ABSTRACT
Wastewater generated in dairies has a strong polluting potential and must be treated for disposal into water bodies or reuse. The objective of this work was to analyze the efficiency of removing pollutants through the processes used by a wastewater treatment plant (WWTP) of a dairy located in the state of Minas Gerais, Brazil. For this purpose, the results of the characterization analyses referring to raw and treated wastewater were interpreted. The results showed that the sequence of processes used in the WWTP (water/oil separation, dissolved air flotation, followed by biodegradation in an upflow anaerobic filter) is efficient in removing on average 99.1% of COD and 98.7% of BOD5. For treated wastewater, data on pH and concentration of total suspended solids, total ammoniacal nitrogen, surfactants, settleable solids, and oils and greases also met the standards for disposal into water bodies. For reuse in agriculture, treated wastewater can be used for irrigation, but it is recommended to additionally evaluate the Escherichia coli parameter. When evaluating the existence of linear correlation between COD and BOD5 data, it was possible to find only a moderate correlation (R2 equal to 0.7) for treated wastewater.
Subject(s)
Dairying , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Brazil , Water Pollutants, Chemical/analysis , Water Purification/methodsABSTRACT
Anaerobic digestion for CH4 recovery in wastewater treatment has been carried out with different strategies to increase process efficiency, among which co-digestion and the two-stage process can be highlighted. In this context, this study aimed at evaluating the co-digestion of cheese whey and glycerol in a two-stage process using fluidized bed reactors, verifying the effect of increasing the organic loading rate (OLR) (2-20 g-COD.L-1.d-1) and temperature (thermophilic and mesophilic) in the second stage methanogenic reactor. The mesophilic methanogenic reactor (R-Meso) (mean temperature of 22 °C) was more tolerant to high OLR and its best performance was at 20 g-COD.L-1.d-1, resulting in methane yield (MY) and methane production (MPR) of 273 mL-CH4.g-COD-1 and 5.8 L-CH4.L-1.d-1 (with 67% of CH4), respectively. Through 16S rRNA gene massive sequencing analysis, a greater diversity of microorganisms was identified in R-Meso than in R-Thermo (second stage methanogenic reactor, 55 °C). Firmicutes was the phyla with higher relative abundance in R-Thermo, while in R-Meso the most abundant ones were Proteobacteria and Bacteroidetes. Regarding the Archaea domain, a predominance of hydrogenotrophic microorganisms could be observed, being the genera Methanothermobacter and Methanobacterium the most abundant in R-Thermo and R-Meso, respectively. The two-stage system composed with a thermophilic acidogenic reactor + R-Meso was more adequate for the co-digestion of cheese whey and glycerol than the single-stage process, promoting increases of up to 47% in the energetic yield (10.3 kJ.kg-COD-1) and 14% in organic matter removal (90.5%).
Subject(s)
Cheese , Euryarchaeota , Whey/chemistry , Anaerobiosis , Temperature , Glycerol , RNA, Ribosomal, 16S , Methane/analysis , Digestion , Bioreactors/microbiologyABSTRACT
Several treatment strategies have been proposed to minimize the environmental impact of dairy wastewaters. However, their complex and variable composition makes it difficult to predict the degradation kinetics of organic compounds. In this study, we used a mathematical approach to describe the kinetics of total organic carbon degradation in real dairy wastewater by photo-Fenton oxidation. The reactions were conducted under different ultraviolet light intensities, pH, temperature and Fenton reagent concentrations, obtaining a maximum TOC removal of 90.84%. The kinetic model was developed based on well-established photo-Fenton reactions. The present approach considers that account that small and large molecules of unknown contaminants are present in the effluent, and the smaller molecules are consumed first. The specific degradation rate (kd) was considered as an exponential function of total organic carbon conversion, comprising this effect of molecular size distribution on the treatment process. Fitting of experimental data to model predictions provided mean R2 values of 0.843-0.953.
