Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters











Publication year range
1.
Trop Life Sci Res ; 35(1): 87-106, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39262866

ABSTRACT

A cave represents a subterranean ecosystem that harbours a myriad of unique, peculiar, and secluded flora and fauna. These biotas have evolved with a wide range of ecological adaptations that allow them to thrive in harsh environments with limited light. Gua Kelam 1 constitutes part of the Gua Kelam limestone caves system in the Nakawan Range of Perlis State Park, Malaysia. Previous observations indicated that it harbours a plethora of spider species; however, their existence is still elusive as speleobiological studies remain unexplored. Herein, we identified the cavernicolous spiders found in the dark zone areas of Gua Kelam 1 through a complementary approach based on morphology and DNA barcoding. From the morphological analysis, we described three web-building spiders of JTKK2 and JTKK3 groups down to the species-level to belong to Nephilengys malabarensis, and Orsinome vethi except for Pholcus sp. from JTKK4 individuals. The molecular analysis of the cytochrome oxidase-I (COI) genes of JTKK2 and JTKK3 individuals showed that they exhibited a high degree similarity with N. malabarensis (98.3%), and O. vethi (100.0%), respectively except for JTKK4 individuals with only 91.4% homology with P. kuhapimuk. Phylogenetic analysis also generated a congruent tree, in which the identified species are well nested within the family Araneidae, Tetragnathidae, and Pholcidae. By this integral approach, the three spiders were determined as N. malabarensis, O. vethi, and Pholcus sp. These spiders are originally epigean in their habitat but uniquely thrive in Gua Kelam 1.

2.
J Pest Sci (2004) ; 97(3): 1299-1314, 2024.
Article in English | MEDLINE | ID: mdl-39188925

ABSTRACT

Phytoplasmas are bacterial pathogens located in the plant's phloem that are responsible for several plant diseases and are mainly transmitted by phloem-sucking insects. Apple proliferation (AP) is an economically important disease associated with the presence of 'Candidatus Phytoplasma mali' which is transmitted by two psyllid species. While Cacopsylla picta is a vector in different regions, the vector efficiency of C. melanoneura varies between different populations. This species is considered the main AP vector in Northwestern Italy but plays a minor role in Northeastern Italy and other European regions. To investigate whether the psyllid and/or the phytoplasma subtype drive the phytoplasma acquisition in C. melanoneura, a phytoplasma acquisition experiment was set up using single mating couples of overwintered individuals from different psyllid populations and phytoplasma subtypes. All analyzed insect populations acquired phytoplasma, but with different efficiencies and concentrations. The main factors driving the acquisition were the phytoplasma subtype and its concentration in the leaves of the infected trees together with the psyllid lineage. The phytoplasma concentration in the psyllids was again influenced by the phytoplasma subtype, the psyllid lineage and the region of origin, whereas the phytoplasma concentration in the leaves and the psyllid haplotype defined with the cytochrome oxidase I gene had only a minor impact on the phytoplasma concentration. This is the first study evaluating the roles of both the psyllid haplotype and the phytoplasma subtype on the acquisition process and highlights the importance of C. melanoneura as an additional AP vector. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-023-01699-1.

3.
J Sci Food Agric ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051761

ABSTRACT

BACKGROUND: Deer-derived materials (antler, venison, fetus, penis, bone, tail, and others) are some of the most valuable traditional animal-based medicinal and food materials in China. In production, processing, and trade, the quality of deer products varies. The market is confusing, and counterfeit and shoddy products are common. There is an urgent need to establish an accurate identification method. RESULTS: Two pairs of primers suitable for identifying deer-derived medicinal materials were obtained by screening the cytochrome oxidase I (COI) sequences of 18 species from nine genera of the deer family. The two primers were used to identify the species and adulteration of 22 batches of commercially available deer-derived products with a mini-barcode combining high-resolution melting (HRM) technology and methodical investigation. Deer-derived materials (sika and red deer) were correctly identified by species using varying DNA amounts (1 to 500 ng). The two pairs of primers COI-1FR and COI-2FR yielded melting temperatures (Tm) of 80.55 to 81.00 °C and 82.00 to 82.50 °C for sika deer, and 81.00 to 82.00 °C and 81.40 to 82.00 °C for red deer. Twenty-two batches of commercially available samples were analyzed by HRM analysis and conventional amplification sequencing, and it was found that the species samples had an error rate of species labeling of 31.8%. Four batches of samples were identified as mixed (adulterated) in the HRM analysis. CONCLUSION: The combination of DNA mini-barcode with HRM analysis facilitated the accurate identification of species of deer-derived materials, especially the identification of samples in an adulterated mixed state. © 2024 Society of Chemical Industry.

