Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; 35(7): e2208750, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36414612

ABSTRACT

Benefiting from the emergence of narrow-band-gap small-molecule acceptors (SMAs), especially "Y" series, the power conversion efficiency (PCE) of polymer solar cells (PSCs) is rapidly improved. However, polymer donors with high efficiency, easy synthesis, and good universality are relatively scarce except PBDB-TF and D18. Herein, two polymer donors are designed and synthesized based on 4-chlorothiazole derivatives with simple structures, namely PTz3Cl and PBTTz3Cl. The OSCs based on PBTTz3Cl with slightly weaker intermolecular forces in comparison to PTz3Cl exhibits a decent PCE of 18.38% in blending with SMA L8-BO, owing to its strong donor/acceptor interaction with L8-BO, which shapes suitable phase separation morphology. Further research finds that PBTTz3Cl can exhibit excellent photovoltaic performances with various SMA materials, highlighting its universality. Based on this, ternary PSCs are designed where BTP-eC9 is introduced as a guest into the PBTTz3Cl:L8-BO host system. Thanks to further optimal blend morphology and more balanced charge transport, the PCE is improved up to 19.12%, which is among the highest values for PSCs. This work provides a new design of low-cost electron-deficient units for constructing highly versatile, high-performance polymer donors.

2.
Adv Mater ; 34(2): e2105803, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34647376

ABSTRACT

Nonhalogenated polymers have great potential in the commercialization of organic photovoltaic (OPV) cells due to their advantage in low-cost preparation. However, non-halogenated polymers usually have high highest occupied molecular orbital (HOMO) energy levels and inferior self-aggregation properties in solution, thus resulting in low power conversion efficiencies (PCEs). Herein, two nonhalogenated polymers, PB1 and PB2, are prepared. When the polymers are used to fabricate OPV cells with BTP-eC9, the PB1-based device only gives a PCE of 5.3%, while the PB2-based device shows an outstanding PCE of 17.7%. After the introduction of PBDB-TF as the third component, the PB2:PBDB-TF:BTP-eC9-based device with an optimal weight ratio of 0.5:0.5:1 achieves a PCE up to 18.4%. More importantly, PB2 exhibits good compatibility with various nonfullerene acceptors to achieve better PCEs than those of classical polymer (PBDB-T and PBDB-TF)-based devices. When PB2 is combined with a wide-bandgap electron acceptor (F-BTA3), this device shows excellent PCE of 27.1% and 24.6% for 1 and 10 cm2 devices, respectively, under light intensity of 1000 lux light-emitting diode illumination. These results provide new insight in the rational design of novel nonhalogenated polymer donors for further development of low-cost materials and broadening the application of OPV cells.

SELECTION OF CITATIONS
SEARCH DETAIL