ABSTRACT
A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.(AU)
Uma análise de viabilidade do tratamento terciário para Resíduos Agrícola Líquidos Orgânicos é apresentada usando algas filamentosas pertencentes ao gênero Cladophora sp. como alternativa ao tratamento químico terciário. Os tratamentos terciários que utilizam sistemas biológicos têm baixo custo de investimento e a dependência de variáveis ambientais é mínima. Neste trabalho, é demonstrado que essas algas filamentosas reduzem a carga nutricional de nitrato (circa 75%) e fosfato (circa 86%) dos efluentes de resíduos orgânicos provenientes de fazendas de leite em nove dias de cultura e tem a vantagem de que as algas podem ser facilmente coletadas posteriormente. Atualmente, as águas residuais orgânicas são descartadas nos campos e córregos locais. Posteriormente, as algas podem ser consideradas como matéria prima, uma vez que possuem várias utilidades como composto, celulose e biogás. Uma desvantagem desse sistema é que água limpa deve ser usada para obter transparência de água suficiente para permitir o crescimento de algas. Mesmo assim, o sistema de redução de nutrientes dos efluentes orgânicos propostos e amigável ao ecossistema, comparado aos tratamentos terciários que utilizam produtos químicos para precipitar e coletar nutrientes como nitratos e fosfatos.(AU)
Subject(s)
Nutrients , Chemical Phenomena , DairyingABSTRACT
Abstract A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.
Resumo Uma análise de viabilidade do tratamento terciário para Resíduos Agrícola Líquidos Orgânicos é apresentada usando algas filamentosas pertencentes ao gênero Cladophora sp. como alternativa ao tratamento químico terciário. Os tratamentos terciários que utilizam sistemas biológicos têm baixo custo de investimento e a dependência de variáveis ambientais é mínima. Neste trabalho, é demonstrado que essas algas filamentosas reduzem a carga nutricional de nitrato (circa 75%) e fosfato (circa 86%) dos efluentes de resíduos orgânicos provenientes de fazendas de leite em nove dias de cultura e tem a vantagem de que as algas podem ser facilmente coletadas posteriormente. Atualmente, as águas residuais orgânicas são descartadas nos campos e córregos locais. Posteriormente, as algas podem ser consideradas como matéria prima, uma vez que possuem várias utilidades como composto, celulose e biogás. Uma desvantagem desse sistema é que água limpa deve ser usada para obter transparência de água suficiente para permitir o crescimento de algas. Mesmo assim, o sistema de redução de nutrientes dos efluentes orgânicos propostos e amigável ao ecossistema, comparado aos tratamentos terciários que utilizam produtos químicos para precipitar e coletar nutrientes como nitratos e fosfatos.
Subject(s)
Waste Disposal, Fluid , Ecosystem , Nutrients , Wastewater/analysis , Nitrates , NitrogenABSTRACT
The acidogenic fermentation of dairy wastewater (DW) was evaluated for carboxylic acids (CA) production, investigating the influence of substrate/microorganism (S/X) ratio and applying different mathematical models to the bioproduct formation data. The experiments were performed in batch reactors for 28 days, and four S/X ratios were tested (0.8, 1.2, 1.6, and 1.9 gCOD gVSS-1). The S/X ratio increase did not influence the percentage of DW conversion into carboxylic acids (42-44%), but the productivity was positively affected (100-200% in general). Acetic acid was the CA formed in the highest concentration for all experiments, followed by propionic and butyric acids. Exponential models were better suited to describe this kinetics process. Therefore, according to the estimated kinetic parameters, the S/X ratio 1.6 was more suitable for CA production from acidogenic fermentation of dairy wastewater, in which the concentrations of longer CA, such as propionate and butyrate, were formed in higher quantities. In addition, it was determined a correlation between the S/X ratio and kinetic parameters like degradation/production rate constant (K) and maximum productivity rate (µm).
