Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Front Oncol ; 14: 1396490, 2024.
Article in English | MEDLINE | ID: mdl-38835382

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapies have dramatically improved treatment outcomes for patients with relapsed or refractory B-cell acute lymphoblastic leukemia, large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and multiple myeloma. Despite unprecedented efficacy, treatment with CAR T cell therapies can cause a multitude of adverse effects which require monitoring and management at specialized centers and contribute to morbidity and non-relapse mortality. Such toxicities include cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, neurotoxicity distinct from ICANS, immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome, and immune effector cell-associated hematotoxicity that can lead to prolonged cytopenias and infectious complications. This review will discuss the current understanding of the underlying pathophysiologic mechanisms and provide guidelines for the grading and management of such toxicities.

2.
Adv Protein Chem Struct Biol ; 140: 157-198, 2024.
Article in English | MEDLINE | ID: mdl-38762269

ABSTRACT

Chimeric Antigen Receptor (CAR) T cell therapy is a type of adoptive immunotherapy that offers a promising avenue for enhancing cancer treatment since traditional cancer treatments like chemotherapy, surgery, and radiation therapy have proven insufficient in completely eradicating tumors, despite the relatively positive outcomes. It has been observed that CAR-T cell therapy has shown promising results in treating the majority of hematological malignancies but also have a wide scope for other cancer types. CAR is an extra receptor on the T-cell that helps to increase and accelerate tumor destruction by efficiently activating the immune system. It is made up of three domains, the ectodomain, transmembrane, and the endodomain. The ectodomain is essential for antigen recognition and binding, whereas the co-stimulatory signal is transduced by the endodomain. To date, the Food and Drug Administration (FDA) has granted approval for six CAR-T cell therapies. However, despite its remarkable success, CAR-T therapy is associated with numerous adverse events and has certain limitations. This chapter focuses on the structure and function of the CAR domain, various generations of CAR, and the process of CAR-T cell development, adverse effects, and challenges in CAR-T therapy. CAR-T cell therapy also has scopes in other disease conditions which include systemic lupus erythematosus, multiple sclerosis, and myocardial fibrosis, etc.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Neoplasms/therapy , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , T-Lymphocytes/metabolism , Immunotherapy, Adoptive , Animals , Immunotherapy
3.
Semin Arthritis Rheum ; 67: 152479, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810569

ABSTRACT

INTRODUCTION: Despite advancements in managing autoimmune rheumatic diseases (ARDs) with existing treatments, many patients still encounter challenges such as inadequate responses, difficulty in maintaining remission, and side effects. Chimeric Antigen Receptor (CAR) T-cell therapy, originally developed for cancer, has now emerged as a promising option for cases of refractory ARDs. METHODS: A search of the literature was conducted to compose a narrative review exploring the current evidence, potential safety, limitations, potential modifications, and future directions of CAR-T cells in ARDs. RESULTS: CAR-T cell therapy has been administered to patients with refractory ARDs, including systemic lupus erythematosus, antisynthetase syndrome, and systemic sclerosis, demonstrating significant improvement. Notable responses include enhanced clinical symptoms, reduced serum autoantibody titers, and sustained remissions in disease activity. Preclinical and in vitro studies using both animal and human samples also support the efficacy and elaborate on potential mechanisms of CAR-T cells against antineutrophil cytoplasmic antibody-associated vasculitis and rheumatoid arthritis. While cautious monitoring of adverse events, such as cytokine release syndrome, is crucial, the therapy appears to be highly tolerable. Nevertheless, challenges persist, including cost, durability due to potential CAR-T cell exhaustion, and manufacturing complexities, urging the development of innovative solutions to further enhance CAR-T cell therapy accessibility in ARDs. CONCLUSIONS: CAR-T cell therapy for refractory ARDs has demonstrated high effectiveness. While no significant warning signs are currently reported, achieving a balance between therapeutic efficacy and safety is vital in adapting CAR-T cell therapy for ARDs. Moreover, there is significant potential for technological advancements to enhance the delivery of this treatment to patients, thereby ensuring safer and more effective disease control for patients.


