Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Molecules ; 28(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138485

ABSTRACT

In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.


Subject(s)
Cyclic GMP , Second Messenger Systems , Second Messenger Systems/physiology , Signal Transduction/physiology , Bacteria , Cyclic AMP , Nucleotides, Cyclic , Bacterial Proteins
2.
Life (Basel) ; 13(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37763221

ABSTRACT

ADPKD is the most common genetic renal disease, characterized by the presence of multiple cysts which, through slow and gradual growth, lead to glomerular filtration rate (GFR) decline and end-stage renal disease. Cystic growth is associated with increased intracellular levels of 3',5'-cyclic adenosine monophosphate (cAMP). Extracellular vesicles (EVs) are proposed to participate in "remote sensing" by transporting different cargoes, but their relevance to ADPKD progression is poorly understood. This study aimed to determine whether cAMP is contained in urinary EVs and, if so, how total and/or EV cAMP contents participate in disease progression. Fourteen ADPKD patients, naïve for V2 receptor antagonism treatment, and seven controls were studied. Progression was evaluated by estimating GFR (eGFR) and height-adjusted total kidney volume (htTKV). Fresh morning urine was collected to determine cAMP by the competitive radioligand assay. Urine EVs were isolated using an adapted centrifugation method and characterized by electron microscopy, dynamic light scanning, flow cytometry with FITC CD63 labeling, protein and RNA content, and AQP2 and GAPDH mRNA detection. Total and EV cAMP was measurable in both control and patient urine samples. Total cAMP was significantly correlated with eGFR and its annual change but inversely correlated with htTKV. The cAMP-EVs showed a bimodal pattern with htTKV, increasing to ~1 L/m and falling at larger sizes. Our results demonstrate that urine cAMP correlates with ADPKD progression markers, and that its extracellular delivery by EVs could reflect the architectural disturbances of the organ.

3.
Chem Biol Interact ; 382: 110630, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37442289

ABSTRACT

ß2-adrenoceptors agonists and phosphodiesterase (PDE) inhibitors are effective bronchodilators, due to their ability to increase intracellular cyclic AMP (cAMP) levels and induce airway smooth muscle (ASM) relaxation. We have shown that increment of intracellular cAMP induced by ß2-adrenoceptors agonist fenoterol is followed by efflux of cAMP, which is converted by ecto-PDE and ecto-5'-nucleotidases (ecto-5'NT) to adenosine, leading to ASM contraction. Here we evaluate whether other classical bronchodilators used to treat asthma and chronic obstructive pulmonary disease (COPD) could induce cAMP efflux and, as consequence, influence the ASM contractility. Our results showed that ß2-adrenoceptor agonists formoterol and PDE inhibitors IBMX, aminophylline and roflumilast induced cAMP efflux and a concentration-dependent relaxation of rat trachea precontracted with carbachol. Pretreatment of tracheas with MK-571 (MRP transporter inhibitor), AMP-CP (ecto-5'NT inhibitor) or CGS-15943 (nonselective adenosine receptor antagonist) potentiated the relaxation induced by ß2-adrenoceptor agonists but did not change the relaxation induced by PDE inhibitors. These data showed that all bronchodilators tested were able to induce cAMP efflux. However, only ß2-adrenoceptor-induced relaxation of tracheal smooth muscle was affected by cAMP efflux and extracellular cAMP-adenosine pathway.


Subject(s)
Adenosine , Cyclic AMP , Rats , Animals , Cyclic AMP/metabolism , Adenosine/pharmacology , Formoterol Fumarate/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Bronchodilator Agents/pharmacology , Muscle Relaxation , Adrenergic beta-Agonists , Trachea , Receptors, Adrenergic
4.
Food Chem (Oxf) ; 6: 100155, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-36582744

ABSTRACT

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.