Subject(s)
Carboxylic Acids , Wastewater , Acetic Acid , Bioreactors , Fermentation , KineticsABSTRACT
Wastewater discharges from dairy industries can cause a range of harmful effects in aquatic ecosystems, including a decline in biodiversity due to species evasion. Therefore, it is important to know the purification potential of rivers for the removal of pollutants released in dairy wastewater (DWW). The hypothesis adopted in this work was that the release of DWW into stretches of the Ribeirão dos Pombos River (São Paulo State, Brazil) might trigger an avoidance response, resulting in fish migrating to other regions, with the response being greater when the self-cleaning potential of the river is smaller. Therefore, the goals of the present study were to: (i) investigate how land use and seasonality of the rainfall regime influence the quality of the water in different areas of the river (P1: river source; P2: urban region; P3: rural region); (ii) assess the potential of the river to purify DWW; and (iii) evaluate the potential toxicity and repellency of DWW to the freshwater fish Danio rerio, using acute toxicity (mortality) and non-forced avoidance tests, respectively. P1 was shown to be the most preserved area. The chemical composition of the river varied seasonally, with higher concentrations of Cl- and SO42- at P3 during the rainy period. The river purification potential for DWW was higher at P2, due to greater microbiological activity (associated with higher BOD). The DWW was more acutely toxic in water from P2. The avoidance response was strongly determined by the concentration of DWW, especially for water from P2. The high capacity for self-cleaning at P2 did not seem sufficient to maintain the stability of the ecosystem. Finally, the non-forced exposure system proved to be a suitable approach that can assist in predicting how contaminants may affect the spatial distributions of organisms.
Subject(s)
Rivers , Water Pollutants, Chemical/analysis , Animals , Brazil , Ecosystem , Environmental Monitoring , Wastewater , ZebrafishABSTRACT
Long-term performance of a scaled-up air-cathode microbial fuel cell (MFC) and toxicity removal were studied with dairy wastewater (DW) used as the substrate. The MFC in a semi-continuous flow was strategically inoculated with consortium of Shewanella oneidensis and Clostridium butyricum. The scaled-up approach delivered a maximum power density of 0.48 W/m3 (internal resistance of 73 Ω) removing 93% of total chemical oxygen demand and 95% of total biochemical oxygen demand at organic loading rate (OLR) of 0.9 kg COD/m3/d and hydraulic retention time (HRT) of 21 days. It also achieved high removal efficiency of nitrate (100%), organic nitrogen (57%), sulfate (90%) and organic phosphorus (90%). The power generation and DW degradation performance decreased with OLR of 1.8 kg COD/m3/d and HRT of 10.5 days. Furthermore, testing of acute toxicity with the microcrustacean, Daphnia similis, revealed high toxic effect of the raw DW, but no toxic effects of the MFC effluent during 95 days of operation. These outcomes demonstrated that scaled-up MFC fed with high-strength DW should be an effective system for pollutants removal and simultaneously energy recovery.
Subject(s)
Bioelectric Energy Sources , Wastewater/microbiology , Biological Oxygen Demand Analysis , Dairying , ElectrodesABSTRACT
The treatment of dairy wastewater in methanogenic reactors cause several problems due to their high lipid content. One strategy to overcome these problems is the use of commercial formulations. Here we studied the effect of adding a commercial formulation, designed to improve fat degradation, on both the microbial community composition and reactor performance. Samples from two full-scale Up-flow Anaerobic Sludge Blanket (UASB) reactors in parallel arrangement were analysed. The commercial product was added to one of the reactors while the other was used as control. The amendment increased significantly the fat removal but an accumulation of volatile fatty acids was detected. Nevertheless, no significant differences were observed in the total Chemical Oxygen Demand (COD) removal and biogas production between reactors. A significant change in the bacterial community was not detected by 16S rRNA gene Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis probably due to the limitation of the technique. A strong change in the composition of the phylum Firmicutes was detected with 16S rRNA gene amplicon sequencing; however, it didn't persist during the whole operation period. The relative abundance of minor Operational Taxonomic Units (OTUs) with sequences related to syntrophic bacteria increased with the amendment. Although a better hydrolytic capacity was obtained when adding the commercial product, the overall process did not improve and no increase in biogas production was detected. Alternative strategies could be applied to avoid the accumulation of intermediary products and improve biogas production as intermittent addition of the commercial product or batch operation of reactors.
Subject(s)
Euryarchaeota , Sewage , Anaerobiosis , Biofuels , Bioreactors , Methane , RNA, Ribosomal, 16SABSTRACT
Abstract A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.
