Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.192
Filter
1.
Compr Rev Food Sci Food Saf ; 23(6): e70026, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39379307

ABSTRACT

The acceptance of nonconventional solvents as viable substitutes for traditional organic solvents has been widely recognized in order to comply with food-safety and sustainability regulations. Cyclodextrins (CDs), derived from starch, are cyclic oligosaccharides with the ability to form inclusion complexes with a variety of functional substances as the result of their distinctive structure, which enables them to effectively encapsulate bioactive compounds, rendering them highly sought after for use in food applications. In the implementing plan to achieve carbon-neutral emissions by 2050, the novel generation of supramolecular deep eutectic solvents (SUPRADES) has garnered increased attention and interest. The approach of utilizing SUPRADES as emerging solvents was just beginning to be applied to food studies. This review summarizes a revision of the current advances and critical evaluation of cyclodextrin-based SUPRADES (CD-based SUPRADES) as promising solvents for the enhancement of the extraction efficiency, solubilization and stability of bioactive compounds, adsorption and separation of food components, packaging materials, and modification of biopolymers. To meet the sustainable processing needs of the food industry, the emerging categories of CD-based SUPRADES need to be further fabricated. Herein, our review will sort out the potential application of CD-based SUPRADES in the food industry, aiming to provide a better understanding of CD-based SUPRADES within the viewpoint of food science. Formulation intricacies and scalability issues in real functional foods using CD-based SUPRADES as media need more efforts.


Subject(s)
Cyclodextrins , Deep Eutectic Solvents , Functional Food , Cyclodextrins/chemistry , Deep Eutectic Solvents/chemistry , Solvents/chemistry
2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273341

ABSTRACT

Inhalable formulations with cyclodextrins (CDs) as solubility and absorption enhancers show promise for pulmonary delivery. Thiolated hydroxypropyl-ß-cyclodextrin (HP-ß-CD-SH) has mucoadhesive properties, enhancing drug absorption. Moreover, it has self-aggregation capability, which could further improve absorption and drug stability, as well as reduce irritation. This study aims to stabilize CD nanoaggregates using bifunctional cross-linkers and evaluate their benefits for lung drug delivery compared to pristine HP-ß-CD-SH. METHODS: The effectiveness of cross-linked HP-ß-CD-SH nanoparticles (HP-ß-CD-SH-NP) was compared to transient nanoaggregates in enhancing the activity of dexamethasone (DMS) and olive leaf extracts (OLE). DMS, a poorly soluble drug commonly used in lung treatments, and OLE, known for its antioxidant properties, were chosen. Drug-loaded HP-ß-CD-SH-NP were prepared and nebulized onto a lung epithelial Air-Liquid Interface (ALI) model, assessing drug permeation and activity. RESULTS: HP-ß-CD-SH with 25% thiolation was synthesized via microwave reaction, forming 150 nm nanoaggregates and stabilized 400 nm HP-ß-CD-SH-NP. All carriers showed good complexing ability with DMS and OLE and were biocompatible in the lung ALI model. HP-ß-CD-SH promoted DMS absorption, while stabilized HP-ß-CD-SH-NP protected against oxidative stress. CONCLUSION: HP-ß-CD-SH is promising for lung delivery, especially as stabilized nanoaggregates, offering versatile administration for labile molecules like natural extracts.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Dexamethasone , Drug Delivery Systems , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Animals , Humans , Dexamethasone/chemistry , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Dexamethasone/pharmacokinetics , Drug Delivery Systems/methods , Sulfhydryl Compounds/chemistry , Lung/metabolism , Lung/drug effects , Nanoparticles/chemistry , Administration, Inhalation , Drug Carriers/chemistry , beta-Cyclodextrins/chemistry , Rats
3.
Int J Mol Sci ; 25(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273458