5.
Front Cell Dev Biol ; 10: 1058925, 2022.
Article in English | MEDLINE | ID: mdl-36568967

ABSTRACT

Communication between developing progenitor cells as well as differentiated neurons and glial cells in the nervous system is made through direct cell contacts and chemical signaling mediated by different molecules. Several of these substances are synthesized and released by developing cells and play roles since early stages of Central Nervous System development. The chicken retina is a very suitable model for neurochemical studies, including the study of regulation of signaling pathways during development. Among advantages of the model are its very well-known histogenesis, the presence of most neurotransmitter systems found in the brain and the possibility to make cultures of neurons and/or glial cells where many neurochemical functions develop in a similar way than in the intact embryonic tissue. In the chicken retina, some neurotransmitters or neuromodulators as dopamine, adenosine, and others are coupled to cyclic AMP production or adenylyl cyclase inhibition since early stages of development. Other substances as vitamin C and nitric oxide are linked to the major neurotransmitter glutamate and AKT metabolism. All these different systems regulate signaling pathways, including PKA, PKG, SRC, AKT and ERK, and the activation of the transcription factor CREB. Dopamine and adenosine stimulate cAMP accumulation in the chick embryo retina through activation of D1 and A2a receptors, respectively, but the onset of dopamine stimulation is much earlier than that of adenosine. However, adenosine can inhibit adenylyl cyclase and modulate dopamine-dependent cAMP increase since early developmental stages through A1 receptors. Dopamine stimulates different PKA as well as EPAC downstream pathways both in intact tissue and in culture as the CSK-SRC pathway modulating glutamate NMDA receptors as well as vitamin C release and CREB phosphorylation. By the other hand, glutamate modulates nitric oxide production and AKT activation in cultured retinal cells and this pathway controls neuronal survival in retina. Glutamate and adenosine stimulate the release of vitamin C and this vitamin regulates the transport of glutamate, activation of NMDA receptors and AKT phosphorylation in cultured retinal cells. In the present review we will focus on these reciprocal interactions between neurotransmitters or neuromodulators and different signaling pathways during retinal development.

6.
Front Immunol ; 13: 866097, 2022.
Article in English | MEDLINE | ID: mdl-35479074

ABSTRACT

Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the "cAMP-adenosine pathway." The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, ß2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of ß2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.


Subject(s)
Adenosine , Asthma , Adenosine/metabolism , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/therapeutic use , Asthma/drug therapy , Humans , Receptors, Adrenergic , Signal Transduction/physiology
7.
Einstein (São Paulo, Online) ; 20: eRW0170, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1404659

ABSTRACT

Abstract Alzheimer's disease is a neurodegenerative condition that causes changes in memory and cognition, in addition to behavioral disorders, and most commonly affects the elderly. Several studies in the literature have presented therapeutic measures in an attempt to interfere with the pathogenic mechanisms of the disease and to mitigate its clinical manifestations. Some factors, such as excitotoxicity, cholinergic dysfunctions, oxidative stress, tau protein hyperphosphorylation, changes in amyloid-beta peptide metabolism, herpes viruses, apolipoprotein E, glycogen synthase kinase 3, insulin resistance, and the endocannabinoid system seem to be related to pathophysiology of Alzheimer's disease. Given this, a literature review was carried out to address the molecular mechanisms associated with the pathophysiological hypotheses previously mentioned, aiming to better understanding their underlying causes and contributing to possible pharmacological strategies about treatment of the disease.

8.
Biochem Pharmacol ; 192: 114713, 2021 10.
Article in English | MEDLINE | ID: mdl-34331910

ABSTRACT

In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the ß2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that ß2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.


Subject(s)
Adenosine/metabolism , Cyclic AMP/metabolism , Extracellular Fluid/metabolism , Muscle, Smooth/metabolism , Trachea/metabolism , Animals , Male , Organ Culture Techniques , Rats , Rats, Wistar
9.
Pathogens ; 10(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801107