4.
Zebrafish ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980839

ABSTRACT

Using integrative tools can be effective for species identification, especially in complex groups like Astyanax. Astyanax bimaculatus group is composed of six valid species, including A. lacustris. "A. altiparanae", "A. asuncionensis", and "A. jacuhiensis" are considered as junior synonyms of A. lacustris. Seeking to test the operational taxonomic unit (OTU) status of the junior synonyms of A. lacustris ("A. altiparanae", "A. asuncionensis", and "A. jacuhiensis"), we used analyses through mitochondrial DNA (COI and Cytb), cytogenetic markers (classical and molecular), and morphometry ("truss network"). Analysis of mitochondrial DNA sequences separated A. lacustris from the other synonymized species. The cytogenetic and morphometric analyses did not corroborate the synonymization and suggest that besides A. lacustris, the OTUs A. altiparanae, A. asuncionensis, and A. jacuhiensis are valid species. The analysis of different characters proposed by the integrative taxonomy used on the same individuals could provide greater reliability and minimize the underestimation of biodiversity.

5.
Parasitol Res ; 123(3): 171, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530429

ABSTRACT

Anopheles baimaii (Diptera: Culicidae) significantly contributes to the transmission of parasites causing malaria in Southeast Asia and South Asia. This study examined the morphological (wing shape) and molecular (mitochondrial gene) variations of An. baimaii in four of Thailand's border islands, and also investigated the presence of Plasmodium parasites in these mosquitoes. No Plasmodium infections were detected in the samples. Significant differences in wing shape were observed in most island populations (p < 0.05). A single-linkage tree, constructed using Mahalanobis distances, clustered the populations into two groups based on geographical locations. Genetic variation in An. baimaii was also analyzed through cytochrome c oxidase subunit I (COI) gene sequences. This analysis identified 22 segregating sites and a low nucleotide diversity of 0.004. Furthermore, 18 distinct haplotypes were identified, indicating a high haplotype diversity of 0.825. Neutrality tests for the overall population revealed a significantly negative Fu's Fs value (-5.029), indicating a population expansion. In contrast, Tajima's D yielded a negative value (-1.028) that did not reach statistical significance. The mismatch distribution analysis exhibited a bimodal pattern, and the raggedness index was 0.068, showing no significant discrepancy (p = 0.485) between observed and expected distributions. Pairwise genetic differentiation assessments demonstrated significant differences between all populations (p < 0.05). These findings provide valuable insights into the COI gene and wing morphometric variations in An. baimaii across Thailand's islands, offering critical information for understanding the adaptations of this malaria vector and guiding future comprehensive research.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Thailand , Mosquito Vectors , Genetic Variation , Haplotypes , Phylogeny
6.
Vector Borne Zoonotic Dis ; 24(4): 237-244, 2024 04.
Article in English | MEDLINE | ID: mdl-38306182

ABSTRACT

Background: Haemagogus janthinomys is a primary sylvan vector of yellow fever virus and the emerging Mayaro virus. However, despite its medical importance, there is a dearth of data on the molecular taxonomy of this mosquito species. Methods: In this study, DNA barcoding analysis was performed on 64 adult female mosquitoes from Trinidad morphologically identified as Hg. janthinomys. The mitochondrial cytochrome c oxidase I (COI) gene and ribosomal DNA internal transcribed spacer 2 (ITS2) region of the mosquitoes were PCR amplified and sequenced, and molecular phylogenies inferred. Results: The BLASTN analysis showed that only 20% (n = 13/66) of COI sequences had high similarity (>99% identity) to Hg. janthinomys and the remaining sequences had low similarity (<90% identity) to reference GenBank sequences. Phylogenetic analysis of COI sequences revealed the presence of four strongly supported groups, with one distinct clade that did not align with any reference sequences. Corresponding ITS2 sequences for samples in this distinct COI group clustered into three clades. Conclusions: These molecular findings suggest the existence of a putative new Haemagogus mosquito species and underscore the need for further, more in-depth investigations into the taxonomy and classification of the Haemagogus genus.