ABSTRACT

Cyclodextrins are ring-shaped sugars used as additives in medications to improve solubility, stability, and sensory characteristics. Despite being widespread, Chagas disease is neglected because of the limitations of available medications. This study aims to review the compounds used in the formation of inclusion complexes for the treatment of Chagas disease, analyzing the incorporated compounds and advancements in related studies. The databases consulted include Scielo, Scopus, ScienceDirect, PubMed, LILACS, and Embase. The keywords used were "cyclodextrin AND Chagas AND disease" and "cyclodextrin complex against Trypanosoma cruzi". Additionally, a statistical analysis of studies on Chagas disease over the last five years was conducted, highlighting the importance of research in this area. This review focused on articles that emphasize how cyclodextrins can improve the bioavailability, therapeutic action, toxicity, and solubility of medications. Initially, 380 articles were identified with the keyword "cyclodextrin AND Chagas disease"; 356 were excluded for not being directly related to the topic, using the keyword "cyclodextrin complex against Trypanosoma cruzi". Over the last five years, a total of 13,075 studies on Chagas disease treatment were found in our literature analysis. The studies also showed interest in molecules derived from natural products and vegetable oils. Research on cyclodextrins, particularly in the context of Chagas disease treatment, has advanced significantly, with studies highlighting the efficacy of molecules in cyclodextrin complexes and indicating promising advances in disease treatment.


Subject(s)
Chagas Disease , Cyclodextrins , Trypanosoma cruzi , Chagas Disease/drug therapy , Cyclodextrins/chemistry , Cyclodextrins/therapeutic use , Humans , Trypanosoma cruzi/drug effects , Animals , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
4.
Int J Mol Sci ; 25(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273469

ABSTRACT

Most chemotherapeutic agents are poorly soluble in water, have low selectivity, and cannot reach the tumor in the desired therapeutic concentration. On the other hand, sensitive hydrophilic therapeutics like nucleic acids and proteins suffer from poor bioavailability and cell internalization. To solve this problem, new types of controlled release systems based on nano-sized self-assemblies of cyclodextrins able to control the speed, timing, and location of therapeutic release are being developed. Cyclodextrins are macrocyclic oligosaccharides characterized by a high synthetic plasticity and potential for derivatization. Introduction of new hydrophobic and/or hydrophilic domains and/or formation of nano-assemblies with therapeutic load extends the use of CDs beyond the tried-and-tested CD-drug host-guest inclusion complexes. The recent advances in nano drug delivery have indicated the benefits of the hybrid amphiphilic CD nanosystems over individual CD and polymer components. This review provides a comprehensive overview of the most recent advances in the design of CDs self-assemblies and their use for delivery of a wide range of therapeutic molecules. It aims to offer a valuable insight into the many roles of CDs within this class of drug nanocarriers as well as current challenges and future perspectives.


Subject(s)
Cyclodextrins , Drug Carriers , Polymers , Cyclodextrins/chemistry , Humans , Polymers/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions , Animals
5.
J Mol Graph Model ; 132: 108840, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39128382

ABSTRACT

Baicalein, a flavone derived from Scutellaria baicalensis Georgi, exhibits potent anti-inflammatory, antiviral, and anticancer properties. Its derivative, known as 8-bromobaicalein (BB), has been found to have strong cytotoxic effect on MCF-7 human breast cancer cells. However, its limited solubility in water has hindered its potential for wider applications. To address this issue, we investigated the use of cyclodextrins specifically ßCD, 2,6-di-O-methyl-ß-cyclodextrin (DMßCD), and hydroxypropyl-ß-cyclodextrin (HPßCD) to improve the solubility of BB through inclusion complexation. During 250 ns molecular dynamics simulations, it was found that BB can form inclusion complexes with all ßCDs. These complexes exhibit two distinct orientations: chromone group insertion (C-form) and phenyl group insertion (P-form). The formation of these complexes is primarily driven by van der Waals interactions. DMßCD has the highest number of atom contacts with BB and the lowest solvent accessibility in the hydrophobic cavity. These results coincide with the highest binding affinity from the MM/GBSA-based free energy calculation method. Experimental phase solubility diagrams revealed a 1:1 stoichiometric ratio (AL type) between BB and ßCDs, in which BB/DMßCD showed the highest stability. The formation of inclusion complexes was confirmed by differential scanning calorimetry and scanning electron microscope methods. Additionally, the BB/DMßCD inclusion complex demonstrated significantly higher anticancer activity against MCF-7 human breast cancer cells compared to BB alone. These findings underscore the potential of DMßCD for formulating BB in pharmaceutical and medical applications.