ABSTRACT

Potential activation of ß2 adrenergic receptors (ß2AR) by specific autoreactive antibodies (Abs) that arise during the host reaction to Trypanosoma cruzi, could contribute to the elevated prevalence of metabolic disturbances described in patients with chronic Chagas disease (CCD). This study aimed to determine the prevalence of anti-ß2AR Abs in patients with CCD, as well as the correlation of these Abs with the presence of glucose and lipid metabolism disturbances, in order to explore their association with an insulin resistance profile. Additionally, we tested the functional effects of anti-ß2AR Abs employing an in vitro bioassay with neuroendocrine cells expressing ß2AR. A clinical and metabolic evaluation including an OGTT was performed in 80 CCD patients and 40 controls. Anti-ß2AR Abs were measured by an in-house-developed ELISA, and the ß2 adrenergic activity of affinity-purified IgG fractions from patient' sera were assayed in CRE-Luc and POMCLuc transfected AtT-20 cells. A higher proportion of dysglycemia (72.5% vs. 37.5%; p = 0.001) was observed in the CCD group, accompanied by increased HOMA2-IR (p = 0.019), especially in subjects with Abs (+). Anti-ß2AR Abs reactivity (7.01 (2.39-20.5); p = 0.0004) and age >50 years (3.83 (1.30-11.25); p = 0.014) resulted as relevant for IR prediction (AUC: 0.786). Concordantly, Abs (+) CCD patients showed elevated metabolic risk scores and an increased prevalence of atherogenic dyslipidemia (p = 0.040), as compared to Abs (-) patients and controls. On functional bioassays, Abs exerted specific and dose-dependent ß2-agonist effects. Our findings suggest that anti-ß2AR Abs may induce the activation of ß2AR in other tissues besides the heart; furthermore, we show that in patients with CCD these Abs are associated with an insulin resistance profile and atherogenic dyslipidemia, providing biological plausibility to the hypothesis that adrenergic activation by anti-ß2AR Abs could contribute to the pathogenesis of metabolic disturbances described in CCD patients, increasing their cardiovascular risk.

10.
Methods Cell Biol ; 149: 239-257, 2019.
Article in English | MEDLINE | ID: mdl-30616823

ABSTRACT

The development of live-cell sensors for real-time measurement of signaling responses, with improved spatial and temporal resolution with respect to classical biochemical methods, has changed our understanding of cellular signaling. Examination of cAMP generation downstream activated GPCRs has shown that signaling responses can be short-lived (generated from the cell surface) or prolonged after receptor internalization. Class B secretin-like Corticotropin-releasing hormone receptor 1 (CRHR1) is a key player in stress pathophysiology. By monitoring real-time signaling in living cells, we uncovered cell context-dependent temporal characteristics of CRHR1-elicited cAMP responses and disclosed a specific link between cAMP generation and receptor signaling from internal compartments. We describe technical aspects and elaborate the protocols for cell line expression of Förster resonance energy transfer (FRET)-based biosensors to study the dynamics of cAMP and calcium signaling responses downstream activated CRHR1, live-cell imaging and analysis, and fluorescence flow cytometry to determine receptor levels at the cell surface.


Subject(s)
Computer Systems , Endocytosis , Fluorescence Resonance Energy Transfer/methods , Receptors, Corticotropin-Releasing Hormone/agonists , Signal Transduction , Animals , Calcium/metabolism , Cell Line , Cyclic AMP/metabolism , Humans , Mice , Rats , Receptors, Corticotropin-Releasing Hormone/metabolism
11.
Eur J Pharmacol ; 829: 79-84, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29654782

ABSTRACT

Mirabegron is a ß3-adrenoceptor agonist and released on the marked for the treatment of overactive bladder. Because mirabegron is the only ß3-adrenoceptor agonist available and substances that increase the levels of cyclic adenosine monophosphate (cAMP) inhibit platelet activity, we tested the hypothesis that mirabegron could have antiplatelet activity. Collagen- and thrombin induced platelet aggregation, thromboxane B2 (TXB2) and cyclic nucleotides quantification and calcium (Ca2+) mobilization were determined in the absence and presence of mirabegron in human washed platelets. Our results revealed that mirabegron (10-300 µM) produced significant inhibitions on platelet aggregation induced by collagen- or thrombin, accompanied by greater intracellular levels of cAMP. The ß3-adrenoceptor antagonist L 748,337 (1 µM) and the adenylate cyclase inhibitor, SQ 22,536 (100 µM) reversed the inhibition induced by mirabegron in thrombin-stimulated platelets. The selective antagonists for ß1-and ß2-adrenoceptors, atenolol and ICI 117,551 (3 µM), respectively did not interfere on the inhibition induced by mirabegron. In Fluo-4 loaded platelets, mirabegron reduced the total and intracellular Ca2+ levels. Pre-incubation with mirabegron almost abolished the levels of TXB2. Mirabegron did not augment the intracellular levels of cyclic guanosine monophosphate. In conclusion, mirabegron inhibited human platelet aggregation through cAMP accumulation, thus suggesting that substances that activate ß3-adrenoceptor could be beneficial as adjuvant antiplatelet therapy.


