Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anat Rec (Hoboken) ; 306(12): 2939-2944, 2023 12.
Article in English | MEDLINE | ID: mdl-31909899

ABSTRACT

Traditional Chinese medicine (TCM) is a systematic medical method that has existed for more than 3,000 years. Unlike Western medicine, the disease diagnosis in TCM is carried out by inspection, auscultation, olfaction, interrogation, and palpation. The patient is then treated according to the disease and corresponding TCM syndrome. However, the development of Chinese medicine is stagnated, partially because it can be influenced by subjective factors, such as the experience and knowledge of TCM practitioners, and there is a lack of relevant biological research on TCM syndromes. Yin-deficiency-heat (YDH) syndrome in TCM is characterized by a series of pathological changes caused by the insufficiency of Yin-fluid, inability to moisturize, and the failure to suppress Yang. In recent years, systems biology research on TCM syndromes has gradually become the focus of TCM research, including syndrome differentiation and functional research using systems biology methodologies such as proteomics, transcriptomics, and metabolomics. This journal aims to publish a series of issues on the systems biology research of TCM syndromes that can provide biological indicators for the syndrome differentiation of YDH syndrome and can provide perspectives on the biological research of YDH syndrome.


Subject(s)
Hot Temperature , Medicine, Chinese Traditional , Humans , Medicine, Chinese Traditional/methods , Systems Biology , Yang Deficiency/diagnosis , Yin Deficiency/diagnosis , Syndrome
2.
Zhongguo Zhong Yao Za Zhi ; 45(5): 1004-1010, 2020 Mar.
Article in Chinese | MEDLINE | ID: mdl-32237439

ABSTRACT

The aim of this paper was to study the effect of Lepidium meyenii(Maca) on cyclic nucleotides, neurotransmitter levels and hypothalamic-pituitary-adrenal axis and immunization of deficiency-cold and deficiency-heat syndrome rats, in order to explore the cold and hot medicinal properties of Maca. SD rats were divided into blank group, deficiency-cold syndrome group, Cinnamomi Cortex of deficiency-cold syndrome(30 g·kg~(-1)) group, high and low-dose Maca groups(2.4, 1.2 g·kg~(-1)), deficiency-heat syndrome group, Phellodendri Chinensis Cortex(PCC) of deficiency-heat syndrome(5 g·kg~(-1)), and high and low-dose Maca groups(2.4, 1.2 g·kg~(-1)). The rats were treated with intramuscular injection of hydrocortisone(20 mg·kg~(-1)) or dexamethasone sodium phosphate(0.35 mg·kg~(-1)) for 21 days to set up the deficiency-cold and deficiency-heat model. The levels of cAMP, cGMP, NE, DA, 5-HT, CRH, ACTH, CORT and IgM, IgG, C3, C4 were detected by radio immunoassay. Both the high-dose Maca group and the low-dose Maca group can significantly improve the overall state and body weight of rats with deficiency-cold syndrome(P<0.01, P<0.05), significantly increasing cAMP, cAMP/cGMP, NE, DA, ACTH(P<0.01, P<0.001), and significantly decreasing 5-HT(P<0.01, P<0.001). However, high-dose and low-dose Maca groups could not improve the deficiency-heat syndrome, and the levels of cAMP, cGMP, cAMP/cGMP, NE, DA, 5-HT and ACTH were not statistically significant. Maca had a significant regulatory effect on CORT, IgM, IgG and C3 content of rats with deficiency-cold and deficiency-heat syndrome(P<0.01, P<0.05, P<0.001). Maca showed the same effect with Cinnamomi Cortex in adjusting the levels of deficiency-cold rats, but in opposition to Phellodendri Chinese Cortex. This paper confirmed that Maca was slightly warm based on its effect on cyclic nucleotide levels and neuro-endocrine-immune networks by the pharmacological experimental method.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Endocrine System/drug effects , Immune System/drug effects , Lepidium/chemistry , Nervous System/drug effects , Animals , Hypothalamo-Hypophyseal System , Medicine, Chinese Traditional , Neurotransmitter Agents , Nucleotides, Cyclic , Pituitary-Adrenal System , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Temperature
3.
Anat Rec (Hoboken) ; 303(8): 2086-2094, 2020 08.
Article in English | MEDLINE | ID: mdl-31922655