Subject(s)
Culicidae , Animals , Female , DNA Barcoding, Taxonomic/veterinary , Mosquito Vectors/genetics , Mosquito Vectors/anatomy & histology , Phylogeny , Trinidad and Tobago
7.
J Chem Ecol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421546

ABSTRACT

The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a global pest that feeds on > 350 plant species and causes major yield loses. Variation in the responses of S. frugiperda males to female sex pheromone compounds affects the detection, monitoring and management of the pest. We determined geographic variation in the responses of S. frugiperda males to four different doses of synthetic sex pheromone compounds using a gas chromatography-electroantennogram detector (GC-EAD). Furthermore, we disentangled regional populations into C- and R- mitotypes via molecular analysis of the cytochrome oxidase I gene, and measured their responses to the compounds. When comparing responses of males from Florida, Benin, Nigeria and Kenya, we found some regional differences in the responses of S. frugiperda males to the major compound, Z9-14:OAc and minor component Z9-12:OAc. However, we found no differences in male responses between the different African countries. All males showed significantly higher antennal responses to Z7-12:OAc than to E7-12:OAc. When comparing the mitotypes, we found that Florida R-type males showed higher responses to Z9-14:OAc, Z7-12:OAc and Z9-12:OAc than Benin R-type males, while C-type males from both regions responded equally to Z7-12:OAc. In addition, Florida R-type males showed higher responses to E7-12:OAc than Florida C-type males. Our study thus shows some differential physiological responses of S. frugiperda males towards the known sex pheromone compounds, including E7-12:OAc, but mostly in the different mitotypes. How these differences translate to field trap catches remains to be determined.

8.
Mycologia ; 116(1): 170-183, 2024.
Article in English | MEDLINE | ID: mdl-38032605

ABSTRACT

A new genus and species of myxomycete, Tasmaniomyxa umbilicata, is described based on numerous observations in Tasmania and additional records from southeastern Australia and New Zealand. The new taxon is characterized by an unusual combination of characters from two families: Lamprodermataceae and Didymiaceae. With Lamprodermataceae the species shares limeless sporocarps, a shining membranous peridium, an epihypothallic stalk, and a cylindrical columella. Like Didymiaceae, it has a soft, flaccid, sparsely branched capillitium, with rough tubular threads that contain fusiform nodes and are firmly connected to the peridium. Other characters of T. umbilicata that also occur in many Didymiaceae are the peridium dehiscing into petaloid lobes, the yellow, motile plasmodium, and the spores ornamented with larger, grouped and smaller, scattered warts. The transitional position of the new taxon is reflected by a three-gene phylogeny, which places T. umbilicata at the base of the branch of all lime-containing Physarales, thus justifying its description as a monotypic genus.


Subject(s)
Myxomycetes , Physarida , Humans , Myxomycetes/genetics , Tasmania , Spores, Protozoan , Australia , Phylogeny
9.
PeerJ ; 11: e16347, 2023.
Article in English | MEDLINE | ID: mdl-37941933

ABSTRACT

Background: The psyllid, Bactericera cockerelli, is an insect vector of 'Candidatus Liberibacter' causing "Zebra chip" disease that affects potato and other Solanaceae crops worldwide. In the present study, we analyzed the bacterial communities associated with the insect vector Bactericera cockerelli central haplotype of tomato crop fields in four regions from Mexico. Methods: PCR was used to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) and then analyze the single nucleotide polymorphisms (SNP) and phylogenetic analysis for haplotype identification of the isolated B. cockerelli. Moreover, we carried out the microbial diversity analysis of several B. cockerelli collected from four regions of Mexico through the NGS sequencing of 16S rRNA V3 region. Finally, Wolbachia was detected by the wsp gene PCR amplification, which is the B. cockerelli facultative symbiont. Also we were able to confirm the relationship with several Wolbachia strains by phylogenetic analysis. Results: Our results pointed that B. cockerelli collected in the four locations from Mexico (Central Mexico: Queretaro, and Northern Mexico: Sinaloa, Coahuila, and Nuevo Leon) were identified, such as the central haplotype. Analyses of the parameters of the composition, relative abundance, and diversity (Shannon index: 1.328 ± 0.472; Simpson index 0.582 ± 0.167), showing a notably relatively few microbial species in B. cockerelli. Analyses identified various facultative symbionts, particularly the Wolbachia (Rickettsiales: Anaplasmataceae) with a relative abundance higher. In contrast, the genera of Sodalis and 'Candidatus Carsonella' (Gammaproteobacteria: Oceanospirillales: Halomonadaceae) were identified with a relatively low abundance. On the other hand, the relative abundance for the genus 'Candidatus Liberibacter' was higher only for some of the locations analyzed. PCR amplification of a fragment of the gene encoding a surface protein (wsp) of Wolbachia and phylogenetic analysis corroborated the presence of this bacterium in the central haplotype. Beta-diversity analysis revealed that the presence of the genus 'Candidatus Liberibacter' influences the microbiota structure of this psyllid species. Conclusions: Our data support that the members with the highest representation in microbial community of B. cockerelli central haplotype, comprise their obligate symbiont, Carsonella, and facultative symbionts. We also found evidence that among the factors analyzed, the presence of the plant pathogen affects the structure and composition of the bacterial community associated with B. cockerelli.