Subject(s)
Molecular Dynamics Simulation , Solubility , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , Humans , MCF-7 Cells , Flavanones/chemistry , Flavanones/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Thermodynamics , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
6.
Molecules ; 29(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39202903

ABSTRACT

Cilostazol is a phosphodiesterase III inhibitor characterized by poor solubility. This limitation can be overcome by using a drug carrier capable of delivering the drug to the target site. Cyclodextrins are essential as drug carriers because of their outstanding complexation abilities and their capacity to improve drug bioavailability. This study comprises two stages: The first involves verifying different cyclodextrins and their complexation abilities towards cilostazol. This was accomplished using molecular docking simulations (MDS) and density functional theory (DFT). Both techniques indicate that the largest Sulfobutyl Ether-ß-Cyclodextrin forms the most stable complex with cilostazol. Additionally, other important parameters of the complex are described, including binding sites, dominant interactions, and thermodynamic parameters such as complexation enthalpy, Gibbs free energy, and Gibbs free energy of solvation. The second stage involves a binding study between cilostazol and Phosphodiesterse3 (PDE3). This study was conducted using molecular docking simulations, and the most important energetic parameters are detailed. This is the first such report, and we believe that the results of our predictions will pave the way for future drug development efforts using cyclodextrin-cilostazol complexes as potential therapeutics.


Subject(s)
Cilostazol , Cyclodextrins , Molecular Docking Simulation , Phosphodiesterase 3 Inhibitors , Thermodynamics , Cilostazol/chemistry , Phosphodiesterase 3 Inhibitors/chemistry , Phosphodiesterase 3 Inhibitors/pharmacology , Cyclodextrins/chemistry , Binding Sites , Cyclic Nucleotide Phosphodiesterases, Type 3/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Protein Binding , Humans
7.
Chemistry ; 30(49): e202402068, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39136668

ABSTRACT

The morphological symmetry-retaining and symmetry-breaking of single crystals of the γ-cyclodextrin metal-organic framework have been achieved via introducing lower symmetric ß-cyclodextrins and α-cyclodextrins, respectively. ß-cyclodextrins led to a morphological evolution with retained symmetry from cubic to rhombic dodecahedra, while α-cyclodextrins resulted in the original cubic crystal missing a vertex angle presenting symmetry-breaking behavior. The crystal structures of rhombic dodecahedra and angle-deficient crystals were confirmed through X-ray crystallography, and the mechanisms underlying the morphological transformation evolution were further analyzed. Our work not only provides a rare case realizing two different paths of morphological evolution in one system, but also encourages future efforts towards the evolution of artificial crystal systems in a natural way.

8.
Molecules ; 29(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125102

ABSTRACT

Cyclodextrins, commonly used as excipients in antifungal formulations to improve the physicochemical properties and availability of the host molecules, have not been systematically studied for their effects and bioactivity without a complex active substance. This paper evaluates the effects of various cyclodextrins on the physiology of the test organism Candida boidinii. The research examines their impact on yeast growth, viability, biofilm formation and morphological changes. Native ACD, BCD, randomly methylated α- and ß-CD and quaternary ammonium α-CD and ß-CD were investigated in the 0.5-12.5 mM concentration range in both static and dynamic systems. The study revealed that certain cyclodextrins exhibited notable antifungal effects (up to ~69%) in dynamic systems; however, the biofilm formation was enhanced in static systems. The magnitude of these effects was influenced by several variables, including the size of the internal cavity, the concentration and structure of the cyclodextrins, and the contact time. Furthermore, the study found that CDs exhibited distinct effects in both static and dynamic systems, potentially related to their tendency to form aggregates. The findings suggest that cyclodextrins may have the potential to act as antifungal agents or growth promoters, depending on their structure and surrounding environments.


