Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Curr Med Imaging ; 20: 1-6, 2024.
Article in English | MEDLINE | ID: mdl-38389358

ABSTRACT

BACKGROUND: Abdominal multi-slice helical computed tomography (CT) and contrast-enhanced scanning have been widely recognized clinically. OBJECTIVE: The impact of the deep learning image reconstruction (DLIR) on the quality of dynamic contrast-enhanced CT imaging of primary liver cancer lesions was evaluated through comparison with the filtered back projection (FBP) and the new generation of adaptive statistical iterative reconstruction-V (ASIR-V). METHODS: We evaluated the image noise of the lesion, fine structures inside the lesion, and diagnostic confidence in 48 liver cancer subjects. The CT values of the solid part of the lesion and the adjacent normal liver tissue and the systolic and diastolic blood pressure (SD) values of the right paravertebral muscle were measured. The muscle SD value was considered as the background noise of the image, and the signal noise ratio (SNR) and contrast signal-to-noise ratio (CNR) of the lesion and normal liver parenchyma were calculated. RESULTS: High consistency in the evaluation of image noise (Kappa = 0.717). The Kappa values for margin/pseudocapsule, fine structure within the lesion, and diagnostic confidence were 0.463, 0.527, and 0.625, respectively. Besides, the differences in SD, SNR and CNR data of reconstructed lesion images among the six groups were statistically significant. CONCLUSION: The contrast-enhanced CT image noise of DLIR-H in the portal venous phase is much lower than that of ASIR-V and FBP in primary liver cancer patients. In terms of the lesion structure display, the new reconstruction algorithm DLIR is superior.


Subject(s)
Deep Learning , Liver Neoplasms , Humans , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Liver Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods
2.
Quant Imaging Med Surg ; 13(6): 3891-3901, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37284103

ABSTRACT

Background: GE Healthcare's new generation of deep-learning image reconstruction (DLIR), the Revolution Apex CT is the first CT image reconstruction engine based on a deep neural network to be approved by the US Food and Drug Administration (FDA). It can generate high-quality CT images that restore the true texture with a low radiation dose. The aim of the present study was to assess the image quality of coronary CT angiography (CCTA) at 70 kVp with the DLIR algorithm as compared to the adaptive statistical iterative reconstruction-Veo (ASiR-V) algorithm in patients of different weight. Methods: The study group comprised 96 patients who underwent CCTA examination at 70 kVp and were subdivided by body mass index (BMI) into normal-weight patients [48] and overweight patients [48]. ASiR-V40%, ASiR-V80%, DLIR-low, DLIR-medium, and DLIR-high images were obtained. The objective image quality, radiation dose, and subjective score of the two groups of images with different reconstruction algorithms were compared and statistically analyzed. Results: In the overweight group, the noise of the DLIR image was lower than that of the routinely used ASiR-40%, and the contrast-to-noise ratio (CNR) of DLIR (H: 19.15±4.31; M: 12.68±2.91; L: 10.59±2.32) was higher than that of the ASiR-40% reconstructed image (8.39±1.46), with statistically significant differences (all P values <0.05). The subjective image quality evaluation of DLIR was significantly higher than that of ASiR-V reconstructed images (all P values <0.05), with the DLIR-H being the best. In a comparison of the normal-weight and overweight groups, the objective score of the ASiR-V-reconstructed image increased with increasing strength, but the subjective image evaluation decreased, and both differences (i.e., objective and subjective) were statistically significant (P<0.05). In general, the objective score of the DLIR reconstruction image between the two groups increased with increased noise reduction, and the DLIR-L image was the best. The difference between the two groups was statistically significant (P<0.05), but there was no significant difference in subjective image evaluation between the two groups. The effective dose (ED) of the normal-weight group and the overweight group was 1.36±0.42 and 1.59±0.46 mSv, respectively, and was significantly higher in the overweight group (P<0.05). Conclusions: As the strength of the ASiR-V reconstruction algorithm increased, the objective image quality increased accordingly, but the high-strength ASiR-V changed the noise texture of the image, resulting in a decrease in the subjective score, which affected disease diagnosis. Compared with the ASiR-V reconstruction algorithm, the DLIR reconstruction algorithm improved the image quality and diagnostic reliability for CCTA in patients with different weights, especially in heavier patients.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005857