Subject(s)
Hemiptera , Solanum lycopersicum , Animals , Haplotypes , RNA, Ribosomal, 16S/genetics , Hemiptera/genetics , Phylogeny , Mexico , Bacteria/genetics , Liberibacter/genetics , Crops, Agricultural/genetics
10.
Zookeys ; 1178: 143-164, 2023.
Article in English | MEDLINE | ID: mdl-37711497

ABSTRACT

The leafhopper genus Errastunus contains grass-feeding leafhoppers in the deltocephaline tribe Paralimnini. The taxonomy of the genus in the Nearctic region has long been confused, with one to three distinct species recognized by different authors. Some populations have also been suggested to be adventive from Europe. Morphological and molecular data show that there are two distinct species in North America. These taxa are readily distinguishable morphologically although there is evidence of mitochondrial introgression between the species. The distribution of the two species based on historical material in collections suggests that Errastunussobrinus (DeLong & Sleesman, 1929) is native to North America, while E.ocellaris (Fallén, 1806) includes both native and adventive populations. A lectotype is designated for E.sobrinus and Cicadaocellata Scopoli, 1763 is established as a nomen oblitum with Cicadaocellaris as a nomen protectum.

11.
Ecol Evol ; 13(9): e10496, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674653

ABSTRACT

The Adriatic brook lamprey, Lampetra zanandreai Vladykov 1955, was described from northeastern Italy. Its distribution is thought to include left tributaries of the River Po and the river basins of the Adriatic Sea from the River Po to the River Isonzo/Soca in Italy, Switzerland and Slovenia. It also shows a geographically isolated distribution in the Potenza River on the Adriatic slope in Central Italy. Lampetra from the Neretva River system in Croatia and Bosnia and Herzegovina and the Moraca River system in Montenegro that were previously identified as L. zanandreai were recently described as a new species Lampetra soljani Tutman, Freyhof, Dulcic, Glamuzina & Geiger 2017 based on morphological data and a genetic distance between the two species of roughly 2.5% in the DNA barcoding gene cytochrome oxidase I (COI). Since DNA barcodes for L. zanandreai are only available for one population from the upper Po River in northwestern Italy, we generated additional COI nucleotide sequence data of this species from Switzerland, northeastern and central Italy comprising near topotypic material and obtained GenBank sequences of the species from Slovenia to better assess the evolutionary history of the two brook lamprey species in the river basins of the Adriatic Sea. Our data show a low sequence divergence of <1% between L. zanandreai from Switzerland, northeastern and central Italy and Slovenia and the Balkan species L. soljani. However, members of the population previously identified as 'L. zanandreai' from northwest Italy are genetically highly divergent from those of L. zanandreai and likely belong to an undescribed species, L. sp. 'upper Po'. The presence of a unique and highly divergent brook lamprey lineage in the upper Po River suggests that L. zanandreai and Lampetra sp. 'upper Po' may have evolved in separate paleo drainages during the formation of the modern Po Valley subsequent to marine inundations in the Pliocene.

12.
Parasitol Res ; 122(10): 2445-2450, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37530869

ABSTRACT

Dirofilariasis is a mosquito-borne disease caused by Dirofilaria parasites, affecting both wild and domestic animals, including humans considered as accidental hosts. Dirofilaria repens is the principal causative agent of dirofilariasis in the Old World, with increasing reports of the parasite in countries where it has not been previously identified, due to several factors such as the expansion of mosquito vectors' geographical distribution. By utilizing newly designed primers for molecular detection and confirming through next-generation sequencing, here, we report the first plausible cases of D. repens in dogs from Colombia. Our results support the classification of this species as an emergent pathogen in the Americas. Finally, we encourage an increase in diagnostic and surveillance efforts to prevent and control the current and future dirofilariasis cases in this region.