Subject(s)
Antifungal Agents , Biofilms , Candida , Cyclodextrins , Candida/drug effects , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Biofilms/drug effects , Biofilms/growth & development , Microbial Sensitivity Tests
9.
Polymers (Basel) ; 16(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125166

ABSTRACT

Circularly polarized luminescence (CPL) materials have been widely used in the fields of bioimaging, optoelectronic devices, and optical communications. The supramolecular interaction, involving harnessing non-covalent interactions between host and guest molecules to control their arrangements and assemblies, represents an advanced approach for facilitating the development of CPL materials and finely constructing and tuning the desired CPL properties. Cyclodextrins (CDs) are cyclic natural polysaccharides, which have also been ubiquitous in various fields such as molecular recognition, drug encapsulation, and catalyst separation. By adjusting the interactions between CDs and guest molecules precisely, composite materials with CPL properties can be facilely generated. This review aims to outline the design strategies and performance of CD-based CPL materials comprehensively and provides a detailed illustration of the interactions between host and guest molecules.

10.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125950

ABSTRACT

In vitro alternative therapy of human epidermoid squamous carcinoma (A431) by superparamagnetic hyperthermia (SPMHT) using Fe3O4 (magnetite) superparamagnetic nanoparticles (SPIONs) with an average diameter of 15.8 nm, bioconjugated with hydroxypropyl gamma-cyclodextrins (HP-γ-CDs) by means of polyacrylic acid (PAA) biopolymer, is presented in this paper. The therapy was carried out at a temperature of 43 °C for 30 min using the concentrations of Fe3O4 ferrimagnetic nanoparticles from nanobioconjugates of 1, 5, and 10 mg/mL nanoparticles in cell suspension, which were previously found by us to be non-toxic for healthy cells (cell viabilities close to 100%), according to ISO standards (cell viability must be greater than 70%). The temperature for the in vitro therapy was obtained by the safe application (without exceeding the biological limit and cellular damage) of an alternating magnetic field with a frequency of 312.4 kHz and amplitudes of 168, 208, and 370 G, depending on the concentration of the magnetic nanoparticles. The optimal concentration of magnetic nanoparticles in suspension was found experimentally. The results obtained after the treatment show its high effectiveness in destroying the A431 tumor cells, up to 83%, with the possibility of increasing even more, which demonstrates the viability of the SPMHT method with Fe3O4-PAA-(HP-γ-CDs) nanobioconjugates for human squamous cancer therapy.


Subject(s)
Carcinoma, Squamous Cell , Hyperthermia, Induced , Magnetite Nanoparticles , Skin Neoplasms , gamma-Cyclodextrins , Humans , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , gamma-Cyclodextrins/chemistry , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Cell Survival/drug effects , Nanoconjugates/chemistry
11.
Angew Chem Int Ed Engl ; : e202412839, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075021

ABSTRACT

Cyclodextrin-based polyrotaxanes (CD-PRs) are gaining attention for their dynamic sliding rings along the polymer axis, enabling various applications in molecular shuttles, drug delivery, and durable polymers with slidable cross-links. However, the conventional synthesis of CD-PRs with tunable threading ratios is typically laborious, time-consuming, and complicated, which limits their scalability and cost-effectiveness. Herein, we highlight the great potential of planetary centrifugal mixing, a process that significantly accelerates and simplifies the initial synthesis of polypseudorotaxanes (PPRs), followed by a thiol-ene click reaction as an efficient end-capping reaction for the synthesis of PRs. Notably, PRs synthesized with glutathione (GSH) as the end-capping reagent are in a metastable state, where GSH act as a molecular bumper that significantly prevent de-threading of α-CD rings at room temperature. Moreover, the rate of ring de-threading can be precisely controlled by heating, enabling the preparation of metastable PRs with tunable threading ratios over a wide range. The developed strategy is of great significance to the efficient synthesis of CD-PRs, thus marking a significant step towards their practical application in advanced functional materials and devices.

12.
Int J Pharm ; 662: 124485, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39029633

ABSTRACT

Cyclodextrins (CDs) are unique cyclic compounds that can form inclusion complexes via host-guest complexation with a wide range of molecules, thereby altering their physicochemical properties. These molecules offer the formation of inclusion complexes without the formation of covalent bonds, making them suitable for a variety of applications in pharmaceutical and biomedical fields. Due to their supramolecular host-guest properties, CDs are being utilized in the fabrication of biomaterials, metal-organic frameworks, and nano-drug carriers. Additionally, CDs in combination with biomolecules are biocompatible and can deliver nano to macromolecules at the site of drug actions. However, the availability of free hydroxyl groups and a simple crosslinking process for supramolecular fabrication show immense opportunities for researchers in the field of tissue engineering and biomedical applications. In this review article, we have covered the historical development, various types of chemical frameworks, unique chemical and physical properties, and important applications of CDs in drug delivery and biomedical sciences.