ABSTRACT

Yin-deficiency-heat (YDH) syndrome is a very common subhealth status in Traditional Chinese Medicine. However, currently, there is no unified standard for diagnosing YDH syndrome. We applied the iTRAQ-2D LC-MS/MS method to explore the potential of serum protein profiles as biomarker for YDH syndrome. A total of 120 differentially expressed proteins (79 downregulated and 41 upregulated) were identified by the proteomic profiling. The results of KEGG pathway analysis showed that the functions of the differentially expressed proteins were mainly involved in complement and coagulation cascades. The clinical data showed that YDH syndrome was closely related to inflammation and coagulation, compared with the healthy controls. The ELISA validation results indicated that the expression levels of ALB, CFI, and KLKB1 were downregulated in the YDH syndrome group (p < .05). Moreover, we established a decision tree model based on the combination of these three proteins and achieved a sensitivity of 87.5%, a specificity of 84.4%, and AUC of 0.891. The results indicated that the combination of ALB, CFI, and KLKB1 may serve as potential biomarkers for diagnosing YDH syndrome. Our study can provide a new method for YDH syndrome diagnosis, and may also provide an experimental basis to understand the molecular mechanism of YDH syndrome.


Subject(s)
Blood Proteins/metabolism , Medicine, Chinese Traditional , Oral Ulcer/diagnosis , Yin Deficiency/diagnosis , Adult , Biomarkers/blood , Female , Humans , Male , Middle Aged , Oral Ulcer/blood , Proteomics , Tandem Mass Spectrometry , Yin Deficiency/blood
4.
Anat Rec (Hoboken) ; 303(8): 2095-2108, 2020 08.
Article in English | MEDLINE | ID: mdl-31909891

ABSTRACT

BACKGROUND: Yin-deficiency-heat (YDH) syndrome is a subhealth state of the individual, mainly manifested as oral ulcers, dry mouth, constipation, and other symptoms. Zhibai Dihuang granule (ZDG), as a classic traditional Chinese medicine, is effective in treating YDH syndrome. We screened the potential biomarkers for diagnosing YDH syndrome, and explored the mechanisms of the therapeutic effect of ZDG. METHODS: Plasma samples from the Pinghe (PH, healthy control) group, the Shanghuo (SH, YDH syndrome) group, and the ZDG treated group (therapeutic group) were analyzed by using metabolomics profiling. The data were analyzed by multivariate statistical and bioinformatics analyses. RESULTS: We screened four differential metabolites such as, decanoylcarnitine, dodecanoylcarnitine, phosphatidylcholine (PC), and Aspartate (Asp) Arginine (Arg) Proline (Pro) in the SH group and the PH group. The results showed that the combination of above four metabolites could serve as a potential biomarker for the early diagnosis of YDH syndrome. The metabolites decanoylcarnitine and glucose were found to be differentially expressed in the YDH syndrome group and tended to be normalized after ZDG treatment. CONCLUSION: The increased levels of four differential metabolites (decanoylcarnitine, dodecanoylcarnitine, PC, and Asp Arg Pro) revealed that individuals with YDH syndrome may have increased energy metabolism in the body, which could lead to disorders of fatty acids ß-oxidation and immune function. The levels of two differential metabolites including decanoylcarnitine and glucose returned to normal after ZDG treatment, indicating that ZDG could treat YDH syndrome by regulating glucose metabolism and fatty acids ß-oxidation. Our study provides a new method for the diagnosis of YDH syndrome, and may provide theoretical basis for novel therapeutic strategies of YDH syndrome.