Resumo Uma análise de viabilidade do tratamento terciário para Resíduos Agrícola Líquidos Orgânicos é apresentada usando algas filamentosas pertencentes ao gênero Cladophora sp. como alternativa ao tratamento químico terciário. Os tratamentos terciários que utilizam sistemas biológicos têm baixo custo de investimento e a dependência de variáveis ambientais é mínima. Neste trabalho, é demonstrado que essas algas filamentosas reduzem a carga nutricional de nitrato (circa 75%) e fosfato (circa 86%) dos efluentes de resíduos orgânicos provenientes de fazendas de leite em nove dias de cultura e tem a vantagem de que as algas podem ser facilmente coletadas posteriormente. Atualmente, as águas residuais orgânicas são descartadas nos campos e córregos locais. Posteriormente, as algas podem ser consideradas como matéria prima, uma vez que possuem várias utilidades como composto, celulose e biogás. Uma desvantagem desse sistema é que água limpa deve ser usada para obter transparência de água suficiente para permitir o crescimento de algas. Mesmo assim, o sistema de redução de nutrientes dos efluentes orgânicos propostos e amigável ao ecossistema, comparado aos tratamentos terciários que utilizam produtos químicos para precipitar e coletar nutrientes como nitratos e fosfatos.
ABSTRACT
The aim of this study was to understand how the microbial community adapted to changes, including a pH perturbation, occurring during the start-up and operation processes in a full-scale methanogenic UASB reactor designed to treat dairy wastewater. The reactor performance, prokaryotic community, and lipid degradation capacity were monitored over a 9-month period. The methanogenic community was studied by mcrA/mrtA gene copy-number quantification and methanogenic activity tests. A diverse prokaryotic community characterized the seeding sludge as assessed by sequencing the V4 region of the 16S rRNA gene. As the feeding began, the bacterial community was dominated by Firmicutes, Synergistetes, and Proteobacteria phyla. After an accidental pH increase that affected the microbial community structure, a sharp increase in the relative abundance of Clostridia and a decrease in the mcrA/mrtA gene copy number and methanogenic activity were observed. After a recovery period, the microbial population regained diversity and methanogenic activity. Alkaline shocks are likely to happen in dairy wastewater treatment because of the caustic soda usage. In this work, the plasticity of the prokaryotic community was key to surviving changes to the external environment and supporting biogas production in the reactor.
Subject(s)
Bioreactors/microbiology , Sewage/microbiology , Waste Disposal, Fluid , Water Microbiology , Water Purification , Anaerobiosis , Archaea/metabolism , Bacteria, Anaerobic/classification , Biofuels , Clostridium/classification , Dairying , Euryarchaeota/metabolism , Firmicutes/classification , Hydrogen-Ion Concentration , Methane/metabolism , Microbiota , Proteobacteria/classification , RNA, Ribosomal, 16S/genetics , WastewaterABSTRACT
In this work, the coagulation/flocculation/sedimentation treatment of dairy wastewater samples was investigated through serial factorial designs utilizing the saline extract obtained from Moringa oleifera (Moringa) as a coagulant. The sedimentation time (ST), pH, Moringa coagulant (MC) dose and concentration of CaCl2 have been evaluated through the response surface methodology in order to obtain the ideal turbidity removal (TR) conditions. The empirical quadratic model, in conjunction with the desirability function, demonstrated that it is possible to obtain TRs of 98.35% using a coagulant dose, concentration of CaCl2 and pH of 280â mgâ L-1, 0.8â molâ L-1 and 9, respectively. The saline extract from Moringa presented its best efficiency at an alkaline pH, which influenced the reduction of the ST to a value of 25â min. It was verified that the increase in the solubility of the proteins in the Moringa stimulated the reduction of the coagulant content in the reaction medium, and it is related to the use of calcium chloride as an extracting agent of these proteins. The MC proved to be an excellent alternative for the dairy wastewater treatment, compared to the traditional coagulants.
Subject(s)
Moringa oleifera , Water Purification , Flocculation , Seeds , WastewaterABSTRACT
The aim of this research was to evaluate the enhanced single-cell oil production by cold shock in Aphanothece microscopica Nägeli using dairy processing wastewater as culture medium. The study focused on (i) temperature optimization for biomass production, (ii) cold shock application to induce lipids biosynthesis and (iii) determination of fatty acids profile under different conditions. Results indicated that temperature of 20°C was the best condition in terms of kinetics parameter, reaching biomass productivities of 160.25mg/L.h. Under these conditions, a lipid content of 12.65% was also observed, resulting in a lipid productivity of 20.27mg/L.h. Additionally, the 0°C cold shock was the most efficient in increasing intracellular lipid content, reaching 28.4% in dry weight. Cold shocks also showed influence on the saturation of fatty acid composition, where the saturated fatty acids decreased, and the monounsaturated and polyunsaturated fatty acids increased by increasing the cold application. Thus, the use of cold shocks indicates to be a key condition for improving the prospects of efficient single-cell oils production.(AU)
O objetivo deste trabalho foi avaliar o aumento da produção de óleos unicelulares por Aphanothece microscopica Nägeli utilizando água residuária de processamento de laticínios como meio de cultura. O estudo concentrou-se na (i) otimização da temperatura para produção de biomassa, (ii) aplicação de choque frio para induzir a biossíntese de lipídios e (iii) determinação do perfil de ácidos graxos sob diferentes condições. Os resultados indicam que a temperatura de 20°C foi a melhor condição em termos de parâmetros cinéticos, atingindo produtividades de biomassa de 160,25mg/L.h. Nesta condição também foi observado um teor lipídico de 12,65%, o que resultou em uma produtividade lipídica de 20,27mg/L.h. Além disso, o choque frio de 0°C foi o mais eficiente para aumentar o conteúdo lipídico intracelular, que atingiu 28,4% em peso seco. Os choques frios também mostraram influência na saturação da composição de ácidos graxos, em que os ácidos graxos saturados diminuíram, e os ácidos graxos monoinsaturados e poli-insaturados ampliaram com o aumento da aplicação de frio. Assim, o uso de choques frios indica ser uma condição chave para melhorar as perspectivas de produção eficiente de óleos unicelulares.(AU)
ABSTRACT
The aim of this work was to evaluate the efficiency of horizontal subsurface flow constructed wetlands (HSFCWs) planted with Typha domingensis and Phragmites australis in the final treatment of dairy wastewater. Ten microcosms-scale reactors simulating HSFCWs were arranged outdoors under a semi-transparent plastic roof. Five replicates were planted with T. domingensis and five with P. australis. In both cases, light expanded clay aggregate (LECA) 10/20 was used as a substrate. Real effluent with previous treatment was used. In order to evaluate contaminant removal efficiencies in each reactor, pH, electrical conductivity, suspended solids, ammonium, nitrate, nitrite, total phosphorus, and chemical oxygen demand (COD) were analyzed before and after treatment. HSFCWs planted with T. domingensis and P. australis were efficient for the final treatment of dairy wastewater. Removal efficiencies obtained in microcosms planted with both macrophytes were over 96% for ammonium and nitrite. Nitrate removal efficiency was 39%. COD decreased along the experiment near 75% for both treatments. High removal percentages for suspended solids (78.4-81.1%) were also achieved. However, systems planted with T. domingensis were significantly more efficient for total phosphorus removal (88.5%) than those planted with P. australis (71.6%).
Subject(s)
Wastewater/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Waste Disposal, Fluid , WetlandsABSTRACT
ABSTRACT: The aim of this research was to evaluate the enhanced single-cell oil production by cold shock in Aphanothece microscopica Nägeli using dairy processing wastewater as culture medium. The study focused on (i) temperature optimization for biomass production, (ii) cold shock application to induce lipids biosynthesis and (iii) determination of fatty acids profile under different conditions. Results indicated that temperature of 20°C was the best condition in terms of kinetics parameter, reaching biomass productivities of 160.25mg/L.h. Under these conditions, a lipid content of 12.65% was also observed, resulting in a lipid productivity of 20.27mg/L.h. Additionally, the 0°C cold shock was the most efficient in increasing intracellular lipid content, reaching 28.4% in dry weight. Cold shocks also showed influence on the saturation of fatty acid composition, where the saturated fatty acids decreased, and the monounsaturated and polyunsaturated fatty acids increased by increasing the cold application. Thus, the use of cold shocks indicates to be a key condition for improving the prospects of efficient single-cell oils production.
RESUMO: O objetivo deste trabalho foi avaliar o aumento da produção de óleos unicelulares por Aphanothece microscopica Nägeli utilizando água residuária de processamento de laticínios como meio de cultura. O estudo concentrou-se na (i) otimização da temperatura para produção de biomassa, (ii) aplicação de choque frio para induzir a biossíntese de lipídios e (iii) determinação do perfil de ácidos graxos sob diferentes condições. Os resultados indicam que a temperatura de 20°C foi a melhor condição em termos de parâmetros cinéticos, atingindo produtividades de biomassa de 160,25mg/L.h. Nesta condição também foi observado um teor lipídico de 12,65%, o que resultou em uma produtividade lipídica de 20,27mg/L.h. Além disso, o choque frio de 0°C foi o mais eficiente para aumentar o conteúdo lipídico intracelular, que atingiu 28,4% em peso seco. Os choques frios também mostraram influência na saturação da composição de ácidos graxos, em que os ácidos graxos saturados diminuíram, e os ácidos graxos monoinsaturados e poli-insaturados ampliaram com o aumento da aplicação de frio. Assim, o uso de choques frios indica ser uma condição chave para melhorar as perspectivas de produção eficiente de óleos unicelulares.
ABSTRACT
Abstract A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.
Resumo Uma análise de viabilidade do tratamento terciário para Resíduos Agrícola Líquidos Orgânicos é apresentada usando algas filamentosas pertencentes ao gênero Cladophora sp. como alternativa ao tratamento químico terciário. Os tratamentos terciários que utilizam sistemas biológicos têm baixo custo de investimento e a dependência de variáveis ambientais é mínima. Neste trabalho, é demonstrado que essas algas filamentosas reduzem a carga nutricional de nitrato (circa 75%) e fosfato (circa 86%) dos efluentes de resíduos orgânicos provenientes de fazendas de leite em nove dias de cultura e tem a vantagem de que as algas podem ser facilmente coletadas posteriormente. Atualmente, as águas residuais orgânicas são descartadas nos campos e córregos locais. Posteriormente, as algas podem ser consideradas como matéria prima, uma vez que possuem várias utilidades como composto, celulose e biogás. Uma desvantagem desse sistema é que água limpa deve ser usada para obter transparência de água suficiente para permitir o crescimento de algas. Mesmo assim, o sistema de redução de nutrientes dos efluentes orgânicos propostos e amigável ao ecossistema, comparado aos tratamentos terciários que utilizam produtos químicos para precipitar e coletar nutrientes como nitratos e fosfatos.
ABSTRACT
Dairy production plants produce highly polluted wastewaters rich in organic molecules such as lactose, proteins and fats. Fats generally lead to low overall performance of the treatment system. In this study, a wastewater dairy lagoon was used as microbial source and different screening strategies were conducted to select 58 lipolytic microorganisms. Exoenzymes and RAPD analyses revealed genetic and phenotypic diversity among isolates. Bacillus safensis, Pseudomonas alcaliphila and the potential pathogens, B. cereus, Aeromonas and Acinetobacter were identified by 16S-rRNA, gyrA, oprI and/or oprL sequence analyses. Five out of 10 selected isolates produced lipolytic enzymes and grew in dairy wastewater. Based on these abilities and their safety, B. safensis S9 and P. alcaliphila ED1 were selected and their genome sequences determined. The genome of strain S9 and ED1 consisted of 3,794,315 and 5,239,535 bp and encoded for 3990 and 4844 genes, respectively. Putative extracellular enzymes with lipolytic (12 and 16), proteolytic (20) or hydrolytic (10 and 15) activity were identified for S9 and ED1 strains, respectively. These bacteria also encoded other technological relevant proteins such as amylases, proteases, glucanases, xylanases and pectate lyases.