Subject(s)
Cyclodextrins , Drug Carriers , Drug Delivery Systems , Cyclodextrins/chemistry , Humans , Drug Carriers/chemistry , Animals , Biocompatible Materials/chemistry , Tissue Engineering/methods
13.
Chemistry ; 30(55): e202402012, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39072899

ABSTRACT

Considerable attention has been directed towards cyclodextrins (CDs) in the creation of co-assembled CPL-active materials, owing to their intrinsic chiral host cavities and synergistic host-guest interactions. However, achieving reversed CPL emission regulation with single-handedness CDs moiety poses a significant challenge. In this study, we have devised a series of γ-CD-based host-guest complexes comprising dual pyrene imidazolium derivatives with multiple linkers, which exhibit reversed circularly polarized emission. We have uncovered that the transformation of excimer stacking within γ-CD/pyrene complexes contributes to the inverted CPL emissions originating from a single-handed chiral host. This research elucidates the phenomenon of (+)- and (-)-circularly polarized excimer emission (CPEE) within γ-CD, arising from right- and left-handed stacking conformations, respectively.

14.
Molecules ; 29(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39064922

ABSTRACT

The aim of this study was to obtain drinking yogurts enriched with ACTICOA cocoa powder (ACTICOA), its extract (EACTICOA) and pure phenolics, as well as their inclusion complexes with cyclodextrins and alginate-chitosan (A-Ch) capsules, and to evaluate the effects of these additives on the viability of lactic acid bacteria (LAB) and antioxidant properties of fresh yogurts and yogurts stored for 14 days at 4 °C. The application of cocoa phenolic compounds in free form and in the form of EACTICOA to yogurts resulted in the greatest increase in the concentration of phenolic compounds and a significant improvement in the antioxidant properties of the fortified products. The highest TPC was found in yogurts enriched with free quercetin (107.98 mg CE/g). Yogurt fortified with free gallic acid showed the highest ability to neutralize free radicals (EC50 = 2.74 mg/mg DPPH, EC50 = 5.40 mg/mg ABTS) and reduce ferric ions (183.48 µM Trolox/g). The enrichment of yogurts with the tested phenolic compounds preparations, especially in the form of encapsulates, did not affect the viability of LAB during storage.


Subject(s)
Antioxidants , Cacao , Lactobacillales , Phenols , Yogurt , Yogurt/microbiology , Yogurt/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/analysis , Phenols/pharmacology , Phenols/chemistry , Cacao/chemistry , Lactobacillales/growth & development , Food, Fortified/analysis , Chitosan/chemistry , Chitosan/pharmacology , Alginates/chemistry , Alginates/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Capsules
15.
Pharmaceutics ; 16(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39065550

ABSTRACT

With increasing longevity globally, the search for effective and patient-friendly anti-aging solutions has been growing. Retinoic acid (Ret) is an FDA-approved anti-aging and anti-wrinkling formula, however, its poor solubility and poor tolerability hamper its use in cosmetically accepted formulations. In this study, cyclodextrins and arginine were investigated for improving the solubility and tolerability of retinoic acid through the formation of inclusion complexes and salt formation, respectively. Two different methods were employed: physical mixing and kneading. The prepared dispersions were investigated for molecular docking (MD), solubility, thermal and spectral analyses, cytotoxicity, and scratch assays. The optimized disperse systems were formulated in a gel formulation and characterized for rheological, in vitro release, and kinetics. The MD, DSC, and FTIR results indicated that both ß- and hydroxy propyl (HP) ß-cyclodextrins could host RA in their cavities and form inclusion complexes. Ret can form a salt with the basic amino acid arginine. Solubility studies of RA significantly (p < 0.01) enhanced by 14- to 81-fold increases with the investigated cyclodextrins and arginine. The cell viability recorded for Ret:HP ß-CD K and Ret:arginine K was significantly increased compared to that for Ret alone. The IC50% recorded for azelaic acid (mild to non-irritant control), Ret, Ret:HP ß-CD K, and Ret:arginine K were 1000, 485, 1100, and 895 µg/mL, respectively. The two carriers (HP ß-CD and the amino acid arginine) were able to significantly (p < 0.05) reduce the irritation potential of Ret. Furthermore, comparable gap closure rates were recorded for Ret alone, Ret:HP ß-CD K, and Ret:arginine K, indicating that inclusion complexation and ion pair formation reduced the irritation potentials without undermining the efficacy.