Subject(s)
Medicine, Chinese Traditional , Metabolomics/methods , Yin Deficiency/diagnosis , Adolescent , Adult , Biomarkers/blood , Chromatography, High Pressure Liquid , Female , Humans , Male , Mass Spectrometry , Middle Aged , Proteomics/methods , Yin Deficiency/blood , Yin Deficiency/drug therapy , Young Adult
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008465

ABSTRACT

The aim of this paper was to study the effect of Lepidium meyenii(Maca) on cyclic nucleotides, neurotransmitter levels and hypothalamic-pituitary-adrenal axis and immunization of deficiency-cold and deficiency-heat syndrome rats, in order to explore the cold and hot medicinal properties of Maca. SD rats were divided into blank group, deficiency-cold syndrome group, Cinnamomi Cortex of deficiency-cold syndrome(30 g·kg~(-1)) group, high and low-dose Maca groups(2.4, 1.2 g·kg~(-1)), deficiency-heat syndrome group, Phellodendri Chinensis Cortex(PCC) of deficiency-heat syndrome(5 g·kg~(-1)), and high and low-dose Maca groups(2.4, 1.2 g·kg~(-1)). The rats were treated with intramuscular injection of hydrocortisone(20 mg·kg~(-1)) or dexamethasone sodium phosphate(0.35 mg·kg~(-1)) for 21 days to set up the deficiency-cold and deficiency-heat model. The levels of cAMP, cGMP, NE, DA, 5-HT, CRH, ACTH, CORT and IgM, IgG, C3, C4 were detected by radio immunoassay. Both the high-dose Maca group and the low-dose Maca group can significantly improve the overall state and body weight of rats with deficiency-cold syndrome(P<0.01, P<0.05), significantly increasing cAMP, cAMP/cGMP, NE, DA, ACTH(P<0.01, P<0.001), and significantly decreasing 5-HT(P<0.01, P<0.001). However, high-dose and low-dose Maca groups could not improve the deficiency-heat syndrome, and the levels of cAMP, cGMP, cAMP/cGMP, NE, DA, 5-HT and ACTH were not statistically significant. Maca had a significant regulatory effect on CORT, IgM, IgG and C3 content of rats with deficiency-cold and deficiency-heat syndrome(P<0.01, P<0.05, P<0.001). Maca showed the same effect with Cinnamomi Cortex in adjusting the levels of deficiency-cold rats, but in opposition to Phellodendri Chinese Cortex. This paper confirmed that Maca was slightly warm based on its effect on cyclic nucleotide levels and neuro-endocrine-immune networks by the pharmacological experimental method.


Subject(s)
Animals , Rats , Drugs, Chinese Herbal/pharmacology , Endocrine System/drug effects , Hypothalamo-Hypophyseal System , Immune System/drug effects , Lepidium/chemistry , Medicine, Chinese Traditional , Nervous System/drug effects , Neurotransmitter Agents , Nucleotides, Cyclic , Pituitary-Adrenal System , Plant Extracts/pharmacology , Rats, Sprague-Dawley , Temperature
6.
J Ethnopharmacol ; 225: 271-278, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-29729385