ABSTRACT

【Objective】 To investigate the value of deep learning image reconstruction (DLIR) in improving image quality and reducing beam-hardening artifacts of low-dose abdominal CT. 【Methods】 For this study we prospectively enrolled 26 patients (14 males and 12 females, mean age of 60.35±10.89 years old) who underwent CT urography between October 2019 and June 2020. All the patients underwent conventional-dose unenhanced CT and contrast-enhanced CT in the portal venous phase (noise index of 10; volume computed tomographic dose index: 9.61 mGy) and low-dose CT in the excretory phase(noise index of 23; volume computed tomographic dose index: 2.95 mGy). CT images in the excretory phase were reconstructed using four algorithms: ASiR-V 50%, DLIR-L, DLIR-M, and DLIR-H. Repeated measures ANOVA and Kruskal-Wallis H test were used to compare the quantitative (skewness, noise, SNR, CNR) and qualitative (image quality, noise, beam-hardening artifacts) values among the four image groups. Post hoc comparisons were performed using Bonferroni test. 【Results】 In either quantitative or qualitative evaluation, the SNR, CNR, overall image quality score, and noise of DLIR images were similar or better than ASiR-V 50%. In addition, the SNR, CNR, and overall image quality scores increased as the DLIR weight increased, while the noise decreased. There was no statistically significant difference in the distortion artifacts (P=0.776) and contrast-induced beam-hardening artifacts (P=0.881) scores among these groups. 【Conclusion】 Compared with the ASiR-V 50% algorithm, DLIR algorithm, especially DLIR-M and DLIR-H, can significantly improve the image quality of low-dose abdominal CT, but has limitations in reducing contrast-induced beam-hardening artifacts.

4.
Life (Basel) ; 12(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36143464

ABSTRACT

Deep learning image reconstruction (DLIR) is a technique that should reduce noise and improve image quality. This study assessed the impact of using both higher tube currents as well as DLIR on the image quality and diagnostic accuracy. The study consisted of 51 symptomatic obese (BMI > 30 kg/m2) patients with low to moderate risk of coronary artery disease (CAD). All patients underwent coronary computed tomography angiography (CCTA) twice, first with the Revolution CT scanner and then with the upgraded Revolution Apex scanner with the ability to increase tube current. Images were reconstructed using ASiR-V 50% and DLIR. The image quality was evaluated by an observer using a Likert score and by ROI measurements in aorta and the myocardium. Image quality was significantly improved with the Revolution Apex scanner and reconstruction with DLIR resulting in an odds ratio of 1.23 (p = 0.017), and noise was reduced by 41%. A total of 88% of the image sets performed with Revolution Apex + DLIR were assessed as good enough for diagnosis compared to 69% of the image sets performed with Revolution Apex/CT + ASiR-V. In obese patients, the combination of higher tube current and DLIR significantly improves the subjective image quality and diagnostic utility and reduces noise.

5.
Quant Imaging Med Surg ; 12(6): 3238-3250, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35655845

ABSTRACT

Background: Studies on the application of deep learning image reconstruction (DLIR) in pediatric computed tomography (CT) are limited and have so far been mostly based on phantom. The purpose of this study was to compare the image quality and radiation dose of DLIR with that of adaptive statistical iterative reconstruction-Veo (ASiR-V) during abdominal and chest CT for the pediatric population. Methods: A pediatric phantom was used for the pilot study, and 20 children were recruited for clinical verification. The preset scan parameter noise index (NI) was 5, 8, 11, 13, 15, and 18 for the phantom study, and 8 and 13 for the clinical pediatric study. We reconstructed CT images with ASiR-V 30%, ASiR-V 70%, DLIR-M (medium) and DLIR-H (high). The regions of interest (ROI) were marked on the organs of the abdomen (liver, kidney, and subcutaneous fat) and the chest (lung, mediastinum, and spine). The CT dose index volume (CTDIvol), CT value, image noise (N), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and calculated. The subjective image quality was assessed by 3 radiologists blindly using a 5-point scale. The dose reduction efficiency of DLIR was estimated. Results: In the phantom study, the interobserver assessment of the data measurement demonstrated good agreement [intraclass correlation coefficient (ICC) =0.814 for abdomen, 0.801 for chest]. Within the same dose level, the N, SNR, and CNR were statistically different among reconstructions, while the CT value remained the same. The N increased and SNR decreased as the radiation dose decreased. The DLIR-H performed better than ASiR-V when the radiation dose was reduced, without sacrificing image quality. In the patient study, the interobserver assessment of the data measurement demonstrated good agreement (ICC =0.774 for abdomen, 0.751 for chest). DLIR-H had the highest subjective and objective scores in the abdomen. Conclusions: Application of DLIR could help to reduce radiation dose without sacrificing the image quality of pediatric CT scans. Further clinical validation is required.