Subject(s)
Autoimmune Diseases , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Rheumatic Diseases , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Rheumatic Diseases/therapy , Rheumatic Diseases/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Receptors, Chimeric Antigen/immunology
4.
Cureus ; 16(3): e57298, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38690494

ABSTRACT

We herein report a 58-year-old female patient undergoing chimeric antigen receptor T-cell (CAR-T) therapy for refractory diffuse large B-cell lymphoma (DLBCL). Following the CAR-T infusion, the patient experienced Cytokine Release Syndrome (CRS), which was subsequently remitted. However, aphasia was observed five days post-infusion, and a loss of consciousness occurred on the sixth day. Brain MRI revealed a possibly high signal intensity in the mesial temporal region. The patient was diagnosed with immune effector cell-associated neurotoxicity syndrome (ICANS) secondary to CRS and received treatment with dexamethasone, which promptly improved her consciousness. As the diagnosis of ICANS was confirmed following the emergence of aphasia, vigilant cognitive monitoring of cognitive function is crucial in patients following CAR-T therapy.

5.
Eur J Cancer ; 205: 114075, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733717

ABSTRACT

T-cell engagers (TCE) are cancer immunotherapies that have recently demonstrated meaningful benefit for patients with hematological malignancies and solid tumors. The anticipated widespread use of T cell engagers poses implementation challenges and highlights the need for guidance to anticipate, mitigate, and manage adverse events. By mobilizing T-cells directly at the contact of tumor cells, TCE mount an obligatory and immediate anti-tumor immune response that could result in diverse reactions and adverse events. Cytokine release syndrome (CRS) is the most common reaction and is largely confined to the first drug administrations during step-up dosage. Cytokine release syndrome should be distinguished from infusion related reaction by clinical symptoms, timing to occurrence, pathophysiological aspects, and clinical management. Other common reactions and adverse events with TCE are immune effector Cell-Associated Neurotoxicity Syndrome (ICANS), infections, tumor flare reaction and cytopenias. The toxicity profiles of TCE and CAR-T cells have commonalities and distinctions that we sum-up in this review. As compared with CAR-T cells, TCE are responsible for less frequently severe CRS or ICANS. This review recapitulates terminology, pathophysiology, severity grading system and management of reactions and adverse events related to TCE.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , T-Lymphocytes , Humans , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Receptors, Chimeric Antigen/immunology
6.
Int Immunopharmacol ; 135: 112312, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788449

ABSTRACT

Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a groundbreaking and highly promising approach for the management of cancer. This paper reviews the efficacy of CAR-T therapy in the treatment of various hematological malignancies, also, with a mention of its effect on solid tumors, for which they have not received FDA approval yet. Different common and uncommon side effects are also discussed in this paper, with attention to the effect of each drug separately. By reviewing the recommendations of the FDA for CAR-T therapy research, we have extensively discussed dose-limiting toxicities. This further highlights the need for precise dosing strategies, striking a balance between therapeutic benefits and potential risks. Additionally, we reviewed the long-term follow-up of patients receiving CAR-T therapy to gain valuable insights into response durability and late-onset effects.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Animals , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Follow-Up Studies
9.
Expert Opin Drug Discov ; 19(4): 377-391, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369760

ABSTRACT

INTRODUCTION: Despite remarkable therapeutic advances over the last two decades, which have resulted in dramatic improvements in patient survival, multiple myeloma (MM) is still considered an incurable disease. Therefore, there is a high need for new treatment strategies. Genetically engineered/redirected chimeric antigen receptor (CAR) T cells may represent the most compelling modality of immunotherapy for cancer treatment in general, and MM in particular. Indeed, unprecedented response rates have led to the recent approvals of the first two BCMA-targeted CAR T cell products idecabtagene-vicleucel ('Ide-cel') and ciltacabtagene-autoleucel ('Cilta-Cel') for the treatment of heavily pretreated MM patients. In addition, both are emerging as a new standard-of-care also in earlier lines of therapy. AREAS COVERED: This article briefly reviews the history of the preclinical development of CAR T cells, with a particular focus on Cilta-cel. Moreover, it summarizes the newest clinical data on Cilta-cel and discusses strategies to further improve its activity and reduce its toxicity. EXPERT OPINION: Modern next-generation immunotherapy is continuously transforming the MM treatment landscape. Despite several caveats of CAR T cell therapy, including its toxicity, costs, and limited access, prolonged disease-free survival and potential cure of MM are finally within reach.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Immunotherapy, Adoptive/methods
10.
Cell Mol Immunol ; 21(3): 213-226, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177245