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zhibai Dihuang Granule (ZDG), a traditional Chinese medicine (TCM) made from eight Chinese herbs, has been classically used to treat Yin-deficiency-heat (YDH) syndrome. ZDG is well known with the therapeutic efficacy of nourishing Yin and decreasing internal heat in clinic, but the mechanism of ZDG's therapeutic effect is still not clear. MATERIALS AND METHODS: High doses of triiodothyronine (T3) were given intraperitoneally to induce Hyperthyroid YDH syndrome in SD rats. The animals were then treated with ZDG for one week. The iTRAQ-coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) technique was used to screen the differentially expressed serum proteins between ZDG treated rats and YDH syndrome rats. The differentially expressed proteins were analyzed by bioinformatics method and were verified by enzyme-linked immunosorbent assay (ELISA). RESULTS: A total of 55 differentially expressed proteins were identified, including 23 up-regulated proteins (>1.25 fold, p < 0.05) and 32 down-regulated proteins (<0.80 fold, p < 0.05). Among the differentially expressed proteins, 26 proteins returned to normal after ZDG treatment. Bioinformatics analysis showed that these proteins were mainly involved in immune response, including regulation of immune system process, complement activation, and humoral immune response mediated by circulating immunoglobulin. ELISA revealed significantly increased levels of Zinc-alpha-2-glycoprotein (Azgp1), L-selectin, C-reactive protein (Crp), Plasminogen (Plg), Kininogen 1 (Kng1), and significantly decreased levels of Mannose binding lectin 2 (Mbl2) and Complement C1qb chain (C1qb) in ZDG treated rats compared with YDH syndrome rats. Bioinformatics analyses indicated that Azgp1 participated in antigen processing and presentation, Crp, C1qb, and Mbl2 were involved in complement activation, while L-selectin, Plg, and Kng1 were involved in regulating the inflammatory response. CONCLUSIONS: Our study provides experimental evidence to understand the therapeutic mechanism of ZDG in YDH syndrome. The results suggested that ZDG may regulate the complement activation and inflammatory response, and promote the ability to recognize antigens to alleviate YDH syndrome.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Yin Deficiency/drug therapy , Animals , Antigen Presentation/drug effects , Body Temperature , Complement Activation/drug effects , Drugs, Chinese Herbal/pharmacology , Female , Hyperthyroidism/chemically induced , Hyperthyroidism/drug therapy , Hyperthyroidism/immunology , Immune System/drug effects , Proteomics , Rats, Sprague-Dawley , Syndrome , Triiodothyronine , Yin Deficiency/chemically induced , Yin Deficiency/immunology
7.
Zhongguo Zhong Yao Za Zhi ; 42(13): 2552-2557, 2017 Jul.
Article in Chinese | MEDLINE | ID: mdl-28840698

ABSTRACT

To study the effects of AÇaí(Euterpe oleracea) on lipid metabolism, immune substances and endocrine hormone level in rats with deficiency-heat and deficiency-cold syndrome. SD rats were divided into blank control group, deficiency-heat model group, deficiency-heat & Phellodendri Cortex group, deficiency-heat & AÇaí high dose and low dose groups, deficiency-cold model group, deficiency-cold & Cinnamomi Cortex group, deficiency-cold & AÇaí high dose and low dose groups. The rats received intramuscular injection of dexamethasone sodium phosphate (0.35 mg) or hydrocortisone sodium succinate (20 mg) for 21 days to set up deficiency-heat models and deficiency-cold models. Then the changes in fatmetabolism levels (FFA, LPL, HL) and immune indexes (IgG, IgM, C3 and C4) were detected by colorimeter; and the levels of endocrine hormone indexes (CORT, E2 and T) were detected by radioimmunoassay. The levels of FFA, LPL and HL in serum were reduced (P<0.01 or P<0.001); levels of IgG, IgM and C3 in serum were increased (P<0.05 or P<0.001); level of CORT in serum was increased (P<0.05) and the level of E2, E2/T in serum were reduced in the AÇaí high dose group (P<0.05). The effect of high dose AÇaí on fat metabolism was not obvious in deficiency-cold models, but the levels of IgG, IgM, C3 and CORT in serum were increased (P<0.05 or P<0.001). AÇaí was showed the same effect trend with Phellodendri Cortex in adjusting the levels of deficiency-heat rats; but unlike Cinnamomi Cortex, AÇaí was showed no obvious effect in adjusting the levels of deficiency-cold rats. In this experiment, homogeneous comparison and heterogeneous disproof were used to verify the cold nature of Çaí.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Endocrine System/drug effects , Euterpe/chemistry , Lipid Metabolism/drug effects , Plant Extracts/pharmacology , Animals , Rats , Rats, Sprague-Dawley
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-258480

