrates. HSPs prevent denaturation or unfolding of client proteins under stressful conditions such as high temperature. Because CSCs by nature adapt to various stresses by reinforcing protein-folding activity, the function of HSP70/HSP40 is important for the maintenance of CSC population. Our data suggest that GO-Y030 may impair stress tolerance in CSCs by inhibiting the interaction of HSP70/HSP40 with their substrate proteins and disrupting the function of HSP70/HSP40, thereby contributing to a reduction of the CSC population.


Subject(s)
Curcumin , Humans , Curcumin/pharmacology , HSP40 Heat-Shock Proteins/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local , HSP70 Heat-Shock Proteins/metabolism , Neoplastic Stem Cells/metabolism
12.
Int J Mol Sci ; 22(14)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34299042

ABSTRACT

Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520-DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2-and NCI-H23 cells-HGF, MET, COL5A2, MCM7, and GNG4-were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.


Subject(s)
Alkadienes/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Curcumin/analogs & derivatives , Lung Neoplasms/pathology , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Cycle , Cell Proliferation/drug effects , Curcumin/chemistry , Curcumin/pharmacology , Humans , Lung Neoplasms/metabolism , Signal Transduction , Tumor Cells, Cultured
13.
Molecules ; 26(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652694

ABSTRACT

Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Curcumin/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Cell Survival/drug effects , Colonic Neoplasms/pathology , Curcuma/chemistry , Curcumin/analogs & derivatives , Curcumin/chemistry , Diarylheptanoids/chemistry , Diarylheptanoids/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HT29 Cells , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology
14.
Int Immunopharmacol ; 93: 107375, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33517224

ABSTRACT

NOD-like receptors (NLRs), as a part of intracellular pattern recognition receptors (PRR), are important regulators in innate immune system. The NLRP3 inflammasome which is a member of NLRs has been linked to several human inflammatory diseases. Gouty arthritis is triggered when the deposition of monosodium urate (MSU) crystals in joints induces acute inflammation characterized by the recruitment of macrophages and neutrophils. In this study, we explored the curcumin analogue AI-44 alleviated the gouty arthritis in mice via suppressing MSU engaging NLRP3 inflammasome activation. Furthermore, we demonstrated that AI-44 inhibited the interaction of cathepsin B and NLRP3 to prevent the activation of NLRP3 inflammasome. Moreover, we found AI-44 inhibited the enzyme activity of cathepsin B and bound to the key residue E122 in cytoplasm but not in lysosome. Collectively, these data suggest that AI-44 is a novel drug candidate for the treatment of gouty arthritis through targeting cathepsin B and inhibiting NLRP3 inflammasome activation.


Subject(s)
Arthritis, Gouty/drug therapy , Curcumin/analogs & derivatives , Curcumin/therapeutic use , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Animals , Arthritis, Gouty/chemically induced , Arthritis, Gouty/immunology , Cathepsin B/immunology , Curcumin/pharmacology , Female , Humans , Mice, Inbred C57BL , THP-1 Cells , Uric Acid
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118879, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32920440

ABSTRACT

A novel curcumin-analogous fluorescent sensor, DNP, was developed for cysteine detection with a bilateral-response click-like mechanism. DNP indicated high selectivity and practical sensitivity. It could recognize Cys from other biologically relevant molecules, especially, from GSH and Hcy. The most interesting point was that, with typical azide groups for sensing, DNP indicated a covalent binding procedure with Cys instead of a presupposed simple reduction for reductive sulfide. Moreover, the recognition occurred at both sides of the sensor. DNP could be utilized into the detection of endogenous and exogenous Cys in living cells. Though the specific optical performances of DNP still need optimization, this work supplied novel information for broadening the vision on fluorophores and mechanisms, for the monitoring of Cys and even other sulfur-containing species.