Subject(s)
Dirofilaria immitis , Dirofilaria repens , Dirofilariasis , Dog Diseases , Animals , Dogs , Humans , Dirofilariasis/diagnosis , Dirofilariasis/epidemiology , Dirofilariasis/parasitology , Dirofilaria repens/genetics , Colombia/epidemiology , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Mosquito Vectors , Dirofilaria immitis/genetics
13.
Zookeys ; 1156: 107-131, 2023.
Article in English | MEDLINE | ID: mdl-37251420

ABSTRACT

Falagoniamexicana is an aleocharine distributed from northern Mexico to Guatemala and El Salvador. It is associated with Attamexicana ants and lives within their piles of waste or external debris. The phylogeography and historical demography of 18 populations from Mexico, Guatemala, and El Salvador were studied. The data set encompasses a 472 bp fragment of the COI. Results suggest that F.mexicana was originated during Middle Pliocene (ca. 0.5 Mya), starting its diversification at the Upper Pleistocene and Holocene. Populations were recovered forming at least four main lineages, with a significant phylogeographic structure. Evidence of contemporary restricted gene flow was found among populations. The historical demography suggests that the geographic structure is due to recent physical barriers (e.g., Isthmus of Tehuantepec) rather than ancient geological events. Also, recent geological and volcanic events in the east of the Trans-Mexican Volcanic Belt and the Sierra Madre Oriental might be responsible for the restricted gene flow among populations. Skyline-plot analyses suggested that a demographic expansion event took place at the end of the Late Quaternary glacial-interglacial cycles.

14.
Infect Genet Evol ; 112: 105450, 2023 08.
Article in English | MEDLINE | ID: mdl-37230159

ABSTRACT

Malaria in India is declining, in part due to the use of long-lasting insecticide-treated nets (LLINs) and vector control. Historically, the north-eastern region of India has contributed ~10%-12% of the nation's malaria burden. The important mosquito vectors in northeast India have long been considered to be Anopheles baimaii and An. minimus, both associated with forest habitats. Local deforestation and increased rice cultivation, along with widespread LLIN use, may be changing vector species composition. Understanding if and how vector species composition is changing is critical to successful malaria control. In Meghalaya state, malaria is now at a low level of endemicity with occasional seasonal outbreaks. In a biodiverse setting like Meghalaya, where >24 Anopheles mosquito species have been recorded, accurate morphological identification of all species is logistically challenging. To accurately determine Anopheles species richness in the West Khasi Hills (WKH) and West Jaintia Hills (WJH) districts, adult and larval mosquitoes were collected and identified using molecular methods of allele-specific PCR and cytochrome oxidase I DNA barcoding. In 14 villages across both districts, we identified high species richness, 19 species in total. Molecular findings indicated that An. minimus and An. baimaii were rare, while four other species (An. maculatus, An. pseudowillmori, An. jeyporiensis and An. nitidus) were abundant. Anopheles maculatus was highly prevalent in WKH (39% of light trap collections) and An. pseudowillmori in WJH (45%). Larvae of these four species were found in rice fields, suggesting that land cover change is influencing species composition change. Our results suggest that rice fields might be contributing to the observed abundance of An. maculatus and An. pseudowillmori, which could be playing a role in malaria transmission, either independently due to their high abundance, or in combination with An. baimaii and/or An. minimus.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/genetics , Malaria/epidemiology , Mosquito Vectors/genetics , India/epidemiology , Genetic Variation
15.
Arch Insect Biochem Physiol ; 114(2): 1-14, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37032456

ABSTRACT

Ischnura senegalensis Rambur, 1842 is among the most widespread damselfly species in the world. Unlike dragonflies with strong migration abilities, I. senegalensis have limited dispersing abilities. Gene flow among I. senegalensis populations may be greatly influenced by anthropogenic disturbance, fragmented suitable habitats, sea straits, or even global warming. In this study, to investigate the genetic diversity of I. senegalensis populations, we sequenced and collected 498 cytochrome oxidase I sequences across the Old World. Haplotype network analysis showed 51 haplotypes and I. senegalensis could be grouped into four regions (Afrotropical region, Oriental region, main Islands of Japan, and the Ryukyu Islands), each of which contains different dominant haplotypes. Based on molecular variance analysis, we found that populations from the Afrotropical region have quite a low gene flow with the Asian populations (except Yemen). Furthermore, rice cultivation may aid the dispersion of I. senegalensis in the oriental region. Populations from the Ryukyu Islands show the highest genetic diversity, which may be due to the geological separation among islands. Our results prove that I. senegalensis has great genetic diversity among different populations across the world.


Subject(s)
Genetics, Population , Odonata , Animals , Genetic Variation , Odonata/genetics , Haplotypes , Gene Flow , Phylogeny
16.
Genes (Basel) ; 14(4)2023 03 28.
Article in English | MEDLINE | ID: mdl-37107574

ABSTRACT

Although molecular information for the wood stork (Mycteria americana) has been well described, data concerning their karyotypical organization and phylogenetic relationships with other storks are still scarce. Thus, we aimed to analyze the chromosomal organization and diversification of M. americana, and provide evolutionary insights based on phylogenetic data of Ciconiidae. For this, we applied both classical and molecular cytogenetic techniques to define the pattern of distribution of heterochromatic blocks and their chromosomal homology with Gallus gallus (GGA). Maximum likelihood analyses and Bayesian inferences (680 bp COI and 1007 bp Cytb genes) were used to determine their phylogenetic relationship with other storks. The results confirmed 2n = 72, and the heterochromatin distribution pattern was restricted to centromeric regions of the chromosomes. FISH experiments identified fusion and fission events involving chromosomes homologous to GGA macrochromosome pairs, some of which were previously found in other species of Ciconiidae, possibly corresponding to synapomorphies for the group. Phylogenetic analyses resulted in a tree that recovered only Ciconinii as a monophyletic group, while Mycteriini and Leptoptlini tribes were configured as paraphyletic clades. In addition, the association between phylogenetic and cytogenetic data corroborates the hypothesis of a reduction in the diploid number throughout the evolution of Ciconiidae.


Subject(s)
Chromosomes , Diploidy , Animals , Phylogeny , Bayes Theorem , Chickens/genetics
17.
Insects ; 14(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36975953

ABSTRACT

Irrigated agriculture and global trade expansion have facilitated diversification and spread of begomoviruses (Geminiviridae), transmitted by the Bemisia tabaci (Gennadius) cryptic species. Oman is situated on major crossroads between Africa and South Asia, where endemic/native and introduced/exotic begomoviruses occur in agroecosystems. The B. tabaci 'B mitotype' belongs to the North Africa-Middle East (NAFME) cryptic species, comprising at least eight endemic haplotypes, of which haplotypes 6 and/or 8 are recognized invasives. Prevalence and associations among native and exotic begomoviruses and NAFME haplotypes in Oman were investigated. Nine begomoviral species were identified from B. tabaci infesting crop or wild plant species, with 67% and 33% representing native and exotic species, respectively. Haplotypes 2, 3, and 5 represented 31%, 3%, and 66% of the B. tabaci population, respectively. Logistic regression and correspondence analyses predicted 'strong'- and 'close' virus-vector associations involving haplotypes 5 and 2 and the exotic chili leaf curl virus (ChiLCV) and endemic tomato yellow leaf curl virus-OM, respectively. Patterns favor a hypothesis of relaxed virus-vector specificity between an endemic haplotype and the introduced ChiLCV, whereas the endemic co-evolved TYLCV-OM and haplotype 2 virus-vector relationship was reinforced. Thus, in Oman, at least one native haplotype can facilitate the spread of endemic and introduced begomoviruses.

18.
Insects ; 14(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36975966

ABSTRACT

Pentastiridius leporinus is a planthopper (Hemiptera: Cixiidae) that vectors two phloem-restricted bacterial pathogens to sugar beet (Beta vulgaris (L.)): the γ-proteobacterium Candidatus Arsenophonus phytopathogenicus and the stolbur phytoplasma Candidatus Phytoplasma solani. These bacteria cause an economically important disease known as syndrome basses richesses (SBR), characterized by yellowing, deformed leaves and low beet yields. Having observed potato fields in Germany infested with cixiid planthoppers and showing signs of leaf yellowing, we used morphological criteria and COI and COII as molecular markers, to identify the planthoppers (adults and nymphs) primarily as P. leporinus. We analyzed planthoppers, potato tubers, and sugar beet roots and detected both pathogens in all sample types, confirming that P. leporinus adults and nymphs can transmit the bacteria. This is the first time that P. leporinus has been shown to transmit Arsenophonus to potato plants. We also found that two generations of P. leporinus were produced in the warm summer of 2022, which will probably increase the pest population size (and thus the prevalence of SBR) in 2023. We conclude that P. leporinus has expanded its host range to potato, and can now utilize both host plants during its developmental cycle, a finding that will facilitate the development of more efficient control strategies.