ABSTRACT

Despite the tremendous progress of chimeric antigen receptor T (CAR-T) cell therapy in hematological malignancies, their application in solid tumors has been limited largely due to T-cell exhaustion in the tumor microenvironment (TME) and systemic toxicity caused by excessive cytokine release. As a key regulator of the immunosuppressive TME, TGF-ß promotes cytokine synthesis via the NF-κB pathway. Here, we coexpressed SMAD7, a suppressor of TGF-ß signaling, with a HER2-targeted CAR in engineered T cells. These novel CAR-T cells displayed high cytolytic efficacy and were resistant to TGF-ß-triggered exhaustion, which enabled sustained tumoricidal capacity after continuous antigen exposure. Moreover, SMAD7 substantially reduced the production of inflammatory cytokines by antigen-primed CAR-T cells. Mechanistically, SMAD7 downregulated TGF-ß receptor I and abrogated the interplay between the TGF-ß and NF-κB pathways in CAR-T cells. As a result, these CAR-T cells persistently inhibited tumor growth and promoted the survival of tumor-challenged mice regardless of the hostile tumor microenvironment caused by a high concentration of TGF-ß. SMAD7 coexpression also enhanced CAR-T-cell infiltration and persistent activation in patient-derived tumor organoids. Therefore, our study demonstrated the feasibility of SMAD7 coexpression as a novel approach to improve the efficacy and safety of CAR-T-cell therapy for solid tumors.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Humans , Mice , Cytokines/metabolism , Immunotherapy, Adoptive , Neoplasms/therapy , NF-kappa B/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism , T-Lymphocytes , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
11.
Transplant Cell Ther ; 30(2): 131-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37951502

ABSTRACT

The first series of chimeric antigen receptor T (CAR-T) cell therapy products were approved in 2017 to 2019 and have shown remarkable efficacy in both clinical trials and the real-world setting, but at the cost of prolonged patient hospitalization. As the toxicity management protocols were refined, the concept of cellular therapy administered in the outpatient setting gained steam, and single institutions began to perform certain aspects of CAR-T monitoring in the outpatient setting for select patients. However, there are many considerations for a successful outpatient program. In anticipation of increasing use of CAR-T-cell therapy in the outpatient setting as a mechanism to overcome frequent hospital bed shortages and high cost of inpatient care, the American Society for Transplantation and Cellular Therapy convened a group of experts in hematology, oncology, and cellular therapy to provide a comprehensive review of the existing publications on outpatient CAR-T cell therapy, discuss selected ongoing clinical trials of outpatient CAR-T, and describe strategies to optimize safety without compromising efficacy for patients treated and monitored in the outpatient setting.


Subject(s)
Receptors, Chimeric Antigen , Humans , United States , Receptors, Chimeric Antigen/therapeutic use , Outpatients , Immunotherapy, Adoptive/adverse effects , Societies , Cell- and Tissue-Based Therapy
12.
Hematol Oncol Clin North Am ; 38(2): 383-406, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158242

ABSTRACT

Chimeric antigen receptor T cells (CARTs) represent another powerful way to leverage the immune system to fight malignancy. Indeed, in multiple myeloma, the high response rate and duration of response to B cell maturation antigen-targeted therapies in later lines of disease has led to 2 Food and Drug Administration (FDA) drug approvals and opened the door to the development of this drug class. This review aims to provide an update on the 2 FDA-approved products, summarize the data for the most promising next-generation multiple myeloma CARTs, and outline current challenges in the field and potential solutions.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/therapy , Multiple Myeloma/pathology , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive , B-Cell Maturation Antigen , T-Lymphocytes
13.
Ann Med Surg (Lond) ; 85(12): 6013-6020, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38098580

ABSTRACT

The chimeric antigen receptor (CAR) design, first invented by Zelig Eshhar, paved the way for the use of genetically modified T-cells in targeted therapy against cancer cells. Since then, it has gone through many generations, especially with the integration of co-stimulation in the second and third-generation CARs. However, it also mounts a hyperactive immune response named as cytokine release syndrome with the release of several cytokines eventually resulting in multiple end-organ toxicities. The severity of cytokine release syndrome depends upon certain factors such as the tumor burden, choice of co-stimulation, and degree of lymphodepletion, and can manifest as pulmonary edema, vascular leak, renal dysfunction, cardiac problems, hepatic failure, and coagulopathy. Many grading criteria have been used to define these clinical manifestations but they lack harmonization. Neurotoxicity has also been significantly associated with CAR T-cell therapy but it has not been studied much in previous literature. This review aims to provide a comprehensive account of the clinical manifestations, diagnosis, management, and treatment of CAR T-cell associated neurotoxicity.