Subject(s)
Curcumin , Cysteine , Fluorescent Dyes , Glutathione , HeLa Cells , Homocysteine , Humans
16.
Chem Pharm Bull (Tokyo) ; 69(1): 52-58, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33087639

ABSTRACT

17ß Hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is the key enzyme in the biosynthesis of testosterone, which is an attractive therapeutic target for prostate cancer (PCa). H10, a novel curcumin analogue, was identified as a potential 17ß-HSD3 inhibitor. The pharmacokinetic study of H10 in rats were performed by intraperitoneal (i.p.), intravenous (i.v.) and oral (p.o.) administration. In addition, the inhibitory effects of H10 against liver CYP3A4 were investigated in vitro using human liver microsomes (HLMs). The acute and chronic toxicological characteristics were characterized using single-dose and 30 d administration. All the mice were alive after i.p. H10 with dose of no more than 100 mg/kg which are nearly the maximum solubility in acute toxicity test. The pharmacokinetic characteristics of H10 fitted with linear dynamics model after single dose. Furthermore, H10 could bioaccumulate in testis, which was the target organ of 17ß-HSD3 inhibitor. H10 distributed highest in spleen, and then in liver both after single and multiple i.p. administration. Moreover, H10 showed weak inhibition towards liver CYP3A4, and did not cause significant changes in aspartate transaminase (AST) and alanine transaminase (ALT) levels after treated with H10 for continuously 30 d. Taken together, these preclinical characteristics laid the foundation for further clinical studies of H10.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Curcumin/pharmacology , Cytochrome P-450 CYP3A/metabolism , Enzyme Inhibitors/pharmacology , 17-Hydroxysteroid Dehydrogenases/metabolism , Animals , Curcumin/administration & dosage , Curcumin/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Male , Mice , Mice, Inbred Strains , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Tissue Distribution
17.
Molecules ; 25(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825505

ABSTRACT

The cytotoxic and apoptotic effects of turmeric (Curcuma longa) on colon cancer have been well documented but specific structural modifications of curcumin have been shown to possess greater growth-suppressive potential on colon cancer than curcumin. Therefore, the aim of this study is to identify the anti-cancer properties of curcumin analogue-MS13, a diarylpentanoid on the cytotoxicity, anti-proliferative and apoptotic activity of primary (SW480) and metastatic (SW620) human colon cancer cells. A cell viability assay showed that MS13 has greater cytotoxicity effect on SW480 (EC50: 7.5 ± 2.8 µM) and SW620 (EC50: 5.7 ± 2.4 µM) compared to curcumin (SW480, EC50: 30.6 ± 1.4 µM) and SW620, EC50: 26.8 ± 2.1 µM). Treatment with MS13 at two different doses 1X EC50 and 2X EC50 suppressed the colon cancer cells growth with lower cytotoxicity against normal cells. A greater anti-proliferative effect was also observed in MS13 treated colon cancer cells compared to curcumin at 48 and 72 h. Subsequent analysis on the induction of apoptosis showed that MS13 treated cells exhibited morphological features associated with apoptosis. The findings are also consistent with cellular apoptotic activities shown by increased caspase-3 activity and decreased Bcl-2 protein level in both colon cancer cell lines. In conclusion, MS13 able to suppress colon cancer cell growth by inhibiting cell proliferation and induce apoptosis in primary and metastatic human colon cancer cells.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms , Curcumin , Cytotoxins , Caspase 3/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Curcumin/analogs & derivatives , Curcumin/chemical synthesis , Curcumin/chemistry , Curcumin/pharmacology , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Humans , Neoplasm Metastasis , Proto-Oncogene Proteins c-bcl-2/metabolism
18.
Bioorg Chem ; 101: 104022, 2020 08.
Article in English | MEDLINE | ID: mdl-32599367