ABSTRACT

To study the effects of AÇaí(Euterpe oleracea) on lipid metabolism, immune substances and endocrine hormone level in rats with deficiency-heat and deficiency-cold syndrome. SD rats were divided into blank control group, deficiency-heat model group, deficiency-heat & Phellodendri Cortex group, deficiency-heat & AÇaí high dose and low dose groups, deficiency-cold model group, deficiency-cold & Cinnamomi Cortex group, deficiency-cold & AÇaí high dose and low dose groups. The rats received intramuscular injection of dexamethasone sodium phosphate (0.35 mg) or hydrocortisone sodium succinate (20 mg) for 21 days to set up deficiency-heat models and deficiency-cold models. Then the changes in fatmetabolism levels (FFA, LPL, HL) and immune indexes (IgG, IgM, C3 and C4) were detected by colorimeter; and the levels of endocrine hormone indexes (CORT, E2 and T) were detected by radioimmunoassay. The levels of FFA, LPL and HL in serum were reduced (P<0.01 or P<0.001); levels of IgG, IgM and C3 in serum were increased (P<0.05 or P<0.001); level of CORT in serum was increased (P<0.05) and the level of E2, E2/T in serum were reduced in the AÇaí high dose group (P<0.05). The effect of high dose AÇaí on fat metabolism was not obvious in deficiency-cold models, but the levels of IgG, IgM, C3 and CORT in serum were increased (P<0.05 or P<0.001). AÇaí was showed the same effect trend with Phellodendri Cortex in adjusting the levels of deficiency-heat rats; but unlike Cinnamomi Cortex, AÇaí was showed no obvious effect in adjusting the levels of deficiency-cold rats. In this experiment, homogeneous comparison and heterogeneous disproof were used to verify the cold nature of Çaí.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-572846

ABSTRACT

[Objective] To observe the relationship between humoral immunity and syndrome patterns of excess-heat and deficiency-heat. [Methods] Serum globulin contents of IgG, IgA, IgM and IgE, circulatory immune compound (CIC) and serum complements of C3 , C4 and CH50 were detected in 30 cases of healthy volunteers (group A), 27 of excess-heat syndrome (group B) and 35 of deficiency-heat syndrome (group C). [Results] Serum globulin contents of IgG, IgA, IgM, C3 and CH50 in group C were lower than those in group A ( P

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-571466

ABSTRACT

[Objective] To investigate the relationship of thyroid hormones with excess-heat syndrome and deficiency-heat syndrome. [Methods] Serum levels of thyroid hormones and thyroid-stimulating hormone (TSH) in 30 healthy volunteers (Group A) , 27 cases of excess-heat syndrome (Group B) and 35 cases of deficiency-heat syndrome (Group C) were detected by radioimmunoassay. [Results] Serum levels of triiodothyronine (T3) and thyroxine (T4) were higher and reverse T3 (rT3) lower in Group C than those in Group A (P 0.05). [Conclusion] Serum thyroid hormones level in deficiency-heat syndrome is different from that of excess-heat syndrome may be related to the hypothalamus-pituitary-thyroid function.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-524532

ABSTRACT

Objective:To observe differences of peripheral T-lymphocyte subsets between the patients of excess-heat syndrome and deficiency-heat syndrome.Methods:T-lymphocyte subsets in a normal group(n=30),excess-heat syndrome group(n=27)and deficiency-heat syndrome group(n=35)were detected with indirect immunofluorescence staining method.Results:CD_3,CD_4 and CD_4/CD_8 ratio decreased significantly in the excess-heat syndrome group arid the deficiency-heat syndrome group as compared with normal group(P

SELECTION OF CITATIONS
SEARCH DETAIL
...