14.
Front Immunol ; 14: 1273507, 2023.
Article in English | MEDLINE | ID: mdl-37854590

ABSTRACT

Introduction: CAR-T cell therapy is a novel approach in the treatment of hematological tumors. However, it is associated with life-threatening side effects, such as the severe cytokine release syndrome (sCRS). Therefore, predicting the occurrence and development of sCRS is of great significance for clinical CAR-T therapy. The study of existing clinical data by artificial intelligence may bring useful information. Methods: By analyzing the heat map of clinical factors and comparing them between severe and non-severe CRS, we can identify significant differences among these factors and understand their interrelationships. Ultimately, a decision tree approach was employed to predict the timing of severe CRS in both children and adults, considering variables such as the same day, the day before, and initial values. Results: We measured cytokines and clinical biomarkers in 202 patients who received CAR-T therapy. Peak levels of 25 clinical factors, including IFN-γ, IL6, IL10, ferritin, and D-dimer, were highly associated with severe CRS after CAR T cell infusion. Using the decision tree model, we were able to accurately predict which patients would develop severe CRS consisting of three clinical factors, classified as same-day, day-ahead, and initial value prediction. Changes in serum biomarkers, including C-reactive protein and ferritin, were associated with CRS, but did not alone predict the development of severe CRS. Conclusion: Our research will provide significant information for the timely prevention and treatment of sCRS, during CAR-T immunotherapy for tumors, which is essential to reduce the mortality rate of patients.


Subject(s)
Burkitt Lymphoma , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Adult , Child , Humans , Artificial Intelligence , Biomarkers , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , T-Lymphocytes , Ferritins
15.
Cureus ; 15(9): e44677, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809221

ABSTRACT

The utility of CD19-targeted chimeric antigen receptor T-cell (CAR-T cell) therapy in the management of refractory/relapsed B-cell malignancies has increased tremendously in recent times. In addition to cytokine release syndrome (CRS), neurotoxicity, and infections, CAR-T cell patients develop cytopenias, with about 15% of the patients continuing to have severe cytopenias up to three months after treatment. Retrospective reviews have reported the development of myelodysplastic syndrome (MDS) in patients undergoing CAR-T cell therapy. Here, we describe four cases of MDS and/or clonal cytopenias of undetermined significance (CCUS), developing after CAR-T cell therapy. A retrospective review of four patients with relapsed/refractory B-cell lymphomas treated with CD19-directed autologous CAR-T cell was conducted at our institution. The median age was 72.5 years (range 63-76). Three of the four patients had double-hit diffuse large B-cell lymphoma (DLBCL). The median number of lines of therapy before CAR-T cell was three. Only one patient had a prior autologous stem cell transplant (ASCT). The median time to diagnosis of MDS/CCUS from CAR-T cell therapy was three months. Two cases of CCUS diagnosed were at one- and two-month post-CAR-T cell, and two cases of MDS were diagnosed at 10 and 26 months. None of the patients had dysplastic clones before the initiation of CAR-T cell therapy. Only one patient was found to have CCUS-developed CRS post-CAR-T cell requiring treatment with tocilizumab and steroids. Three patients showed complete response, with one showing a very good partial response. All the patients were in remission with no additional therapies post-CAR-T cell. One patient died secondary to COVID-19-related complications. Four patients with prolonged cytopenias were found to have either MDS or CCUS after CAR-T cell therapy. Two CCUS cases underwent bone marrow evaluation early in the course of cytopenias and may develop into MDS, acute myeloid leukemia (AML), or myeloproliferative neoplasm over time. Our retrospective case series review, compared to previous studies, constitutes of patients with no prior clonal hematopoiesis-related cytogenetic abnormalities, fewer lines of therapy, and only one patient with previous hematopoietic stem cell transplantation (HSCT). Based on the upcoming data and our review, a bone marrow biopsy with next-generation sequencing (NGS) is imperative in patients with prolonged cytopenias after CAR-T cell therapy. A diagnosis of CCUS/MDS in these cases can help guide treatment.

16.
Cancers (Basel) ; 15(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686529

ABSTRACT

Commercially available anti-CD19 chimeric antigen receptor T cells (CARΤ cells) have offered long-term survival to a constantly expanding patient population. Given that novel toxicities including cytokine release syndrome (CRS) and neurotoxicity (ICANS) have been observed, we aimed to document the safety and toxicity of this treatment in a real-world study. We enrolled 31 adult patients referred to our center for CAR T therapy. Tisagenlecleucel was infused in 12 patients, axicabtagene ciloleucel in 14, and brexucabtagene autoleucel in 5. Cytokine release syndrome was noted in 26 patients while neurotoxicity was observed in 7. Tocilizumab was administered for CRS in 18 patients, along with short-term, low-dose steroid administration in one patient who developed grade III CRS and, subsequently, grade I ICANS. High-dose steroids, along with anakinra and siltuximab, were administered in only two MCL patients. With a median follow-up time of 13.4 months, nine patients were then in CR. The progression-free (PFS) and overall survival (OS) rates were 41.2% and 88.1% at one year, respectively. MCL diagnosis, which coincides with the administration of brexucabtagene autoleucel, was the only factor to be independently associated with poor OS (p < 0.001); meanwhile, increased LDH independently predicted PFS (p = 0.027).In addition, CRP at day 14 was associated with a poor OS (p = 0.001). Therefore, our real-world experience confirmed that commercial CAR T therapy can be administered with minimal toxicity.

17.
Med Res Arch ; 11(8)2023 Aug.
Article in English | MEDLINE | ID: mdl-37736242

ABSTRACT

Immunotherapy, including immune cell therapy and targeted therapy, is gradually developed through the ongoing discovery of molecular compounds or immune cells. Choosing the best one or the best combination of target compounds and immune-cell therapy is a challenge for clinical scientists and clinicians. We have found variable efficacy individually after tumor-infiltrating lymphocyte (TIL) therapy, and now TILs have been discovered in a group of heterogeneous immune cells. To select the best immunotherapy for each patient, we started to study TIL genomics, including single-cell mRNA differential display from TIL published in 2007 and single-cell RNA-seq from TIL published in 2013, set up TIL quantitative network in 2015, researched machine-learning model for immune therapy in 2022. These manual reports single-cell RNA-seq data combined with machine learning to evaluate the optimal compounds and immune cells for individual patients. The machine-learning model, one of artificial intelligence, can estimate targeting genomic variance from single-cell RNA-seq so that they can cover thirteen kinds of immune cell therapies and ongoing FDA-approved targeted therapies such as PD1 inhibitors, PDL1 inhibitors, and CTLA4 inhibitors, as well as other different treatments such as HDACI or DNMT1 inhibitors, FDA-approved drugs. Moreover, also cover Phase-1, Phase-2, Phase-3, and Phase-4 of clinical trials, such as TIL, CAR T-cells, TCR T-cells. Single-cell RNA-seq with an Artificial intelligence estimation system is much better than our published models from microarrays or just cell therapy. The medical goal is to address three issues in clinical immunotherapy: the increase of efficacy; the decrease of adverse effects and the decrease of the cost in clinical applications.

18.
Front Immunol ; 14: 1219289, 2023.
Article in English | MEDLINE | ID: mdl-37600775

ABSTRACT

Introduction: Chimeric antigen receptor (CAR)T-cell CD19 therapy is an effective treatment for relapsed/refractory B-cell acute lymphoblastic leukemia. It can be associated with life-threatening toxicities which often require PICU admission. Purpose: to describe clinical characteristics, treatment and outcome of these patients. Methods: Prospective observational cohort study conducted in a tertiary pediatric hospital from 2016-2021. Children who received CAR-T admitted to PICU were included. We collected epidemiological, clinical characteristics, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), treatment, length of stay and mortality. Results: CAR T-cells (4-1BB constructs) were infused in 59 patients. Twenty-four (40.7%) required PICU admission, length of stay was 4 days (IQR 3-6). Median age was 8.3 years (range 4-24). Patients admitted to PICU presented higher disease burden before infusion: 24% blasts in bone marrow (IQR 5-72) vs. 0 (0-6.9), p<0.001. No patients with <5% blasts were admitted to PICU. Main reasons for admissions were CRS (n=20, 83.3%) and ICANS (n=3, 12.5%). Fourteen patients (58.3%) required inotropic support, 14(58.3%) respiratory. Sixteen patients (66.6%) received tocilizumab, 10(41.6%) steroids, 6(25.0%) anakinra, and 5(20.8%) siltuximab. Ten patients (41.6%) presented neurotoxicity, six of them severe (ICANS 3-4). Two patients died at PICU (8.3%) because of refractory CRS-hemophagocytic lymphohistyocitosis (carHLH) syndrome. There were no significant differences in relapse rate after CAR-T in patients requiring PICU, it was more frequently CD19 negative (p=0.344). Discussion: PICU admission after CAR-T therapy was mainly due to CRS. Supportive treatment allowed effective management and high survival. Some patients presenting with carHLH, can suffer a fulminant course.


Subject(s)
Antigens, CD19 , Cytokine Release Syndrome , Immunotherapy, Adoptive , Intensive Care Units , Neurotoxicity Syndromes , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , T-Lymphocytes/transplantation , Risk Factors , Antigens, CD19/immunology , Immunotherapy, Adoptive/adverse effects , Prospective Studies , Patient Admission , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Neurotoxicity Syndromes/epidemiology , Cytokine Release Syndrome/epidemiology , Humans , Male , Female , Child , Adolescent
19.
J Hematol Oncol ; 16(1): 79, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481608

ABSTRACT

BACKGROUND: Third-generation chimeric antigen receptor (CAR)-engineered T cells (CARTs) might improve clinical outcome of patients with B cell malignancies. This is the first report on a third-generation CART dose-escalating, phase-1/2 investigator-initiated trial treating adult patients with refractory and/or relapsed (r/r) acute lymphoblastic leukemia (ALL). METHODS: Thirteen patients were treated with escalating doses of CD19-directed CARTs between 1 × 106 and 50 × 106 CARTs/m2. Leukapheresis, manufacturing and administration of CARTs were performed in-house. RESULTS: For all patients, CART manufacturing was feasible. None of the patients developed any grade of Immune effector cell-associated neurotoxicity syndrome (ICANS) or a higher-grade (≥ grade III) catokine release syndrome (CRS). CART expansion and long-term CART persistence were evident in the peripheral blood (PB) of evaluable patients. At end of study on day 90 after CARTs, ten patients were evaluable for response: Eight patients (80%) achieved a complete remission (CR), including five patients (50%) with minimal residual disease (MRD)-negative CR. Response and outcome were associated with the administered CART dose. At 1-year follow-up, median overall survival was not reached and progression-free survival (PFS) was 38%. Median PFS was reached on day 120. Lack of CD39-expression on memory-like T cells was more frequent in CART products of responders when compared to CART products of non-responders. After CART administration, higher CD8 + and γδ-T cell frequencies, a physiological pattern of immune cells and lower monocyte counts in the PB were associated with response. CONCLUSION: In conclusion, third-generation CARTs were associated with promising clinical efficacy and remarkably low procedure-specific toxicity, thereby opening new therapeutic perspectives for patients with r/r ALL. Trial registration This trial was registered at www. CLINICALTRIALS: gov as NCT03676504.


Subject(s)
Neurotoxicity Syndromes , Humans , Adult , Leukapheresis , Adaptor Proteins, Signal Transducing , Antigens, CD19/therapeutic use
20.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176053

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has greatly transformed the treatment and prognosis of B-cell hematological malignancies. As CAR T-cell therapy continues to be more readily adopted and indications increase, the field's recognition of emerging toxicities will continue to grow. Among the adverse events associated with CAR T-cell therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) are the most common toxicities, while thrombotic events represent an under-reported, life-endangering complication. To determine thrombosis incidence post CAR T-cell therapy, we performed a multi-center, retrospective study on CAR T-cell therapy adult patients (N = 140) from Indiana University Simon Cancer Center and the University of North Carolina Medical Center treated from 2017 to 2022 for relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL, N = 3), diffuse large B-cell lymphoma (DLBCL, N = 92), follicular lymphoma (FL, N = 9), mantle cell lymphoma (MCL, N = 2), and multiple myeloma (MM, N = 34). We report 10 (7.14%) thrombotic events related to CAR T-cell therapy (DLBCL: N = 8, FL: N = 1, MM: N = 1) including 9 primary venous events and 1 arterial event that occurred with median time of 23.5 days post CAR T-cell infusion. In search of parameters associated with such events, we performed multivariate analyses of coagulation parameters (i.e., PT, PTT, and D-Dimer), scoring for adverse events (Padua Score and ISTH DIC Score) and grading for CAR T-cell toxicity severity (CRS grade and ICANS grade) and found that D-Dimer peak elevation and ICANS grade were significantly associated with post-CAR T-cell infusion thrombosis. While the pathophysiology of CAR T-cell associated coagulopathy remains unknown, our study serves to develop awareness of these emerging and unusual complications.


Subject(s)
Receptors, Chimeric Antigen , Thrombosis , Humans , Adult , Immunotherapy, Adoptive/adverse effects , Retrospective Studies , T-Lymphocytes , Thrombosis/etiology , Receptors, Antigen, T-Cell/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...