6.
J Xray Sci Technol ; 29(6): 1009-1018, 2021.
Article in English | MEDLINE | ID: mdl-34569983

ABSTRACT

OBJECTIVE: To assess clinical application of applying deep learning image reconstruction (DLIR) algorithm to contrast-enhanced portal venous phase liver computed tomography (CT) for improving image quality and lesions detection rate compared with using adaptive statistical iterative reconstruction (ASIR-V) algorithm under routine dose. METHODS: The raw data from 42 consecutive patients who underwent contrast-enhanced portal venous phase liver CT were reconstructed using three strength levels of DLIRs (low [DL-L]; medium [DL-M]; high [DL-H]) and two levels of ASIR-V (30%[AV-30]; 70%[AV-70]). Objective image parameters, including noise, signal-to-noise (SNR), and the contrast-to-noise ratio (CNR) relative to muscle, as well as subjective parameters, including noise, artifact, hepatic vein-clarity, index lesion-clarity, and overall scores were compared pairwise. For the lesions detection rate, the five reconstructions in patients who underwent subsequent contrast-enhanced magnetic resonance imaging (MRI) examinations were compared. RESULTS: For objective parameters, DL-H exhibited superior image quality of lower noise and higher SNR than AV-30 and AV-70 (all P < 0.05). CNR was not statistically different between AV-70, DL-M, and DL-H (all P > 0.05). In both objective and subjective parameters, only image noise was statistically reduced as the strength of DLIR increased compared with ASIR-V (all P < 0.05). Regarding the lesions detection rate, a total of 45 lesions were detected by MRI examination and all five reconstructions exhibited similar lesion-detection rate (25/45, 55.6%). CONCLUSION: Compared with AV-30 and AV 70, DLIR leads to better image quality with equal lesion detection rate for liver CT imaging under routine dose.


Subject(s)
Deep Learning , Algorithms , Humans , Image Processing, Computer-Assisted , Liver/diagnostic imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
7.
Ann Transl Med ; 9(23): 1726, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35071420

ABSTRACT

BACKGROUND: Deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-V (ASIR-V) has been used for cardiac computed tomography imaging. However, DLIR and ASIR-V may influence the quantification of coronary artery calcification (CAC). METHODS: CT images of 96 patients were reconstructed using filtered back projection (FBP), ASIR-V 50%, and three levels of DLIR [low (L), medium (M), and high (H)]. Image noise and the Agatston, volume, and mass scores were compared between the reconstructions. Patients were stratified into six Agatston score-based risk categories and five CAC percentile risk categories adjusted by Agatston score, age, sex, and race. The number of patients who were switched to another risk stratification group when ASIR-V and DLIR were used was compared. Bland-Altman plots were used to present the agreement of Agatston scores between FBP and the different reconstruction techniques. RESULTS: Compared to that with FBP, image noise was significantly decreased with ASIR-V 50%, and DLIR-L, -M, and -H (all P<0.001). The Agatston, volume, and mass scores with ASIR-V 50% and DLIR-L, -M, and -H showed significant decreases in comparison to those calculated with FBP (all P<0.001). Severity classification showed no significant differences between the five reconstruction techniques in any of the CAC score-based risk categories (all P>0.05). CONCLUSIONS: DLIR and ASIR-V show great potential for improving CT image quality, and appear to have no pronounced impact on CAC quantification or Agatston score-based risk stratification.

SELECTION OF CITATIONS
SEARCH DETAIL
...