ABSTRACT

Gemcitabine (GEM) is a commonly used treatment for advanced pancreatic cancer. However, chemoresistance and toxic side effect limits its clinical success. In an earlier study, our laboratory found that the curcumin analogue, (3E,5E)-3,5-Bis(pyridin-3-methylene)-tetrahydrothiopyran-4-one (FN2) had strong inhibitory effect on human pancreatic cancer cells. In the present study, we investigated the effects of FN2 in combination with GEM on growth inhibition and apoptosis in human pancreatic cancer Panc-1 cells. The results showed that the combination of FN2 and GEM synergistically inhibited the growth of Panc-1 cells. Panc-1 cells survived the GEM treatment became partially resistant to the drug. Treatment with FN2 in combination with GEM strongly inhibited the growth and stimulated apoptosis in the GEM resistant Panc-1 cells. Mechanistic studies showed that inhibition of cell growth and induction of apoptosis in the GEM resistant Panc-1 cells were associated with decreases in activation of NF-κB and Akt. FN2 in combination with GEM also decreased the level of Bcl-2 and increased the level of Bax. Results of the present study indicate that GEM in combination with FN2 may represent an effective strategy for improving the efficacy of GEM and decreasing the resistance of pancreatic cancer to GEM chemotherapy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Deoxycytidine/analogs & derivatives , Pancreatic Neoplasms/pathology , Pyrones/pharmacology , Antimetabolites, Antineoplastic/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Humans , Pyrones/administration & dosage , Gemcitabine
19.
ACS Nano ; 14(2): 1533-1549, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32027482

ABSTRACT

Although emerging evidence suggests that the pathogenesis of Parkinson's disease (PD) is closely related to the aggregation of alpha-synuclein (α-syn) in the midbrain, the clearance of α-syn remains an unmet clinical need. Here, we develop a simple and efficient strategy for fabricating the α-syn nanoscavenger for PD via a reprecipitation self-assembly procedure. The curcumin analogue-based nanoscavenger (NanoCA) is engineered to be capable of a controlled-release property to stimulate nuclear translocation of the major autophagy regulator, transcription factor EB (TFEB), triggering both autophagy and calcium-dependent exosome secretion for the clearance of α-syn. Pretreatment of NanoCA protects cell lines and primary neurons from MPP+-induced neurotoxicity. More importantly, a rapid arousal intranasal delivery system (RA-IDDS) was designed and applied for the brain-targeted delivery of NanoCA, which affords robust neuroprotection against behavioral deficits and promotes clearance of monomer, oligomer, and aggregates of α-syn in the midbrain of an MPTP mouse model of PD. Our findings provide a clinically translatable therapeutic strategy aimed at neuroprotection and disease modification in PD.


Subject(s)
Curcumin/therapeutic use , Nanostructures/chemistry , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , alpha-Synuclein/antagonists & inhibitors , Animals , Cell Survival/drug effects , Cells, Cultured , Curcumin/chemical synthesis , Curcumin/chemistry , Drug Liberation , Neuroprotection/drug effects , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , PC12 Cells , Parkinson Disease/pathology , Particle Size , Protein Aggregates/drug effects , Rats , Surface Properties , alpha-Synuclein/metabolism
20.
Anticancer Agents Med Chem ; 20(9): 1038-1050, 2020.
Article in English | MEDLINE | ID: mdl-32067622

ABSTRACT

BACKGROUND: Melanoma is the most aggressive skin cancer, and BRAF (V600E) is the most frequent mutation that led to the development of BRAF inhibitors (BRAFi). However, patients treated with BRAFi usually present recidivism after 6-9 months. Curcumin is a turmeric substance, and it has been deeply investigated due to its anti-inflammatory and antitumoral effects. Still, the low bioavailability and biodisponibility encouraged the investigation of different analogs. DM-1 is a curcumin analog and has shown an antitumoral impact in previous studies. METHODS: Evaluated DM-1 stability and cytotoxic effects for BRAFi-sensitive and resistant melanomas, as well as the role in the metalloproteinases modulation. RESULTS: DM-1 showed growth inhibitory potential for melanoma cells, demonstrated by reduction of colony formation, migration and endothelial tube formation, and cell cycle arrest. Subtoxic doses were able to downregulate important Metalloproteinases (MMPs) related to invasiveness, such as MMP-1, -2 and -9. Negative modulations of TIMP-2 and MMP-14 reduced MMP-2 and -9 activity; however, the reverse effect is seen when increased TIMP-2 and MMP-14 resulted in raised MMP-2. CONCLUSION: These findings provide essential details into the functional role of DM-1 in melanomas, encouraging further studies in the development of combinatorial treatments for melanomas.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Metalloproteases/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Melanoma/metabolism , Melanoma/pathology , Metalloproteases/metabolism , Molecular Structure , Proto-Oncogene Proteins B-raf/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL