Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.821
Filter
1.
J Hematol ; 13(3): 94-98, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38993738

ABSTRACT

Multiple myeloma (MM) is a plasma cell dyscrasia which is typically characterized by identifiable paraprotein in the blood or urine. However, the minority of patients in whom paraprotein cannot be identified are designated non-secretory MM (NSM). Evaluation of treatment response is more difficult in these patients as paraprotein levels cannot be followed. A dearth of clinical trials including these patients exists because of an inability to measure response by classical serum and urine measurement mechanisms as well as seemingly decreased overall survival compared to secretory MM. NSM is subdivided into four subgroups: "non-producers", "true non-secretors", "oligosecretors" and "false non-secretors". The "non-producers" phenotype is associated with more aggressive disease course. Translocations such as those involving the proto-oncogene c-MYC (chromosome 8) and the lambda light chain gene IGL (chromosome 22) - more commonly associated with Burkitt lymphoma - are rare in MM. We describe a 60-year-old male with NSM who was identified as having multiple high-risk features including complex cytogenetics and a non-producer phenotype, which are features not considered in conventional MM staging and risk stratification. This case highlights the need for awareness of phenotypes and cytogenetics associated with higher clinical risk that are not included in the revised International Staging System.

2.
Pediatr Blood Cancer ; : e31129, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952259

ABSTRACT

BACKGROUND: The objective of this study is to assess the concordance and added value of combined comparative genomic hybridization plus single-nucleotide polymorphism microarray (CGH/SNP) analyses in pediatric acute lymphoblastic leukemia (ALL) risk stratification compared to conventional cytogenetic methods. PROCEDURE: This is a retrospective study that included patients aged 1-18 years diagnosed with de novo ALL at Sainte-Justine Hospital between 2016 and 2021. Results from conventional cytogenetic and molecular analyses were collected and compared to those of CGH/SNP. RESULTS: A total of 135 ALL patients were included. Sample failures or non-diagnostic analyses occurred in 17.8% cases with G-banding karyotypes versus 1.5% cases with CGH/SNP. The mean turnaround time for results was significantly faster for CGH/SNP than karyotype with 5.8 versus 10.7 days, respectively. The comparison of ploidy assessment by CGH/SNP and G-banding karyotype showed strong concordance (r = .82, p < .001, r2 = .68). Furthermore, G-banding karyotype did not detect additional clinically relevant aberrations that were missed by the combined analysis of CGH/SNP and fluorescence in situ hybridization. The most common gene alterations detected by CGH/SNP were deletions involving CDKN2A (35.8%), ETV6 (31.3%), CDKN2B (28.4%), PAX5 (20.1%), IKZF1 (12.7%), and copy-neutral loss of heterozygosity (CN-LOH) of 9p (9.0%). Among these, only ETV6 deletion was found to have a significant prognostic impact with superior event-free survival in both univariate and multivariate analyses (adjusted hazard ratio 0.08, 95% confidence interval: 0.01-0.50, p = .02). CONCLUSION: CGH/SNP provided faster, reliable, and highly concordant results than those obtained by conventional cytogenetics. CGH/SNP identified recurrent gene deletions in pediatric ALL, of which ETV6 deletion conferred a favorable prognosis.

3.
Curr Mol Med ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38984570

ABSTRACT

BACKGROUND: Increased expression of MRP 1 in AML patients results in the efflux of drugs from the cells, preventing the patient from achieving remission or potentially leading to relapse. Several studies have demonstrated that early identification of ABC transporter may yield favorable outcomes. AIMS AND OBJECTIVES: The objectives of the study were to investigate the correlation between MRP 1 gene expression and MRP 1 protein levels and the response to remission induction in AML patients. METHOD: A total of 40 AML patients were recruited from March 2021 to June 2022. Peripheral blood was collected in two tubes (yellow and purple top) to assess the MRP 1 gene and protein. For MRP 1 gene assessment, RNA was isolated from blood samples, cDNA was prepared, and qRT-PCR was performed to analyze gene expression. The relationship between the gene and complete remission was determined. Identification of MRP 1 protein was conducted using ELISA, and the relationship between protein levels and complete remission (CR) was explored. RESULTS: Most of the patients were aged between 25 and 39 years, encompassing both males and females. This study observed a clinical correlation between MRP 1 gene expression and complete remission. The findings revealed that 69.2 percent of patients with high gene expression failed to achieve complete remission, whereas the analysis of MRP 1 protein in relation to complete remission showed no statistical significance. The MRP1 gene showed high expression (66.7%) in patients with FLT3 mutation, whereas low expression of MRP1 was associated with a high occurrence (60%) of NMP1 mutation. CONCLUSION: Further comprehensive multicenter studies with larger sample sizes are required to validate the findings of this study. It is recommended to pinpoint the mechanism and regulation of MRP 1 and its interaction with other molecular pathways.

4.
Comp Cytogenet ; 18: 105-122, 2024.
Article in English | MEDLINE | ID: mdl-38966326

ABSTRACT

Recently, hypotheses regarding the evolutionary patterns of ribosomal genes in ant chromosomes have been under discussion. One of these hypotheses proposes a relationship between chromosomal location and the number of rDNA sites, suggesting that terminal locations facilitate the dispersion of rDNA clusters through ectopic recombination during meiosis, while intrachromosomal locations restrict them to a single chromosome pair. Another hypothesis suggests that the multiplication of rDNA sites could be associated with an increase in the chromosome number in Hymenoptera due to chromosomal fissions. In this study, we physically mapped rDNA sites in 15 new ant species and also reviewed data on rDNA available since the revision by Teixeira et al. (2021a). Our objectives were to investigate whether the new data confirm the relationship between chromosomal location and the number of rDNA sites, and whether the increase in the chromosome number is significant in the dispersion of rDNA clusters in ant karyotypes. Combining our new data with all information on ant cytogenetics published after 2021, 40 new species and nine new genera were assembled. Most species exhibited intrachromosomal rDNA sites on a single chromosome pair, while three species showed these genes in terminal regions of multiple chromosome pairs. On one hand, the hypothesis that the chromosomal location of rDNA clusters may facilitate the dispersion of rDNA sites in the ant genome, as previously discussed, was strengthened, but, on the other hand, the hypothesis of chromosomal fission as the main mechanism for dispersion of ribosomal genes in ants is likely to be refuted. Furthermore, in certain genera, the location of rDNA sites remained similar among the species studied, whereas in others, the distribution of these genes showed significant variation between species, suggesting a more dynamic chromosomal evolution.

5.
Int J Hematol Oncol Stem Cell Res ; 18(2): 140-146, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38868807

ABSTRACT

Background: Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Currently, several biomarkers are being used as CLL prognosticators, including elevated protein levels, elevated RNA levels, gene mutations, and epigenetic changes. Materials and Methods: This study is a prospective study conducted on 55 patients newly diagnosed with CLL, serum IL-6 level was measured initially and after a 6-month treatment course. Correlation with the course of the disease and the known CLL prognostic parameters was done initially and after 6 months. Results: The initial serum IL-6 level in the patient group (pre-treatment) ranges from 36-91 pg/mL (median 57), and in the patient group (post-treatment) ranges from 1-32 pg/mL (median 2). Serum IL-6 level was positively correlated with WBC count, ß2 microglobulin, LDH, ESR, B symptoms, Uric Acid, BM Aspirate (% of lymphocytes), and Binet and Rai staging systems. Conclusion: Serum IL-6 is a useful poor prognostic marker in newly diagnosed CLL patients; its prognostic value goes with the other known prognostic markers such as the BM lymphocyte count, ESR, and LDH.

7.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915648

ABSTRACT

Carcinogenesis often involves significant alterations in the cancer genome architecture, marked by large structural and copy number variations (SVs and CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive technologies that bridge this resolution gap and offer enhanced performance for cytogenetic applications. These methods profile native, individual DNA molecules, thus capturing epigenetic information. We applied both techniques to characterize a clear cell renal cell carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative strengths of each method in the context of variant size and average read length. Additionally, we assessed their utility for methylome and hydroxymethylome profiling, emphasizing differences in epigenetic analysis applicability.

8.
Methods Mol Biol ; 2825: 67-78, 2024.
Article in English | MEDLINE | ID: mdl-38913303

ABSTRACT

Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.


Subject(s)
Chromosomal Instability , Mosaicism , Neoplasms , Humans , Neoplasms/genetics , Chromosome Aberrations
9.
Methods Mol Biol ; 2825: 361-391, 2024.
Article in English | MEDLINE | ID: mdl-38913321

ABSTRACT

The dynamic growth of technological capabilities at the cellular and molecular level has led to a rapid increase in the amount of data on the genes and genomes of organisms. In order to store, access, compare, validate, classify, and understand the massive data generated by different researchers, and to promote effective communication among research communities, various genome and cytogenetic online databases have been established. These data platforms/resources are essential not only for computational analyses and theoretical syntheses but also for helping researchers select future research topics and prioritize molecular targets. Furthermore, they are valuable for identifying shared recurrent genomic patterns related to human diseases and for avoiding unnecessary duplications among different researchers. The website interface, menu, graphics, animations, text layout, and data from databases are displayed by a front end on the screen of a monitor or smartphone. A database front-end refers to the user interface or application that enables accessing tabular, structured, or raw data stored in the database. The Internet makes it possible to reach a greater number of users around the world and gives them quick access to information stored in databases. The number of ways of presenting this data by front-ends increases as well. This requires unifying the ways of operating and presenting information by front-ends and ensuring contextual switching between front-ends of different databases. This chapter aims to present selected cytogenetic and cytogenomic Internet resources in terms of obtaining the needed information and to indicate how to increase the efficiency of access to stored information. Through a brief introduction of these databases and by providing examples of their usage in cytogenetic analyses, we aim to bridge the gap between cytogenetics and molecular genomics by encouraging their utilization.


Subject(s)
Databases, Genetic , Genomics , Internet , Humans , Genomics/methods , User-Computer Interface , Cytogenetic Analysis/methods , Cytogenetics/methods , Computational Biology/methods , Web Browser
10.
J Toxicol Environ Health A ; 87(18): 719-729, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38884257

ABSTRACT

Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.


Subject(s)
Acetamides , Herbicides , Lactuca , Zea mays , Zea mays/drug effects , Herbicides/toxicity , Lactuca/drug effects , Lactuca/growth & development , Acetamides/toxicity , Germination/drug effects , Seeds/drug effects , Seeds/growth & development
11.
Am J Med Genet A ; : e63802, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924610

ABSTRACT

Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.

13.
BMC Plant Biol ; 24(1): 391, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735929

ABSTRACT

BACKGROUND: Unreduced gamete formation during meiosis plays a critical role in natural polyploidization. However, the unreduced gamete formation mechanisms in Triticum turgidum-Aegilops umbellulata triploid F1 hybrid crosses and the chromsome numbers and compostions in T. turgidum-Ae. umbellulata F2 still not known. RESULTS: In this study, 11 T.turgidum-Ae. umbellulata triploid F1 hybrid crosses were produced by distant hybridization. All of the triploid F1 hybrids had 21 chromosomes and two basic pathways of meiotic restitution, namely first-division restitution (FDR) and single-division meiosis (SDM). Only FDR was found in six of the 11 crosses, while both FDR and SDM occurred in the remaining five crosses. The chromosome numbers in the 127 selfed F2 seeds from the triploid F1 hybrid plants of 10 crosses (no F2 seeds for STU 16) varied from 35 to 43, and the proportions of euploid and aneuploid F2 plants were 49.61% and 50.39%, respectively. In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes. The chromosome loss of the U genome was the highest (26.77%) among the three genomes, followed by that of the B (22.83%) and A (11.81%) genomes, and the chromosome gain for the A, B, and U genomes was 3.94%, 3.94%, and 1.57%, respectively. Of the 21 chromosomes, 7U (16.54%), 5 A (3.94%), and 1B (9.45%) had the highest loss frequency among the U, A, and B genomes. In addition to chromosome loss, seven chromosomes, namely 1 A, 3 A, 5 A, 6 A, 1B, 1U, and 6U, were gained in the aneuploids. CONCLUSION: In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes, chromsomes, and crosses. In addition to variations in chromosome numbers, three types of chromosome translocations including 3UL·2AS, 6UL·1AL, and 4US·6AL were identified in the F2 plants. Furthermore, polymorphic fluorescence in situ hybridization karyotypes for all the U chromosomes were also identified in the F2 plants when compared with the Ae. umbellulata parents. These results provide useful information for our understanding the naturally occurred T. turgidum-Ae. umbellulata amphidiploids.


Subject(s)
Aegilops , Chromosomal Instability , Chromosomes, Plant , Hybridization, Genetic , Triticum , Triticum/genetics , Chromosomes, Plant/genetics , Aegilops/genetics , Meiosis/genetics , Triploidy , Polyploidy , Genome, Plant
14.
Int J Radiat Biol ; 100(7): 1019-1028, 2024.
Article in English | MEDLINE | ID: mdl-38810111

ABSTRACT

PURPOSE: This interlaboratory comparison was conducted to evaluate the performance of the Latin-American Biodosimetry Network (LBDNet) in analyzing digitized images for scoring dicentric chromosomes from in vitro irradiated blood samples. The exercise also assessed the use of weighted robust algorithms to compensate the uneven expertise among the participating laboratories. METHODS: Three sets of coded images obtained through the dicentric chromosome assay from blood samples irradiated at 1.5 Gy (sample A) and 4 Gy (sample B), as well as a non-irradiated whole blood sample (sample C), were shared among LBDNet laboratories. The images were captured using the Metafer4 platform coupled with the AutoCapt module. The laboratories were requested to perform triage scoring, conventional scoring, and dose estimation. The dose estimation was carried out using either their laboratory calibration curve or a common calibration curve. A comparative statistical analysis was conducted using a weighted robust Hampel algorithm and z score to compensate for uneven expertise in dicentric analysis and dose assessment among all laboratories. RESULTS: Out of twelve laboratories, one had unsatisfactory estimated doses at 0 Gy, and two had unsatisfactory estimated doses at 1.5 Gy when using their own calibration curve and triage scoring mode. However, all doses were satisfactory at 4 Gy. Six laboratories had estimated doses within 95% uncertainty limits at 0 Gy, seven at 1.5 Gy, and four at 4 Gy. While the mean dose for sample C was significantly biased using robust algorithms, applying weights to compensate for the laboratory's analysis expertise reduced the bias by half. The bias from delivered doses was only notable for sample C. Using the common calibration curve for dose estimation reduced the standard deviation (s*) estimated by robust methods for all three samples. CONCLUSIONS: The results underscore the significance of performing interlaboratory comparison exercises that involve digitized and electronically transmitted images, even when analyzing non-irradiated samples. In situations where the participating laboratories possess different levels of proficiency, it may prove essential to employ weighted robust algorithms to achieve precise outcomes.


Subject(s)
Chromosome Aberrations , Humans , Chromosome Aberrations/radiation effects , Algorithms , Laboratories/standards , Radiometry/methods , Image Processing, Computer-Assisted/methods
15.
Genome ; 67(7): 223-232, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38742652

ABSTRACT

The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers. Despite the large diversity of species, there is a paucity of detailed cytogenomic studies for this group and we thus aimed to rectify this. Genome organization patterns and hence evolutionary change in the microchromosome formation of four species (Colaptes campestris, Veniliornis spilogaster, Melanerpes candidus, and Picumnus nebulosus) was established through fluorescence in situ hybridization using bacterial artificial chromosomes originally derived from Gallus gallus and Taeniopygia guttata. Findings suggest that P. nebulosus (2n = 110), which was described for the first time, had the most basal karyotype among species of Picidae studied here, and probably arose as a result of fissions of avian ancestral macrochromosomes. We defined a new chromosomal number for V. spilogaster (2n = 88) and demonstrated microchromosomal rearrangements involving C. campestris plus a single, unique hitherto undescribed rearrangement in V. spilogaster. This comprised an inversion after a fusion involving the ancestral microchromosome 12 (homologous to chicken microchromosome 12). We also determined that the low diploid number of M. candidus is related to microchromosome fusions. Woodpeckers thus exhibit significantly rearranged karyotypes compared to the putative ancestral karyotype.


Subject(s)
Birds , Chromosomes, Artificial, Bacterial , Chromosomes , Evolution, Molecular , In Situ Hybridization, Fluorescence , Animals , Chromosomes, Artificial, Bacterial/genetics , Birds/genetics , Chromosomes/genetics , Karyotype , Karyotyping , Phylogeny , Chickens/genetics
16.
Comput Biol Med ; 177: 108601, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776728

ABSTRACT

Automated karyotyping is of great importance for cytogenetic research, as it speeds up the process for cytogeneticists through incorporating AI-driven automated segmentation and classification techniques. Existing frameworks confront two primary issues: Firstly the necessity for instance-level data annotation with either detection bounding boxes or semantic masks for training, and secondly, its poor robustness particularly when confronted with domain shifts. In this work, we first propose an accurate segmentation framework, namely KaryoXpert. This framework leverages the strengths of both morphology algorithms and deep learning models, allowing for efficient training that breaks the limit for the acquirement of manually labeled ground-truth mask annotations. Additionally, we present an accurate classification model based on metric learning, designed to overcome the challenges posed by inter-class similarity and batch effects. Our framework exhibits state-of-the-art performance with exceptional robustness in both chromosome segmentation and classification. The proposed KaryoXpert framework showcases its capacity for instance-level chromosome segmentation even in the absence of annotated data, offering novel insights into the research for automated chromosome segmentation. The proposed method has been successfully deployed to support clinical karyotype diagnosis.


Subject(s)
Karyotyping , Humans , Karyotyping/methods , Metaphase , Algorithms , Chromosomes, Human/genetics , Image Processing, Computer-Assisted/methods , Deep Learning
17.
Br J Haematol ; 205(1): 256-267, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811025

ABSTRACT

European LeukemiaNet refined their risk classification of acute myeloid leukaemia (AML) in 2022 (ELN 2022) according to the two new myeloid classifications published the same year. We have retrospectively assessed the prognostic value of the ELN 2022 in 120 AML patients undergoing allogeneic haematopoietic cell transplantation (allo-HCT), including 99 in first complete response (CR1) from 2011 to 2021 in our centre. Adverse risk patients (Adv) presented inferior outcome in terms of overall survival (OS) and leukaemia-free survival (LFS) (OS [p = 0.003], LFS [p = 0.02]), confirmed in multivariate analysis (hazard ratio [HR] for OS = 2.00, p = 0.037). These results were also seen in patients allografted in CR1. Further analysis identified a subgroup named adverse-plus (AdvP), including complex karyotype, MECOM(EVI1) rearrangements and TP53 mutations, with worse outcomes than the rest of groups of patients, including the Adv (HR for OS: 3.14, p < 0.001, HR for LFS: 3.36, p < 0.001), with higher 2-year cumulative incidence of relapse (p < 0.001). Notably, within this analysis, the outcome of Adv and intermediate patients were similar. These findings highlight the prognostic value of ELN 2022 in patients undergoing allo-HCT, which can be improved by the recognition of a poor genetic subset (AdvP) within the Adv risk group.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/mortality , Male , Female , Middle Aged , Adult , Prognosis , Aged , Retrospective Studies , Transplantation, Homologous , Adolescent , Young Adult , Mutation , Risk Assessment/methods , Disease-Free Survival , MDS1 and EVI1 Complex Locus Protein/genetics
18.
Genes (Basel) ; 15(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38790186

ABSTRACT

Uterine leiomyomas (ULs) are the most common benign tumor of the uterus. They can be associated with symptoms including abnormal uterine bleeding, pelvic pain, urinary frequency, and pregnancy complications. Despite the high prevalence of UL, its underlying pathophysiology mechanisms have historically been poorly understood. Several mechanisms of pathogenesis have been suggested, implicating various genes, growth factors, cytokines, chemokines, and microRNA aberrations. The purpose of this study is to summarize the current research on the relationship of genetics with UL. Specifically, we performed a literature review of published studies to identify how genetic aberrations drive pathophysiology, epidemiology, and therapeutic approaches of UL. With regards to pathophysiology, research has identified MED12 mutations, HMGA2 overexpression, fumarate hydratase deficiency, and cytogenetic abnormalities as contributors to the development of UL. Additionally, epigenetic modifications, such as histone acetylation and DNA methylation, have been identified as contributing to UL tumorigenesis. Specifically, UL stem cells have been found to contain a unique DNA methylation pattern compared to more differentiated UL cells, suggesting that DNA methylation has a role in tumorigenesis. On a population level, genome-wide association studies (GWASs) and epidemiologic analyses have identified 23 genetic loci associated with younger age at menarche and UL growth. Additionally, various GWASs have investigated genetic loci as potential drivers of racial disparities in UL incidence. For example, decreased expression of Cytohesin 4 in African Americans has been associated with increased UL risk. Recent studies have investigated various therapeutic options, including ten-eleven translocation proteins mediating DNA methylation, adenovirus vectors for drug delivery, and "suicide gene therapy" to induce apoptosis. Overall, improved understanding of the genetic and epigenetic drivers of UL on an individual and population level can propel the discovery of novel therapeutic options.


Subject(s)
Leiomyoma , Uterine Neoplasms , Humans , Female , Leiomyoma/genetics , Leiomyoma/pathology , Leiomyoma/epidemiology , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/therapy , Uterine Neoplasms/epidemiology , Epigenesis, Genetic , DNA Methylation/genetics , Genome-Wide Association Study
19.
Genes (Basel) ; 15(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38790188

ABSTRACT

Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.


Subject(s)
In Situ Hybridization, Fluorescence , Humans , Male , Female , Middle Aged , Adult , Aged , In Situ Hybridization, Fluorescence/methods , Chromosome Mapping/methods , Bone Marrow Failure Disorders/genetics , Chromosome Aberrations , Adolescent , Cytogenetic Analysis/methods , Bone Marrow Diseases/genetics , Karyotyping/methods , Young Adult
20.
Front Oncol ; 14: 1371057, 2024.
Article in English | MEDLINE | ID: mdl-38817892

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a low-grade B-cell lymphoproliferative disorder. It is the most prevalent type of leukemia in the western countries, with a median age at diagnosis of 70 years. In 2023, it is estimated that there will be 18,740 new cases of CLL, and an estimated 4,490 people will die of this disease. It represents 1.0% of all new cancer cases in the U.S. The rate of new cases was 4.6 per 100,000 men and women per year based on 2016-2020 cases, age-adjusted. Death rates from CLL are higher among older adults, or those 75 and older. The death rate was 1.1 per 100,000 men and women per year based on 2016-2020 deaths, age-adjusted. A common question that patients with CLL ask during their first clinic visit is: "How long will it be before I would need treatment?" Although this might seem like a simple question, the answer is not straight forward. CLL is a heterogenous disease, with a variable clinical course. Some patients may present with an aggressive disease requiring early initiation of treatment, while others have an indolent course and some, having so called smoldering CLL, may never need treatment. The variability in disease course can make predicting disease prognosis a complicated process. This brings forth the importance of establishing prognostic models that can predict disease course, time to treatment, and survival outcomes in such a heterogenous disease. The Rai and Binet staging systems were developed in the late 1970s to early 1980s. They separated patients into different stages based on clinical characteristics and laboratory findings. These simple staging systems are still in use; however, several prognostic markers need to be added for an individualized assessment and, with the recent development of genomic techniques leading to better understanding of CLL at the molecular level, newer prognostic markers have emerged.

SELECTION OF CITATIONS
SEARCH DETAIL
...