16.
Pharmaceutics ; 16(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39065558

ABSTRACT

The study aimed to develop encapsulation systems to maintain the preservation of everlasting (Helichrysum plicatum) flower extract polyphenols. Spray-dried encapsulates were formulated using ß-cyclodextrin (BCD) and 2-hydroxypropyl-ß-cyclodextrin (HPBCD) as supramolecular hosts, and their macromolecule mixtures with the conventional carriers, maltodextrin (MD) and whey protein (WP). The obtained microparticles were comparatively assessed regarding technological, physicochemical, and phytochemical properties. The highest yields were achieved by combining cyclodextrins with whey protein (73.96% for WP+BCD and 75.50% for WP+HPBCD compared to 62.48% of pure extract). The extract-carrier interactions and thermal stability were evaluated by FTIR and DSC analysis, suggesting successful entrapment within the carriers. Carriers reduced the particle diameter (3.99 to 4.86 µm compared to 6.49 µm of pure extract), classifying all encapsulates as microsystems. Carrier blends made the particle size distribution uniform, while SEM analysis revealed the production of more spherical and less aggregated particles. The HPBCD provided the highest encapsulation efficiency, with the highest content of detected aglycones and slightly lower values of their glycosylated forms. An analysis of the dual macromolecule encapsulation systems revealed the highest bioactive preservation potential for SHE+MD+BCD and SHE+WP+HPBCD. Overall, macromolecule combinations of cyclodextrins and conventional biopolymers in the spray-drying process can enhance the functional properties of H. plicatum extract.

17.
Small ; : e2403717, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046075

ABSTRACT

In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides. Fourier-transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy confirm the successful immobilization of the insulated azido scaffold on ZnO nanowire array surfaces. Owing to the highly independent immobilization, the scaffold allows rapid and complete conversion of the surface azido group in Huisgen cycloaddition reactions with ethynyl-terminated molecules, as confirmed by FT-IR spectroscopy monitoring. Cyclic voltammetry analysis of modified indium tin oxide substrates shows the positive effects of cyclic insulation toward suppression of intermolecular interaction between molecules introduced by the surface Huisgen cycloaddition reactions. The utility of the scaffold for heterogeneous catalysis is demonstrated in electrocatalytic selective O2 reduction to H2O2 with cobalt(II) chlorin modified fluorine doped tin oxide electrode and photocatalytic H2 generation with iridium(III) dye-sensitized Pt-loaded TiO2 nanoparticle. These results highlight the potential of the insulated azido scaffold for a stepwise functionalization process, enabling precise and well-defined hybrid interfaces.