Subject(s)
Acetanilides/pharmacology , Adrenergic beta-3 Receptor Agonists/pharmacology , Cyclic AMP/metabolism , Platelet Aggregation/drug effects , Receptors, Adrenergic, beta-3/metabolism , Thiazoles/pharmacology , Biological Transport/drug effects , Calcium/metabolism , Humans , Thromboxane B2/metabolism
12.
Rev. bras. med. esporte ; Rev. bras. med. esporte;23(4): 328-334, July-Aug. 2017. tab, graf
Article in Portuguese | LILACS | ID: biblio-898991

ABSTRACT

RESUMO Introdução: Novos estudos de regulação gênica do exercício físico por meio de técnicas pós-genômicas em ensaios de resistência (endurance) e força caracterizam a transcriptômica do exercício físico. Entre os genes afetados, destacamos a via da proteína quinase ativada por AMP (AMPK), cuja ativação ocorre durante o exercício como resultado das alterações dos níveis de fosfato energético da fibra muscular. Objetivo: Avaliar a via de sinalização da AMPK por revisão sistemática da expressão de genes e análise in silico. Método: Foi efetuada uma revisão sistemática para avaliar a regulação gênica da via de sinalização AMPK, caracterizando os genes estudados na literatura, as variações de regulação obtidas, na forma de fold change e tipos de exercício usados. Resultados: A via de sinalização AMPK mostrou 133 genes no repositório KEGG (Kyoto Encyclopedia of Genes and Genomes), os quais foram confrontados com a revisão sistemática da literatura, totalizando 65 genes. Dezessete genes apresentaram UR e 24 mostraram DR com relação ao seu respectivo controle. Além destes, 20 genes estavam presentes nos trabalhos, apresentando tanto UR e DR e quatro genes não apresentaram dados de regulação. Verificou-se regulação específica em função do tipo de exercício efetuado. Discussão: Dos 133 genes da via AMPK, 48,8% foram amostrados nos trabalhos revisados, indicando que uma parte significativa da via é regulada pelo exercício. O estudo apresentou a regulação gênica básica de dois mecanismos para a recuperação energética, a biogênese mitocondrial e o bloqueio da gliconeogênese. Conclusão: Este trabalho mostrou que o exercício atua ativamente na via de sinalização da AMPK, na importância da regulação via PGC-1α e no papel de outros genes, regulando a expressão de mais da metade dos genes amostrados.


ABSTRACT Introduction: New studies of gene regulation by physical exercise through post-genomic techniques in endurance and strength tests characterize the physical exercise transcriptomics. Among the affected genes, we highlight the AMP-activated protein kinase (AMPK) pathway, the activation of which occurs during exercise because of changes in muscle fiber energetic phosphate levels. Objective: To evaluate the AMPK signaling pathway by systematic review of gene expression and in silico analysis. Method: A systematic review was performed in order to assess the gene regulation of AMPK signaling pathway, characterizing the genes studied in the literature, regulation variations obtained in the form of fold change, and types of exercise performed. Results: The AMPK signaling pathway showed 133 genes in the KEGG repository (Kyoto Encyclopedia of Genes and Genomes), which were compared with the systematic review of the literature, totaling 65 genes. Seventeen genes presented UR and 24 showed DR in relation to their respective control. In addition to these, 20 genes were present in the literature, presenting both UR and DR and four genes showed no regulatory data. Specific regulation was verified according to the type of exercises performed. Discussion: Of the 133 genes of the AMPK pathway, 48.8% were sampled in the revised studies indicating that a significant part of the pathway is regulated by exercise. The study presented the basic gene regulation of two mechanisms for energy recovery, mitochondrial biogenesis, and gluconeogenesis blockade. Conclusion: This work showed that the exercise actively works in the AMPK signaling pathway, in the importance of regulation via PGC-1α and in the role of other genes, regulating the expression of more than half of the genes sampled.