19.
PeerJ ; 11: e14751, 2023.
Article in English | MEDLINE | ID: mdl-36815990

ABSTRACT

The taxonomic status of the sergestid shrimp, Acetes americanus, has been questioned for several decades. No specific study has been performed thus far to resolve the incongruences. This species has a wide geographical range in the western Atlantic and is represented by two formally accepted subspecies: Acetes americanus carolinae, distributed in North America, and Acetes americanus americanus, present in South America. However, there are regions where the coexistence of both subspecies has been reported, such as Central America. This study aimed to genetically compare specimens of A. a. americanus collected in South America with A. a. carolinae sampled in North America to check for possible differences and the existence of more than one subspecies of A. americanus on the Brazilian coast. Based on the sequences of two informative markers, the cytochrome oxidase I region (COI) and 16S rRNA, phylogenetic reconstruction demonstrated well-defined clades with high support values, reinforcing the idea that A. a. americanus is genetically different from A. a. carolinae. Our hypothesis was corroborated as the specimens collected in Brazil were divided into two distinct lineages: the first composed of A. a. americanus sensu stricto (Brazil 1) and the second by Acetes americanus (Brazil 2). The three groups evidenced in the haplotype network were the same as those observed in the phylogenetic tree. The morphometric character (height/length of the thelycum) was effective in distinguishing A. a. Brazil 1 from A. a. carolinae. However, more detailed and conclusive studies comprising other characteristics to propose and describe a possible new entity are necessary. To the best of our knowledge, for the first time, the results of this study provide some insights into the taxonomic status of the sergestid shrimp A. americanus in the western Atlantic.


Subject(s)
Decapoda , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Decapoda/genetics , Crustacea/genetics , Brazil , Genetic Variation
20.
BMC Genomics ; 24(1): 22, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36646998

ABSTRACT

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda; J.E. Smith (Lepidoptera: Noctuidae), is now an economically important pest that causes huge losses to maize productivity in sub-Saharan Africa. Variations in sub-population genetics and the processes of rapid adaptation underpinning the invasion remain unclear. For this, the genetic identity and diversity of FAW populations in Uganda were revealed by sequencing 87 samples (collected across the country). Based on the partial mitochondrial cytochrome oxidase I (COI) gene polymorphisms, we further examined the mitochondrial haplotype configuration and compared the FAW in Uganda with sequences from other parts of the world. The molecular target for organophosphate and carbamate resistance, acetylcholinesterase, was also investigated. RESULTS: Analysis of the partial COI gene sequences showed the presence of both rice (predominant) and corn strain haplotypes, with a haplotype diversity of 0.382. Based on the COI marker, pairwise difference distribution analyses, and neutrality tests, showed that the FAW populations in Uganda and the rest of Africa are evolving neutrally, but those in America and Asia are undergoing expansion. Our findings support observations that invasive FAW populations throughout the rest of Africa and Asia share a common origin. Sequencing of the S. frugiperda ace-1 gene revealed four amino acid substitutions, two of which (A201S and F290V) were previously shown to confer organophosphate resistance in both S. frugiperda and several other insect species. The other two previously reported new variations in positions g-396 and g-768, are presumed to be related to the development of insecticide resistance. CONCLUSIONS: This research has increased our knowledge of the genetics of FAW in Uganda, which is critical for pest surveillance and the detection of resistance. However, due to the low gene polymorphism of COI, more evolutionary studies incorporating the Spodoptera frugiperda whole-genome sequence are required to precisely understand the FAW population dynamics, introduction paths, origin, and subsequent spread.


Subject(s)
Acetylcholinesterase , Insecticides , Animals , Spodoptera/genetics , Acetylcholinesterase/genetics , Point Mutation , Organophosphates/pharmacology , Uganda , Insecticide Resistance/genetics , Insecticides/pharmacology , Zea mays/genetics , Larva
SELECTION OF CITATIONS
SEARCH DETAIL