18.
Eur J Pharm Biopharm ; 202: 114415, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013492

ABSTRACT

Hydrogel-forming microneedle array patches (HFMAPs) are microneedles that create microconduits upon insertion and swelling in the skin, potentially allowing prolonged drug delivery without generating sharps waste. Delivering hydrophobic drugs using HFMAPs poses challenges, which can be addressed using solubility enhancers such as cyclodextrins (CDs). This study aimed to deliver risperidone (RIS) transdermally using HFMAPs. To enhance the aqueous solubility of RIS hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were utilised and their performance was tested using phase solubility studies. The aqueous solubility of RIS was enhanced by 4.75-fold and 2-fold using HP-ß-CD and HP-γ-CD, respectively. RIS-HP-ß-CD complex (CX) and physical mixture (PM) directly compressed tablets were prepared and combined with HFMAPs. Among the tested formulations, RIS-HP-ß-CD PM reservoirs with 11 x 11 PVA/PVP HFMAPs exhibited the best performance in ex vivo studies and were further evaluated in in vivo experiments using female Sprague Dawley rats. The extended wear time of the MAPs resulted in the sustained release of RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) in plasma samples, lasting from 3 to 5 days with a 1-day application and up to 10 days with a 5-day application. For a 1-day application, HFMAPs showed greater systemic exposure to RIS compared to intramuscular control (AUC0-t: 13330.05 ± 2759.95 ng/mL/hour versus 2706 ± 1472 ng/mL/hour). Moreover, RIS exposure was extended to 5 days (AUC0-t: 12292.37 ± 1801.94 ng/mL/hour). In conclusion, HFMAPs could serve as an alternative for delivering RIS in a sustained manner, potentially improving the treatment of schizophrenia.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Administration, Cutaneous , Drug Delivery Systems , Hydrogels , Risperidone , Solubility , Risperidone/administration & dosage , Risperidone/pharmacokinetics , Risperidone/chemistry , Animals , Hydrogels/chemistry , Drug Delivery Systems/methods , Drug Delivery Systems/instrumentation , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Rats , Needles , Rats, Sprague-Dawley , Skin Absorption , Cyclodextrins/chemistry , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/pharmacokinetics , Female , Skin/metabolism
19.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000246

ABSTRACT

Quorum sensing (QS) allows bacteria to coordinate their activities by producing and detecting low-molecular-weight signal molecules based on population density, thereby controlling the infectivity of bacteria through various virulence factors. Quorum-sensing inhibition is a promising approach to tackle bacterial communication. Cyclodextrins (CDs) are a class of cyclic oligosaccharides that reversibly encapsulate the acyl chain of the signal molecules, thereby preventing their binding to receptors and interrupting bacterial communication. This results in the inhibition of the expression of various properties, including different virulence factors. To examine the potential quorum-quenching (QQ) ability of newly prepared cyclodextrin derivatives, we conducted short-term tests using Aliivibrio fischeri, a heterotrophic marine bacterium capable of bioluminescence controlled by quorum sensing. α- and ß-cyclodextrins monosubstituted with alkylthio moieties and further derivatized with quaternary ammonium groups were used as the test agents. The effect of these cyclodextrins on the quorum-sensing system of A. fischeri was investigated by adding them to an exponential growth phase of the culture and then measuring bioluminescence intensity, population growth, and cell viability. Our results demonstrate that the tested cyclodextrins have an inhibitory effect on the quorum-sensing system of A. fischeri. The inhibitory effect varies based on the length of the alkyl chain, with alkylthio substitution enhancing it and the presence of quaternary ammonium groups decreasing it. Our findings suggest that cyclodextrins can be a promising therapeutic agent for the treatment of bacterial infections.


Subject(s)
Aliivibrio fischeri , Cyclodextrins , Quorum Sensing , Aliivibrio fischeri/drug effects , Quorum Sensing/drug effects , Cyclodextrins/pharmacology , Cyclodextrins/chemistry , Luminescent Measurements/methods , Luminescence
20.
Macromol Rapid Commun ; : e2400441, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042093

ABSTRACT

Synthesis of polyurethane-type poly[3]rotaxanes is achieved by polyaddition between a cyclodextrin (CD)-based [3]rotaxane diol and various diisocyanate species, which provide a more defined structure compared to conventional polyrotaxane syntheses. In this study, hydroxyl groups on CDs of [3]rotaxane diol are initially acetylated, and deprotected after the polyaddition to introduce polyurethane backbone structure into polyrotaxane framework. Despite a relatively complicated chemical structure, [3]rotaxane diol monomer is successfully synthesized in a high yield (overall 67%) without any taxing purification process, which is beneficial for practical applications. The polymerization itself proceeds well under a standard polyaddition reaction condition to afford corresponding polyurethanes around 80% yield with Mn > 30 kDa. The poly[3]rotaxanes show different aggregation behavior or optical properties, whether or not acetyl groups are present, and are analyzed by XRD, SEM, and fluorescence measurements.

SELECTION OF CITATIONS
SEARCH DETAIL