RESUMEN Introducción: Nuevos estudios de regulación génica del ejercicio físico por medio de técnicas pos-genómicas en ensayos de resistencia (endurance) y fuerza caracterizan la transcriptómica del ejercicio físico. Entre los genes afectados, destacamos la vía de la proteína quinasa activada por AMP (AMPK), cuya activación ocurre durante el ejercicio como resultado de las alteraciones de los niveles de fosfato energético de la fibra muscular. Objetivo: Evaluar la vía de señalización AMPK por revisión sistemática de la expresión de genes y análisis in silico. Método: Se ha efectuado una revisión para evaluar la regulación génica de la vía de señalización AMPK, caracterizando los genes estudiados en la literatura, las variaciones de regulación obtenidas en forma de fold change y tipos de ejercicios utilizados. Resultados: La vía de señalización AMPK mostró 133 genes en el repositorio KEGG (Kyoto Encyclopedia of Genes and Genomes), los cuales fueran confrontados con la revisión sistemática de la literatura, totalizando 65 genes. Diecisiete genes presentaron UR y 24 mostraron DR con respecto a su respectivo control. Además de estos, 20 genes estaban presentes en los trabajos, presentando tanto UR y DR y cuatro genes no presentaron dados de regulación. Se observó una regulación específica en función del tipo de ejercicio efectuado. Discusión: De los 133 genes de la vía AMPK, 48,8% fueron muestreados en los trabajos revisados, indicando que una parte significativa de la vía es regulada por el ejercicio. El estudio presentó la regulación génica básica de dos mecanismos para la recuperación energética, la biogénesis mitocondrial y el bloqueo de la gluconeogénesis. Conclusión: Este trabajo mostró que el ejercicio actúa activamente en la vía de señalización AMPK, en la importancia de la regulación vía factor PGC-1a y en el papel de otros genes, regulando la expresión de más de la mitad de los genes muestreados.

13.
Neurourol Urodyn ; 36(3): 589-596, 2017 03.
Article in English | MEDLINE | ID: mdl-26999618

ABSTRACT

AIMS: Aging is highly associated with benign prostate hyperplasia (BPH). We investigated here the alterations of the contractile and relaxant machinery in prostates of middle-aged rats, focusing on the Rho-kinase, nitric oxide (NO)-soluble guanylyl cyclase (sGC), α1- and ß-adrenoceptor pathways. METHODS: Male Wistar young (3.5-month old) and middle-aged rats (10-month old) were used. Quantitative image analysis of prostates and functional assays evaluating the prostate contractions and relaxations were employed. Measurement of [3 H]-noradrenaline efflux, western blotting for α1 and ß1 sGC subunits, and cyclic nucleotide levels were carried out. RESULTS: Prostates of middle-aged rats showed significant increases in lumen and smooth muscle cells, but no alterations in the relative prostate weight were observed. In vivo, noradrenaline (10-7 -10-4 g/kg) produced greater prostatic contractions in middle-aged compared with control rats. Likewise, the in vitro contractions to phenylephrine (1 nM-100 µM) and α,ß-methylene ATP (1-10 µM) were greater in middle-aged rats. Electrical-field stimulation (EFS, 1-32 Hz) promoted higher [3 H]-noradrenaline efflux and prostate contractions in middle-aged rats. Reduced expressions of α1 and ß1 sGC subunits and diminished NO-mediated prostate relaxations in middle-age were observed. Isoproterenol-induced relaxations and cAMP levels were reduced in prostates of middle-aged rats. The Rho-kinase inhibitor fasudil (50 mg/kg, 2 weeks) normalized the prostate hypercontractility in middle-age rats. CONCLUSIONS: Prostate hypercontractility in middle-aging is associated with increased release of noradrenaline and Rho-kinase pathway, as well as with impairments of NO-sGC and ß-adrenoceptor pathways. Middle-aged rats are suitable to explore the enhanced prostatic tone in the absence of prostate overgrowth. Neurourol. Urodynam. 36:589-596, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Muscle Contraction/physiology , Muscle, Smooth/metabolism , Prostate/metabolism , Soluble Guanylyl Cyclase/metabolism , rho-Associated Kinases/metabolism , Animals , Electric Stimulation , Male , Muscle, Smooth/physiopathology , Norepinephrine/metabolism , Prostate/physiopathology , Rats , Rats, Wistar , Signal Transduction/physiology
14.
An. bras. dermatol ; An. bras. dermatol;90(6): 862-867, Nov.-Dec. 2015. graf
Article in English | LILACS | ID: lil-769527

ABSTRACT

Abstract: It is known that inflammatory and immune responses protect us from the invasion of micro-organisms and eliminate "wastes" from the injured sites, but they may also be responsible for significant tissue damage. Adenosine, as a purine nucleoside, which is produced in inflamed or injured sites, fulfills its role in limiting tissue damage. Although, it may have a pleiotropic effect, which signals it with a proinflammatory state in certain situations, it can be considered a potent anti-inflammatory mediator. The effects of adenosine, which acts through its receptors on T cell, on mast cell and macrophages, on endothelial cells, on neutrophils and dendritic cells, as they indicate TNF-alpha and cytokines, show that this mediator has a central role in the pathogenesis of psoriasis. The way it acts in psoriasis will be reviewed in this study.


Subject(s)
Humans , Adenosine/metabolism , Psoriasis/etiology , Psoriasis/metabolism , Adenosine Deaminase/metabolism , Cytokines/metabolism , Immunosuppressive Agents/metabolism , Inflammation Mediators/metabolism , Methotrexate/metabolism
15.
Hum Reprod ; 30(9): 2138-51, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26109618

ABSTRACT

STUDY QUESTION: Does fibronectin (Fn) stimulate the sperm capacitation process in humans? SUMMARY ANSWER: Fibronectin stimulates human sperm capacitation. WHAT IS KNOWN ALREADY: Capacitation is a process that occurs in the oviduct. It has been suggested that some molecules present in the oviductal fluid and cells as well as proteins present in the cumulus oophorus could be involved in the modulation of sperm function and their acquisition of fertilizing capacity. Fibronectin is a glycoprotein that is present in the fluid and the oviduct epithelium, and its receptor (alpha 5 beta 1 integrin) is present in human sperm. When alpha 5 beta 1 (α5ß1) integrin binds to fibronectin, intracellular signals similar to the process of sperm capacitation are activated. STUDY DESIGN, SIZE, DURATION: Human sperm were selected via a percoll gradient and were then incubated in non-capacitated medium (NCM) or reconstituted capacitated medium (RCM), in the presence or absence of fibronectin for different time periods. A total of 39 donors were used during the study, which lasted 3 years. PARTICIPANTS/MATERIALS, SETTING, METHODS: Freshly ejaculated sperm from healthy volunteers were obtained by masturbation. All semen samples were normal according to the World Health Organization parameters. Six approaches were used to determine the effects of fibronectin on sperm capacitation: chlortetracycline (CTC) assay, heterologous co-culture of human sperm with bovine oviductal epithelial cells (BOEC), measurement of cyclic (c) AMP levels, activity of protein kinase A (PKA), phosphorylation of proteins in tyrosine (Tyr) residues, and induction of acrosome reaction with progesterone. MAIN RESULTS AND THE ROLE OF CHANCE: When sperm were incubated in RCM in the presence of Fn, we observed differences with respect to sperm incubated in RCM without Fn (control): (i) a 10% increase in the percentage of sperm with the B pattern (capacitated sperm) of CTC fluorescence from the beginning of capacitation (P < 0.001); (ii) an effect on both the concentration of cAMP (P < 0.05) and PKA activity (P < 0.05) during early capacitation; (iii) an increase in the degree of phosphorylation of proteins on tyrosine residues after 60 min of capacitation (P < 0.01); (iv) an increase in the percentage of acrosome-reacted sperm in response to progesterone (P < 0.05); and (v) a decrease in the percentage of sperm attached to BOEC (P < 0.05). Moreover, we noted that the effect of Fn was specific and mediated by alpha 5 beta 1 integrin (P < 0.001). Fn by itself had no effect on sperm capacitation. LIMITATIONS, REASONS FOR CAUTION: This study was carried out with sperm from young adult men. Men with abnormal semen samples were excluded. The results cannot be directly extrapolated to other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS: Currently, male subfertility has become a huge public health problem, which makes it imperative to develop new treatments. This is a novel discovery that extends our current knowledge concerning normal and pathological sperm physiology as well as events that regulate the process of fertilization. STUDY FUNDING/COMPETING INTERESTS: This study was supported by grants from FONDECYT (1130341, E.S.D. and 1120056, P.M.) and FONCYT (PIP 2011-0496, S.P.-M). The authors have no conflicts of interest.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Fibronectins/physiology , Signal Transduction/physiology , Sperm Capacitation/physiology , Adult , Humans , Male , Young Adult
16.
Front Pharmacol ; 6: 58, 2015.
Article in English | MEDLINE | ID: mdl-25859216

ABSTRACT

G protein-coupled receptors (GPCRs) linked to stimulatory G (Gs) proteins (GsPCRs) mediate increases in intracellular cyclic AMP as consequence of activation of nine adenylyl cyclases , which differ considerably in their cellular distribution and activation mechanisms. Once produced, cyclic AMP may act via distinct intracellular signaling effectors such as protein kinase A and the exchange proteins activated by cAMP (Epacs). More recently, attention has been focused on the efflux of cAMP through a specific transport system named multidrug resistance proteins that belongs to the ATP-binding cassette transporter superfamily. Outside the cell, cAMP is metabolized into adenosine, which is able to activate four distinct subtypes of adenosine receptors, members of the GPCR family: A1, A2A, A2B, and A3. Taking into account that this phenomenon occurs in numerous cell types, as consequence of GsPCR activation and increment in intracellular cAMP levels, in this review, we will discuss the impact of cAMP efflux and the extracellular cAMP-adenosine pathway on the regulation of GsPCR-induced cell response.

17.
Tissue Barriers ; 3(1-2): e978720, 2015.
Article in English | MEDLINE | ID: mdl-25838983

ABSTRACT

The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.

18.
J Thromb Haemost ; 13(4): 631-42, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25604267

ABSTRACT

BACKGROUND AND OBJECTIVES: Anagrelide represents a treatment option for essential thrombocythemia patients. It lowers platelet counts through inhibition of megakaryocyte maturation and polyploidization, although the basis for this effect remains unclear. Based on its rapid onset of action, we assessed whether, besides blocking megakaryopoiesis, anagrelide represses proplatelet formation (PPF) and aimed to clarify the underlying mechanisms. METHODS AND RESULTS: Exposure of cord blood-derived megakaryocytes to anagrelide during late stages of culture led to a dose- and time-dependent inhibition of PPF and reduced proplatelet complexity, which were independent of the anagrelide-induced effect on megakaryocyte maturation. Whereas anagrelide was shown to phosphorylate cAMP-substrate VASP, two pharmacologic inhibitors of the cAMP pathway were completely unable to revert anagrelide-induced repression in megakaryopoiesis and PPF, suggesting these effects are unrelated to its ability to inhibit phosphodiesterase (PDE) 3. The reduction in thrombopoiesis was not the result of down-regulation of transcription factors which coordinate PPF, while the myosin pathway was identified as a candidate target, as anagrelide was shown to phosphorylate the myosin light chain and the PPF phenotype was partially rescued after inhibition of myosin activity with blebbistatin. CONCLUSIONS: The platelet-lowering effect of anagrelide results from impaired megakaryocyte maturation and reduced PPF, both of which are deregulated in essential thrombocythemia. These effects seem unrelated to PDE3 inhibition, which is responsible for anagrelide's cardiovascular side-effects and antiplatelet activity. Further work in this field may lead to the potential development of drugs to treat thrombocytosis in myeloproliferative disorders with an improved pharmacologic profile.


Subject(s)
Blood Platelets/drug effects , Hematopoietic Stem Cells/drug effects , Megakaryocytes/drug effects , Platelet Aggregation Inhibitors/pharmacology , Quinazolines/pharmacology , Thrombocythemia, Essential/drug therapy , Thrombopoiesis/drug effects , Blood Platelets/metabolism , Case-Control Studies , Cell Adhesion Molecules/metabolism , Cells, Cultured , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Fetal Blood/cytology , Hematopoietic Stem Cells/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Megakaryocytes/metabolism , Microfilament Proteins/metabolism , Myosins/metabolism , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphoproteins/metabolism , Phosphorylation , Signal Transduction/drug effects , Thrombocythemia, Essential/blood , Thrombocythemia, Essential/diagnosis , Time Factors , Transcription Factors/metabolism
19.
Pharmacol Rep ; 66(3): 380-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24905512

ABSTRACT

BACKGROUND: Tumor necrosis factor alpha (TNFα) is implicated in the development of insulin resistance in obesity, type 2 diabetes and cancer. However, its ability to modulate the action of insulin on glycogen catabolism in the liver is controversial. The aim of the present study was to investigate whether TNFα acutely affects the suppression by insulin of hepatic glucose production (HGP) and glycogenolysis stimulated by cyclic adenosine monophosphate (cAMP). METHODS: TNFα (10 µg/kg) was injected intravenously to rats and, 1 or 6h later, their livers were subjected to in situ perfusion with cAMP (3 µM), in the presence or absence of physiological (20 µU/mL) or supraphysiological (500 µU/mL) concentrations of insulin. RESULTS: The injection of TNFα, 1 or 6h before liver perfusion, had no direct effect on the action of cAMP in stimulating HGP and glycogenolysis. However, when TNFα was injected 1h, but not 6h, before liver perfusion it completely abolished (p<0.05) the suppressive effect of 20 µU/mL insulin on HGP and glycogenolysis stimulated by cAMP. Furthermore, the injection of TNFα 1h or 6h before liver perfusion did not influence the suppression of cAMP-stimulated HGP and glycogenolysis by 500 µU/mL insulin. CONCLUSION: TNFα acutely abolished the suppressive effect of physiological, but not supraphysiological, levels of insulin on HGP and glycogenolysis stimulated by cAMP, suggesting an important role of this mechanism to the increased HGP in several pathological states.


Subject(s)
Cyclic AMP/metabolism , Glucose/metabolism , Glycogenolysis/physiology , Insulin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Liver/metabolism , Liver Glycogen/metabolism , Male , Perfusion/methods , Rats , Rats, Wistar
20.
Life Sci ; 109(2): 111-5, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-24968301

ABSTRACT

AIMS: Liver glycogen catabolism was evaluated in male Swiss mice fed a high-fat diet rich in saturated fatty acids (HFD) or normal fat diet (NFD) during one week. MAIN METHODS: Liver glycogenolysis (LG) and liver glucose production (LGP) were measured either under basal or stimulated conditions (infusion of glycogenolytic agents). Thus, isolated perfused livers from HFD and NFD mice were infused with glycogenolytic agents, i.e., glucagon, epinephrine, phenylephrine, isoproterenol, adenosine-3'-5'-cyclic monophosphate (cAMP), N(6),2'-O-dibutyryl-cAMP (DB-cAMP), 8-bromoadenosine-cAMP (8-Br-cAMP) or N(6)-monobutyryl-cAMP (N6-MB-cAMP). Moreover, glycemia and liver glycogen content were measured. KEY FINDINGS: Glycemia, liver glycogen content and basal rate of LGP and LG were not influenced by the HFD. However, LGP and LG were lower (p<0.05) in HFD mice during the infusions of glucagon (1 nM), epinephrine (20 µM) or phenylephrine (20 µM). In contrast, the activation of LGP and LG during the infusion of isoproterenol (20 µM) was not different (HFD vs. NFD). Because glucagon showed the most prominent response, the effect of cAMP, its intracellular mediator, on LGP and LG was investigated. cAMP (150 µM) showed lower activation of LGP and LG in the HFD group. However, the activation of LGP and LG was not influenced by HFD whether DB-cAMP (3 µM), 8-Br-cAMP (3 µM) or N6-MB-cAMP (3 µM) were used. SIGNIFICANCE: The activation of LGP and LG depends on the intracellular availability of cAMP. It can be concluded that cAMP played a pivotal role on the activation of LG in high-fat diet fed mice.


Subject(s)
Cyclic AMP/metabolism , Liver Glycogen/metabolism , Liver/metabolism , Animals , Diet, High-Fat , Glycogenolysis , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL